420 research outputs found

    Supply Function Competition in Electricity Markets with Flexible, Inflexible, and Variable Generation

    Full text link
    In this paper we study the supply function competition between power-generation firms with different levels of flexibility. Inflexible firms produce power at a constant rate over an operating horizon, while flexible firms can adjust their output to meet the fluctuations in electricity demand. Both types of firms compete in an electricity market by submitting supply functions to a system operator, who solves an optimal dispatch problem to determine the production level for each firm and the corresponding market price. We study how firms’ (in)flexibility affects their equilibrium behavior and the market price. We also analyze the impact of variable generation (such as wind and solar power) on the equilibrium, with the focus on the effects of the amount of variable generation, its priority in dispatch, and the production- based subsidies. We find that the classic supply function equilibrium model overestimates the intensity of the market competition, and even more so as more variable generation is introduced into the system. The policy of economically curtailing variable generation intensifies the market competition, reduces price volatility, and improves the system’s overall efficiency. Moreover, we show that these benefits are most significant in the absence of the production-based subsidies.http://deepblue.lib.umich.edu/bitstream/2027.42/102571/1/2014Jan28OWu.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/102571/4/1218_Wu_Apr14.pd

    FUS (fused in sarcoma) is a component of the cellular response to topoisomerase I–induced DNA breakage and transcriptional stress

    Get PDF
    FUS (fused in sarcoma) plays a key role in several steps of RNA metabolism, and dominant mutations in this protein are associated with neurodegenerative diseases. Here, we show that FUS is a component of the cellular response to topoisomerase I (TOP1)–induced DNA breakage; relocalising to the nucleolus in response to RNA polymerase II (Pol II) stalling at sites of TOP1-induced DNA breaks. This relocalisation is rapid and dynamic, reversing following the removal of TOP1-induced breaks and coinciding with the recovery of global transcription. Importantly, FUS relocalisation following TOP1-induced DNA breakage is associated with increased FUS binding at sites of RNA polymerase I transcription in ribosomal DNA and reduced FUS binding at sites of RNA Pol II transcription, suggesting that FUS relocates from sites of stalled RNA Pol II either to regulate pre-mRNA processing during transcriptional stress or to modulate ribosomal RNA biogenesis. Importantly, FUS-mutant patient fibroblasts are hypersensitive to TOP1-induced DNA breakage, highlighting the possible relevance of these findings to neurodegeneration

    PARP-1 dependent recruitment of the amyotrophic lateral sclerosis-associated protein FUS/TLS to sites of oxidative DNA damage

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is associated with progressive degeneration of motor neurons. Several of the genes associated with this disease encode proteins involved in RNA processing, including fused-in-sarcoma/translocated-in-sarcoma (FUS/TLS). FUS is a member of the heterogeneous nuclear ribonucleoprotein (hnRNP) family of proteins that bind thousands of pre-mRNAs and can regulate their splicing. Here, we have examined the possibility that FUS is also a component of the cellular response to DNA damage. We show that both GFP-tagged and endogenous FUS re-localize to sites of oxidative DNA damage induced by UVA laser, and that FUS recruitment is greatly reduced or ablated by an inhibitor of poly (ADP-ribose) polymerase activity. Consistent with this, we show that recombinant FUS binds directly to poly (ADP-ribose) in vitro, and that both GFP-tagged and endogenous FUS fail to accumulate at sites of UVA laser induced damage in cells lacking poly (ADP-ribose) polymerase-1. Finally, we show that GFP-FUS(R521G), harbouring a mutation that is associated with ALS, exhibits reduced ability to accumulate at sites of UVA laser-induced DNA damage. Together, these data suggest that FUS is a component of the cellular response to DNA damage, and that defects in this response may contribute to ALS

    Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering

    Get PDF
    Organ dysfunction is a major cause of morbidity and mortality. Transplantation is typically the only definitive cure, challenged by the lack of sufficient donor organs. Tissue engineering encompasses the development of biomaterial scaffolds to support cell attachment, proliferation, and differentiation, leading to tissue regeneration. For efficient clinical translation, the forming technology utilized must be suitable for mass production. Herein, uniaxial polyhydroxyalkanoate scaffolds manufactured by pressurized gyration, a hybrid scalable spinning technique, are successfully used in bone, nerve, and cardiovascular applications. Chorioallantoic membrane and in vivo studies provided evidence of vascularization, collagen deposition, and cellular invasion for bone tissue engineering. Highly efficient axonal outgrowth was observed in dorsal root ganglion-based 3D ex vivo models. Human induced pluripotent stem cell derived cardiomyocytes exhibited a mature cardiomyocyte phenotype with optimal calcium handling. This study confirms that engineered polyhydroxyalkanoate-based gyrospun fibers provide an exciting and unique toolbox for the development of scalable scaffolds for both hard and soft tissue regeneration

    Breast cancer in kurdish women of northern Iraq: incidence, clinical stage, and case control analysis of parity and family risk

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Breast cancer in the Middle-East occurs in relatively young women and frequently presents as advanced disease. A protective effect of multiparity is not apparent, and high familial risk is reported in some countries. This study investigates breast cancer rates and clinical stage related to age in the Kurdish region of Iraq and evaluates risk associated with parity and family history. Findings are compared with nearby countries and the West.</p> <p>Methods</p> <p>Sulaimaniyah Directorate of Health records identified 539 women diagnosed with breast cancer during 2006-2008. Clinical survey forms were completed on 296 patients and on 254 age-matched controls. Age specific incidence rates were calculated from Directorate of Health population estimates.</p> <p>Results</p> <p>Average patient age was 47.4 ± 11 years and 59.5% were pre-menopausal. Diagnosis was at clinical stage 1 for 4.1%, stage 2 for 43.5%, stage 3 for 26.0%, and stage 4 for 8.1% of patients. For 18.2%, stage was unknown. Annual breast cancer incidence rates per 100,000 women peaked at 168.9 at age 55 to 59 and declined to 57.3 at 60 and above. Patients had an average of 5.0 ± 3.3 children compared to 5.4 ± 3.5 for controls, <it>P </it>= 0.16. A first degree family member had breast cancer among 11.1% of patients and 2.1% of controls (<it>P </it>< 0.001) with > 50% of these patients and controls being ≥50 years old. No statistically significant relationship was found between tumor stage and age, <it>P </it>= 0.59.</p> <p>Conclusions</p> <p>In Kurdish Iraq, breast cancer is predominantly a disease of pre-menopausal women having multiple pregnancies. For younger patients, breast cancer incidence was similar to the West and possibly higher than many Middle-Eastern countries, but unlike the West, the estimated rates declined markedly in the elderly. The familial breast cancer risk for both older and younger women was within the general population risk of Western countries. Clinical stages were advanced and indicated delays in diagnosis that were unrelated to patient age.</p

    Epigenetic regulation of CXCR4 signaling in cancer pathogenesis and progression

    Get PDF
    Signaling involving chemokine receptor CXCR4 and its ligand SDF-1/CXL12 has been investigated for many years for its possible role in cancer progression and pathogenesis. Evidence emerging from clinical studies in recent years has further established diagnostic as well as prognostic importance of CXCR4 signaling. CXCR4 and SDF-1 are routinely reported to be elevated in tumors, distant metastases, which correlates with poor survival of patients. These findings have kindled interest in the mechanisms that regulate CXCR4/SDF-1 expression. Of note, there is a particular interest in the epigenetic regulation of CXCR4 signaling that may be responsible for upregulated CXCR4 in primary as well as metastatic cancers. This review first lists the clinical evidence supporting CXCR4 signaling as putative cancer diagnostic and/or prognostic biomarker, followed by a discussion on reported epigenetic mechanisms that affect CXCR4 expression. These mechanisms include regulation by non-coding RNAs, such as, microRNAs, long non-coding RNAs and circular RNAs. Additionally, we also discuss the regulation of CXCR4 expression through methylation and acetylation. Better understanding and appreciation of epigenetic regulation of CXCR4 signaling can invariably lead to identification of novel therapeutic targets as well as therapies to regulate this oncogenic signaling.Open Access funding for this article has been provided by the Qatar National Library

    Emerging Standards and the Hybrid Model for Organizing Scientific Events During and After The COVID-19 Pandemic

    Get PDF
    Artigo publicado em revista científica internacionalSince the beginning of 2020, the COVID-19 pandemic has dramatically influenced almost every aspect of human life. Activities requiring human gatherings have either been postponed, cancelled, or held completely virtually. To supplement lack of in-person contact, people have increasingly turned to virtual settings on-line, advantages of which include increased inclusivity and accessibility and reduction of carbon footprint. However, emerging online technologies cannot fully replace, in-person scientific events. In-person meetings are not susceptible to poor internet connectivity problems, and they provide novel opportunities for socialization, creating new collaborations, and sharing ideas. To continue such activities, a hybrid model for scientific events could be a solution offering both in-person and virtual components. While participants can freely choose the mode of their participation, virtual meetings would most benefit those who cannot attend in-person due to the limitations. In-person portions of meetings should be organized with full consideration of prevention and safety strategies including risk assessment and mitigation, venue and environmental sanitation, participant protection and disease prevention, and promoting the hybrid model. This new way of interaction between scholars can be considered as a part of a resilience system which was neglected previously and should become a part of routine practice in scientific community.info:eu-repo/semantics/publishedVersio

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi
    corecore