94 research outputs found

    Late Quaternary climate legacies in contemporary plant functional composition

    Get PDF
    The functional composition of plant communities is commonly thought to be determined by contemporary climate. However, if rates of climate‐driven immigration and/or exclusion of species are slow, then contemporary functional composition may be explained by paleoclimate as well as by contemporary climate. We tested this idea by coupling contemporary maps of plant functional trait composition across North and South America to paleoclimate means and temporal variation in temperature and precipitation from the Last Interglacial (120 ka) to the present. Paleoclimate predictors strongly improved prediction of contemporary functional composition compared to contemporary climate predictors, with a stronger influence of temperature in North America (especially during periods of ice melting) and of precipitation in South America (across all times). Thus, climate from tens of thousands of years ago influences contemporary functional composition via slow assemblage dynamics

    Informing trait-based ecology by assessing remotely sensed functional diversity across a broad tropical temperature gradient

    Get PDF
    Spatially continuous data on functional diversity will improve our ability to predict global change impacts on ecosystem properties. We applied methods that combine imaging spectroscopy and foliar traits to estimate remotelysensed functional diversity in tropical forests across an Amazon-to-Andes elevation gradient (215 to 3537 m). We evaluated the scale dependency of community assembly processes and examined whether tropical forest productivitycould be predicted by remotely sensed functional diversity. Functional richness of the community decreased withincreasing elevation. Scale-dependent signals of trait convergence, consistent with environmental filtering, play animportant role in explaining the range of trait variation within each site and along elevation. Single- and multitraitremotely sensed measures of functional diversity were important predictors of variation in rates of net and grossprimary productivity. Our findings highlight the potential of remotely sensed functional diversity to inform trait-based ecology and trait diversity-ecosystem function linkages in hyperdiverse tropical forests.Fil: Durán, Sandra M.. University of Arizona; Estados UnidosFil: Martin, Roberta E.. Arizona State University; Estados UnidosFil: Díaz, Sandra Myrna. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto Multidisciplinario de Biología Vegetal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto Multidisciplinario de Biología Vegetal; ArgentinaFil: Maitner, Brian S.. Arizona State University; Estados UnidosFil: Malhi, Yadvinder. University of Oxford; Reino UnidoFil: Salinas, Norma. University of Oxford; Reino Unido. Pontificia Universidad Católica de Perú; PerúFil: Shenkin, Alexander. University of Oxford; Reino UnidoFil: Silman, Miles R.. Wake Forest University; Estados UnidosFil: Wieczynski, Daniel J.. University of Oxford; Reino UnidoFil: Asner, Gregory P.. Arizona State University; Estados UnidosFil: Bentley, Lisa Patrick. Sonoma State University; Estados UnidosFil: Savage, Van M.. University of California; Estados UnidosFil: Enquist, Brian J.. Arizona State University; Estados Unido

    Leaf size of woody dicots predicts ecosystem primary productivity

    Get PDF
    A key challenge in ecology is to understand the relationships between organismal traits and ecosystem processes. Here, with a novel dataset of leaf length and width for 10 480 woody dicots in China and 2374 in North America, we show that the variation in community mean leaf size is highly correlated with the variation in climate and ecosystem primary productivity, independent of plant life form. These relationships likely reflect how natural selection modifies leaf size across varying climates in conjunction with how climate influences canopy total leaf area. We find that the leaf size–primary productivity functions based on the Chinese dataset can predict productivity in North America and vice-versa. In addition to advancing understanding of the relationship between a climate-driven trait and ecosystem functioning, our findings suggest that leaf size can also be a promising tool in palaeoecology for scaling from fossil leaves to palaeo-primary productivity of woody ecosystems

    occCite: Tools for querying and managing large biodiversity occurrence datasets

    Get PDF
    The amount of observational and specimen-based biodiversity data available to researchers is increasing exponentially, yet the ability to manage and cite large, complex biodiversity datasets lags behind. This management and citation gap impedes reproducibility for data users and the ability for data publishers to track use and accumulate use citations, ultimately harming the longer-term sustainability of the still-emerging enterprise of research data-sharing. Here we present an R package, occCite (v. 0.4.7), to aid researchers in querying large species occurrence data aggregators (specifically, the Global Biodiversity Information Facility, GBIF, and the Botanical Information and Ecology Network, BIEN), and store metadata such as primary data providers, database accession dates, DOIs, and the taxonomic source used for search terms. occCite also includes tools to summarize and visualize query results and generate citation lists of all data providers and software packages used during the query process. We provide examples of a basic occurrence search and citation workflow as well as an advanced workflow using features for custom optimized searches, visualization, and summary procedures. occCite improves upon existing R packages by uniting data from powerful API-based query packages (rgbif and BIEN) into a unified object-based framework, while maintaining metadata vital to best-practice recommendations for documenting biodiversity analysis workflows. occCite aims to efficiently close the gap in the citation cycle between primary data providers and final research products, allowing researchers to meet dataset documentation standards without sacrificing time and resources to the demands of providing increasing levels of detail on their datasets

    Intraspecific trait variability is a key feature underlying high Arctic plant community resistance to climate warming

    Get PDF
    In the high Arctic, plant community species composition generally responds slowly to climate warming, whereas less is known about the community functional trait responses and consequences for ecosystem functioning. The slow species turnover and large distribution ranges of many Arctic plant species suggest a significant role of intraspecific trait variability in functional responses to climate change. Here we compare taxonomic and functional community compositional responses to a long-term (17-year) warming experiment in Svalbard, Norway, replicated across three major high Arctic habitats shaped by topography and contrasting snow regimes. We observed taxonomic compositional changes in all plant communities over time. Still, responses to experimental warming were minor and most pronounced in the drier habitats with relatively early snowmelt timing and long growing seasons (Cassiope and Dryas heaths). The habitats were clearly separated in functional trait space, defined by 12 size- and leaf economics-related traits, primarily due to interspecific trait variation. Functional traits also responded to experimental warming, most prominently in the Dryas heath and mostly due to intraspecific trait variation. Leaf area and mass increased and leaf δ15N decreased in response to the warming treatment. Intraspecific trait variability ranged between 30% and 71% of the total trait variation, reflecting the functional resilience of those communities, dominated by long-lived plants, due to either phenotypic plasticity or genotypic variation, which most likely underlies the observed resistance of high Arctic vegetation to climate warming. We further explored the consequences of trait variability for ecosystem functioning by measuring peak season CO2 fluxes. Together, environmental, taxonomic, and functional trait variables explained a large proportion of the variation in net ecosystem exchange (NEE), which increased when intraspecific trait variation was accounted for. In contrast, even though ecosystem respiration and gross ecosystem production both increased in response to warming across habitats, they were mainly driven by the direct kinetic impacts of temperature on plant physiology and biochemical processes. Our study shows that long-term experimental warming has a modest but significant effect on plant community functional trait composition and suggests that intraspecific trait variability is a key feature underlying high Arctic ecosystem resistance to climate warming.publishedVersio

    The bien r package: A tool to access the Botanical Information and Ecology Network (BIEN) database

    Full text link
    There is an urgent need for largeâ scale botanical data to improve our understanding of community assembly, coexistence, biogeography, evolution, and many other fundamental biological processes. Understanding these processes is critical for predicting and handling humanâ biodiversity interactions and global change dynamics such as food and energy security, ecosystem services, climate change, and species invasions.The Botanical Information and Ecology Network (BIEN) database comprises an unprecedented wealth of cleaned and standardised botanical data, containing roughly 81 million occurrence records from c. 375,000 species, c. 915,000 trait observations across 28 traits from c. 93,000 species, and coâ occurrence records from 110,000 ecological plots globally, as well as 100,000 range maps and 100 replicated phylogenies (each containing 81,274 species) for New World species. Here, we describe an r package that provides easy access to these data.The bien r package allows users to access the multiple types of data in the BIEN database. Functions in this package query the BIEN database by turning user inputs into optimised PostgreSQL functions. Function names follow a convention designed to make it easy to understand what each function does. We have also developed a protocol for providing customised citations and herbarium acknowledgements for data downloaded through the bien r package.The development of the BIEN database represents a significant achievement in biological data integration, cleaning and standardization. Likewise, the bien r package represents an important tool for open science that makes the BIEN database freely and easily accessible to everyone.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142458/1/mee312861_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/142458/2/mee312861.pd

    Multiscale mapping of plant functional groups and plant traits in the High Arctic using field spectroscopy, UAV imagery and Sentinel-2A data

    Get PDF
    The Arctic is warming twice as fast as the rest of the planet, leading to rapid changes in species composition and plant functional trait variation. Landscape-level maps of vegetation composition and trait distributions are required to expand spatially-limited plot studies, overcome sampling biases associated with the most accessible research areas, and create baselines from which to monitor environmental change. Unmanned aerial vehicles (UAVs) have emerged as a low-cost method to generate high-resolution imagery and bridge the gap between fine-scale field studies and lower resolution satellite analyses. Here we used field spectroscopy data (400-2500 nm) and UAV multispectral imagery to test spectral methods of species identification and plant water and chemistry retrieval near Longyearbyen, Svalbard. Using the field spectroscopy data and Random Forest analysis, we were able to distinguish eight common High Arctic plant tundra species with 74% accuracy. Using partial least squares regression (PLSR), we were able to predict corresponding water, nitrogen, phosphorus and C:N values (r (2) = 0.61-0.88, RMSEmean = 12%-64%). We developed analogous models using UAV imagery (five bands: Blue, Green, Red, Red Edge and Near-Infrared) and scaled up the results across a 450 m long nutrient gradient located underneath a seabird colony. At the UAV level, we were able to map three plant functional groups (mosses, graminoids and dwarf shrubs) at 72% accuracy and generate maps of plant chemistry. Our maps show a clear marine-derived fertility gradient, mediated by geomorphology. We used the UAV results to explore two methods of upscaling plant water content to the wider landscape using Sentinel-2A imagery. Our results are pertinent for high resolution, low-cost mapping of the Arctic.Peer reviewe

    wallace 2: a shiny app for modeling species niches and distributions redesigned to facilitate expansion via module contributions

    Get PDF
    Released 4 years ago, the Wallace EcoMod application (R package wallace) provided an open-source and interactive platform for modeling species niches and distributions that served as a reproducible toolbox and educational resource. wallace harnesses R package tools documented in the literature and makes them available via a graphical user interface that runs analyses and returns code to document and reproduce them. Since its release, feedback from users and partners helped identify key areas for advancement, leading to the development of wallace 2. Following the vision of growth by community expansion, the core development team engaged with collaborators and undertook a major restructuring of the application to enable: simplified addition of custom modules to expand methodological options, analyses for multiple species in the same session, improved metadata features, new database connections, and saving/loading sessions. wallace 2 features nine new modules and added functionalities that facilitate data acquisition from climate-simulation, botanical and paleontological databases; custom data inputs; model metadata tracking; and citations for R packages used (to promote documentation and give credit to developers). Three of these modules compose a new component for environmental space analyses (e.g., niche overlap). This expansion was paired with outreach to the biogeography and biodiversity communities, including international presentations and workshops that take advantage of the software's extensive guidance text. Additionally, the advances extend accessibility with a cloud-computing implementation and include a suite of comprehensive unit tests. The features in wallace 2 greatly improve its expandability, breadth of analyses, and reproducibility options, including the use of emerging metadata standards. The new architecture serves as an example for other modular software, especially those developed using the rapidly proliferating R package shiny, by showcasing straightforward module ingestion and unit testing. Importantly, wallace 2 sets the stage for future expansions, including those enabling biodiversity estimation and threat assessments for conservation.journal articl

    Open Science Principles for Accelerating Trait-Based Science Across the Tree of Life

    Get PDF
    Synthesizing trait observations and knowledge across the Tree of Life remains a grand challenge for biodiversity science. Species traits are widely used in ecological and evolutionary science, and new data and methods have proliferated rapidly. Yet accessing and integrating disparate data sources remains a considerable challenge, slowing progress toward a global synthesis to integrate trait data across organisms. Trait science needs a vision for achieving global integration across all organisms. Here, we outline how the adoption of key Open Science principles—open data, open source and open methods—is transforming trait science, increasing transparency, democratizing access and accelerating global synthesis. To enhance widespread adoption of these principles, we introduce the Open Traits Network (OTN), a global, decentralized community welcoming all researchers and institutions pursuing the collaborative goal of standardizing and integrating trait data across organisms. We demonstrate how adherence to Open Science principles is key to the OTN community and outline five activities that can accelerate the synthesis of trait data across the Tree of Life, thereby facilitating rapid advances to address scientific inquiries and environmental issues. Lessons learned along the path to a global synthesis of trait data will provide a framework for addressing similarly complex data science and informatics challenges
    corecore