22 research outputs found

    Gall volatiles defend aphids against a browsing mammal

    Get PDF
    Background: Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results: Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions: Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies

    Gall volatiles defend aphids against a browsing mammal

    Get PDF
    Background: Plants have evolved an astonishing array of survival strategies. To defend against insects, for example, damaged plants emit volatile organic compounds that attract the herbivore’s natural enemies. So far, plant volatile responses have been studied extensively in conjunction with leaf chewing and sap sucking insects, yet little is known about the relationship between plant volatiles and gall-inducers, the most sophisticated herbivores. Here we describe a new role for volatiles as gall-insects were found to benefit from this plant defence. Results: Chemical analyses of galls triggered by the gregarious aphid Slavum wertheimae on wild pistachio trees showed that these structures contained and emitted considerably higher quantities of plant terpenes than neighbouring leaves and fruits. Behavioural assays using goats as a generalist herbivore confirmed that the accumulated terpenes acted as olfactory signals and feeding deterrents, thus enabling the gall-inducers to escape from inadvertent predation by mammals. Conclusions: Increased emission of plant volatiles in response to insect activity is commonly looked upon as a “cry for help” by the plant to attract the insect’s natural enemies. In contrast, we show that such volatiles can serve as a first line of insect defences that extends the ‘extended phenotype’ represented by galls, beyond physical boundaries. Our data support the Enemy hypothesis insofar that high levels of gall secondary metabolites confer protection against natural enemies

    The role of roads and urban area in occurrence of an ornamental invasive weed: a case of Rudbeckia laciniata L

    No full text
    Road density and proportion of urban area are considered to be useful indicators of invasion risk from non-native plants. However, the mechanisms behind the relationship between these indicators and establishment of non-native species have rarely been addressed explicitly. To identify these mechanisms, we used a species distribution model (MaxEnt) for an invasive ornamental weed Rudbeckia laciniata using road density and proportion of urban area as explanatory variables, along with soil moisture and solar radiation. Overall model performance is relatively high (AUC = 0.91). Road density explained most R. laciniata occurrence, followed by the proportion of urban area. The occurrence probability of R. laciniata increased monotonically with road density, but the rates of increase constantly fell. The occurrence probability also increased with urban area when the proportion of urban area was small, but started to decrease when the proportion of urban area reached 0.2. Our results suggest that both road density and proportion of urban area are important factors in determining R. laciniata establishment but work differently

    Data from: Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata NĂ©e

    No full text
    Phylogeography and ecological niche models (ENMs) suggest that late Quaternary glacial cycles have played a prominent role in shaping present population genetic structure and diversity, but have not applied quantitative methods to dissect the relative contribution of past and present climate vs. other forces. We integrate multilocus phylogeography, climate-based ENMs and multivariate statistical approaches to infer the effects of late Quaternary climate change on contemporary genetic variation of valley oak (Quercus lobata NĂ©e). ENMs indicated that valley oak maintained a stable distribution with local migration from the last interglacial period (~120 ka) to the Last Glacial Maximum (~21 ka, LGM) to the present compared with large-scale range shifts for an eastern North American white oak (Quercus alba L.). Coast Range and Sierra Nevada foothill populations diverged in the late Pleistocene before the LGM [104 ka (28–1622)] and have occupied somewhat distinct climate niches, according to ENMs and coalescent analyses of divergence time. In accordance with neutral expectations for stable populations, nuclear microsatellite diversity positively correlated with niche stability from the LGM to present. Most strikingly, nuclear and chloroplast microsatellite variation significantly correlated with LGM climate, even after controlling for associations with geographic location and present climate using partial redundancy analyses. Variance partitioning showed that LGM climate uniquely explains a similar proportion of genetic variance as present climate (16% vs. 11–18%), and together, past and present climate explains more than geography (19%). Climate can influence local expansion–contraction dynamics, flowering phenology and thus gene flow, and/or impose selective pressures. These results highlight the lingering effect of past climate on genetic variation in species with stable distributions

    Length of cultivation determines native and non-native weed richness in crop fields worldwide

    No full text
    Socio-economic factors often determine the extent to which different global regions have been invaded by non-native plant species, yet few studies examine whether such variables are similarly important for native species richness. In contrast to previous studies that have assembled regional floras for comparison, we examine global patterns of non-native and native plant species richness within a single, globally distributed ecosystem: cultivated wheat fields. Native species richness increased with the historic length of wheat cultivation, total wheat harvested area and arable land area in a country. In contrast, non-native weed species richness declined with increasing length of wheat cultivation, higher fertilizer inputs, and lower absolute latitude. The low percentage of native species in countries with a short history of wheat cultivation suggests that the invasion of crop fields by native plants takes longer than the migration of non-native weed species pre-adapted to crop fields in other parts of the world. Seed contaminants in grain imports are probably one of the main sources of non-native weeds, especially for regions with more recent wheat cultivation histories. To date there has been a tendency for research on agricultural weeds to be dissociated from that of plant invasions, yet we show how cultivation history has shaped the weed flora and why non-native weeds are perceived as such a problem in New World agriculture, as well as confirming at a global scale the role of crop husbandry and agricultural extent on weed floras

    Occurrence points for ecological niche models

    No full text
    Occurrence points used to construct ecological niche models for Quercus lobata (Sheet 1) and Quercus alba (Sheet 2)

    Modeling plant species distributions under future climates: how fine scale do climate projections need to be?

    No full text
    Recent studies suggest that species distribution models (SDMs) based on fine-scale climate data may provide markedly different estimates of climate-change impacts than coarse-scale models. However, these studies disagree in their conclusions of how scale influences projected species distributions. In rugged terrain, coarse-scale climate grids may not capture topographically controlled climate variation at the scale that constitutes microhabitat or refugia for some species. Although finer scale data are therefore considered to better reflect climatic conditions experienced by species, there have been few formal analyses of how modeled distributions differ with scale. We modeled distributions for 52 plant species endemic to the California Floristic Province of different life forms and range sizes under recent and future climate across a 2000-fold range of spatial scales (0.008-16 km(2) ). We produced unique current and future climate datasets by separately downscaling 4 km climate models to three finer resolutions based on 800, 270, and 90 m digital elevation models and deriving bioclimatic predictors from them. As climate-data resolution became coarser, SDMs predicted larger habitat area with diminishing spatial congruence between fine- and coarse-scale predictions. These trends were most pronounced at the coarsest resolutions and depended on climate scenario and species' range size. On average, SDMs projected onto 4 km climate data predicted 42% more stable habitat (the amount of spatial overlap between predicted current and future climatically suitable habitat) compared with 800 m data. We found only modest agreement between areas predicted to be stable by 90 m models generalized to 4 km grids compared with areas classified as stable based on 4 km models, suggesting that some climate refugia captured at finer scales may be missed using coarser scale data. These differences in projected locations of habitat change may have more serious implications than net habitat area when predictive maps form the basis of conservation decision making

    Global Climate Change Adaptation Priorities for Biodiversity and Food Security

    Get PDF
    International policy is placing increasing emphasis on adaptation to climate change, including the allocation of new funds to assist adaptation efforts. Climate change adaptation funding may be most effective where it meets integrated goals, but global geographic priorities based on multiple development and ecological criteria are not well characterized. Here we show that human and natural adaptation needs related to maintaining agricultural productivity and ecosystem integrity intersect in ten major areas globally, providing a coherent set of international priorities for adaptation funding. An additional seven regional areas are identified as worthy of additional study. The priority areas are locations where changes in crop suitability affecting impoverished farmers intersect with changes in ranges of restricted-range species. Agreement among multiple climate models and emissions scenarios suggests that these priorities are robust. Adaptation funding directed to these areas could simultaneously address multiple international policy goals, including poverty reduction, protecting agricultural production and safeguarding ecosystem services
    corecore