313 research outputs found

    Occurrence of Hysteresis like behavior of resistance of Sb2Te3Sb_2 Te_3 film in heating-cooling cycle

    Full text link
    Experimental observations of a peculiar behavior observed on heating and cooling Sb2Te3{\rm Sb_2Te_3} films at different heating and cooling rate are detailed. The film regained its original resistance, forming a closed loop, on the completion of the heating-cooling cycle which was reproducible for identical conditions of heating and cooling. The area enclosed by the loop was found to depend on (i) the thickness of the film, (ii) the heating rate, (iii) the maximum temperature to which film was heated and (iv) the cooling rate. The observations are explained on basis of model which considers the film to be a resultant of parallel resistances. The film's finite thermal conductivity gives rise to a temperature gradient along the thickness of the film, due to this and the temperature coefficient of resistance, the parallel combination of resistance changes with temperature. Difference in heating and cooling rates give different temperature gradient, which explains the observed hysteresis.Comment: 21 pages and 10 figure

    The further chameleon groups of Richard Thompson and Graham Higman : automorphisms via dynamics for the Higman groups Gn,r

    Get PDF
    Funding: The first and second authors wish to acknowledge support from EPSRC grant EP/R032866/1 received during the editing process of this article. The fourth author would like to thank St. Andrews University for its hospitality during the Workshop on the Extended Family of Thompson’s Groups in 2014, and acknowledges the support of DySYRF (Anillo Project 1103, CONICYT) and Fondecyt’s project 1120131. The fifth author was partly supported by Leverhulme Trust Research Project Grant RPG-2017-159.We characterise the automorphism groups of the Higman groups Gn,r as groups of specific homeomorphisms of Cantor spaces Cn,r, through the use of Rubin's theorem. This continues a thread of research begun by Brin, and extended later by Brin and Guzmán: to characterise the automorphism groups of the 'Chameleon groups of Richard Thompson,' as Brin referred to them in 1996. The work here completes the first stage of that twenty-year-old program, containing (amongst other things) a characterisation of the automorphism group of V, which was the 'last chameleon.' As it happens, the homeomorphisms which arise naturally fit into the framework of Grigorchuk, Nekrashevich, and Suschanskiī's rational group of transducers, and exhibit fascinating connections with the theory of reset words for automata (arising in the Road Colouring Problem), while also appearing to offer insight into the nature of Brin and Guzmán's exotic automorphisms.PostprintPeer reviewe

    Self-organization of quasi-equilibrium stationary condensation in accumulative ion-plasma devices

    Full text link
    We consider both theoretically and experimentally self-organization process of quasi-equilibrium steady-state condensation of sputtered substance in accumulative ion-plasma devices. The self-organization effect is shown to be caused by self-consistent variations of the condensate temperature and the supersaturation of depositing atoms. On the basis of the phase-plane method, we find two different types of the self-organization process to be possible. Experimental data related to aluminum condensates are discussed to confirm self-organization nature of quasi-equilibrium steady-state condensation process.Comment: 14 pages, 3 figure

    Sputtering of pure boron using a magnetron without a radio-frequency supply

    Full text link
    Boron at room temperature is insulating and therefore conventionally sputtered using radio-frequency power supplies including their power-matching networks. In this contribution, we show that through a suitable ignition assistance, via temporary application of a high voltage (∼600 V) to the substrate holder or auxiliary electrode, the magnetron discharge can be ignited using a conventional mid-frequency power supply without matching network. Once the discharge is ignited, the assisting voltage can be reduced to less than 50 V, and after the boron target surface is at elevated temperature, thereby exhibiting sufficient conductivity, the assisting voltage can be turned off. The deposition of boron and boron nitride films has been demonstrated with a deposition rate of approximately 400 nm/h for a power of 250 W

    Structural and electrical properties of CuAlMo thin films prepared by magnetron sputtering

    Get PDF
    The structural and electrical properties of a low resistivity CuAlMo thin film resistor material were investigated. The thin films were grown on Al2O3 and glass substrates by direct current (dc) magnetron sputtering. The key electrical properties of sheet resistance, temperature coefficient of resistance (TCR) and resistance stability were investigated as a function of sputtering pressure and post-deposition heat treatment time and temperature. A low sputtering pressure range of 0.13 to 0.40 Pa produced CuAlMo films with sheet resistance in the range 0.1 to 0.2 Ω/□ and resistance stability of 0.45 to 0.65% with a TCR of − 90 ppm/°C which could be shifted to zero following annealing in air at 425 °C. Films grown at higher sputtering pressures of 0.53 to 0.80 Pa had increased sheet resistance in the range 0.4 to 0.6 Ω/□ and inferior stability of 0.8 to 1.7% with a more negative TCR of − 110 to − 180 ppm/°C which could not be shifted to zero following annealing. The stability of the films grown at 0.13 and 0.40 Pa could be further improved to < 0.25% with heat treatment, due to the formation of a protective aluminium oxide layer. A minimum dwell time of 3 h at 425 °C was required to stabilise the films and set the electrical properties

    Ultra-Fast Low Concentration Detection of Candida Pathogens Utilizing High Resolution Micropore Chips

    Get PDF
    Although Candida species are the fourth most common cause of nosocomial blood stream infections in the United States, early diagnostic tools for invasive candidemia are lacking. Due to an increasing rate of candidemia, a new screening system is needed to detect the Candida species in a timely manner. Here we describe a novel method of detection using a solid-state micro-scale pore similar to the operational principles of a Coulter counter. With a steady electrolyte current flowing through the pore, measurements are taken of changes in the current corresponding to the shape of individual yeasts as they translocate or travel through the pore. The direct ultra-fast low concentration electrical addressing of C. albicans has established criteria for distinguishing individual yeast based on their structural properties, which may reduce the currently used methods’ complexity for both identification and quantification capabilities in mixed blood samples

    Opportunities for mesoscopics in thermometry and refrigeration: Physics and applications

    Get PDF
    This review presents an overview of the thermal properties of mesoscopic structures. The discussion is based on the concept of electron energy distribution, and, in particular, on controlling and probing it. The temperature of an electron gas is determined by this distribution: refrigeration is equivalent to narrowing it, and thermometry is probing its convolution with a function characterizing the measuring device. Temperature exists, strictly speaking, only in quasiequilibrium in which the distribution follows the Fermi-Dirac form. Interesting nonequilibrium deviations can occur due to slow relaxation rates of the electrons, e.g., among themselves or with lattice phonons. Observation and applications of nonequilibrium phenomena are also discussed. The focus in this paper is at low temperatures, primarily below 4 K, where physical phenomena on mesoscopic scales and hybrid combinations of various types of materials, e.g., superconductors, normal metals, insulators, and doped semiconductors, open up a rich variety of device concepts. This review starts with an introduction to theoretical concepts and experimental results on thermal properties of mesoscopic structures. Then thermometry and refrigeration are examined with an emphasis on experiments. An immediate application of solid-state refrigeration and thermometry is in ultrasensitive radiation detection, which is discussed in depth. This review concludes with a summary of pertinent fabrication methods of presented devices.Comment: Close to the version published in RMP; 59 pages, 35 figure
    • …
    corecore