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Abstract:
We describe, through the use of Rubin’s theorem, the automorphism
groups of the Higman-Thompson groups Gn,r as groups of specific
homeomorphisms of Cantor spaces Cn,r. This continues a thread of
research begun by Brin, and extended later by Brin and Guzmán: to
characterise the automorphism groups of the ‘Chameleon groups of
Richard Thompson,’ as Brin referred to them in 1996. The work here
completes the first stage of that twenty-year-old program, containing
(amongst other things) a characterisation of the automorphism group
of V , which was the ‘last chameleon.’ The homeomorphisms which
arise fit naturally into the framework of Grigorchuk, Nekrashevich,
and Suschanskĭı’s rational group of transducers : they are exactly those
homeomorphisms which are induced by bi-synchronizing transducers,
which we define in the paper. This result appears to offer insight into
the nature of Brin and Guzmán’s exotic automorphisms, while also
uncovering connections with the theory of reset words for automata
(arising in the Road Colouring Problem) and with the theory of auto-
morphism groups of the full shift.
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1. Introduction

In this article, we describe the automorphism groups Aut(Gn,r) of
the Higman-Thompson groups {Gn,r}, the first infinite family of finitely
presented infinite (almost) simple groups to be discovered.

The description of the automorphism group of V = G2,1 (and more
generally of Gn,r) has remained a challenge to the community of re-
searchers of the R. Thompson groups since Brin’s 1996 article [4], which
characterises the automorphism groups of F and T , but which leaves
V as the last ‘chameleon.’ Brin and Guzmán’s following article [6]
explores many further properties of the automorphism groups of the
generalised Thompson groups Fn,r and Tn,r, which are subgroups of
Gn,r. Properties they discovered include the intriguing existence of
‘Exotic automorphisms’ when n > 2. (The groups F and T correspond
to F2,1 and T2,1 in a generalised notation introduced by Brown in [7].)
However, Brin and Guzmán leave the mysterious groups of automor-
phisms of the groups Gn,r untouched. In [8], Burillo and Cleary further
study the automorphism group of F , investigating some of its metric
properties and providing a presentation for this group.

Our paper fills the main gap mentioned above.
To obtain our classification, we follow a three-step process. Firstly,

we demonstrate through the use of Rubin’s theorem [23] that the au-
tomorphism group Aut(Gn,r) of Gn,r can be naturally identified as an
overgroup Bn,r of Gn,r in the group of homeomorphisms of a specific
Cantor space Cn,r. Secondly, we show that any such homeomorphism
must actually have a special property (finitely many local actions) that
is equivalent to the homeomorphism being representable by a finite
state transducer as observed in [12]. Such homeomorphisms have in-
verses of the same sort, which means that we obtain Aut(Gn,r) as
a subgroup of the rational group Rn,r

∼= Rn of Grigorchuk, Nekra-
shevych, and Suschanskĭı. (This group will reappear frequently in our
discussion; so we abbreviate the authors as GNS.) Finally, we classify
exactly which subgroup of Rn,r we are getting: we show that the el-
ements of Aut(Gn,r) are precisely those homeomorphisms which can
be represented by strongly synchronizing transducers and with inverses
also being strongly synchronizing (we call such homeomorphisms bi-
synchronizing).

As the reader can see from the above description, our characterisa-
tion of the automorphisms of the groups {Gn,r} is similar to Brin’s [4]
(and later Brin and Guzmán’s [6]) for other Thompson-esque groups,
in that we describe these automorphism groups as subgroups of homeo-
morphism groups of Cantor spaces through the use of Rubin’s theorem,
using the descriptions of the groups {Gn,r} as groups of homeomor-
phisms of the relevant Cantor spaces. In contrast to the earlier results,
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the total disconnected nature of Cantor space makes pursuing the out-
line of the papers [4] and [6] more difficult. Section 3 of this paper
represents the culmination of the previously taken approach; all of the
later work is what is required to bridge the gap and analyse the results.
We characterize Gn,r as the set of elements fixing the equivalence classes
of the relation that two points in Cn,r are equivalent if they admit a
common infinite suffix (in the natural labelling of the points in that
space). However, Gn,r acts highly transitively on any given equivalence
class under that relation (that is, k-transitively for all positive integers
k). Also, the points of any such equivalence class are spread densely
throughout the Cantor space Cn,r. These features eventually lead to
our representation by bi-synchronizing transducers.

The remainder of this work is concerned with several offshoots from
our three-step outline mentioned earlier. Firstly, we use our classifi-
cation of the automorphism groups to obtain strong results about the
outer automorphism groups of the groups Gn,r. We are also able, for
a fixed n, to assemble the set of groups {On,r | 1 ≤ r < n} into a
larger group On which has elements entirely defined in a combinatorial
fashion and with a synthetic multiplication operation, which group has
subgroups connected to the theory of the group of automorphisms of
the shift on n letters. We also explore properties of bi-synchronizing
transducers in their own right as object of interest.

While we have not further investigated the automorphism groups of
the groups Fn and Tn as given by Brin and Guzmán, the connection
with transducers and the rational group appears to provide a very
natural framework for exploring some of the questions raised in their
paper. Indeed, we hope the viewpoint taken here towards the groups
of automorphisms that we study may help to further understand the
‘exotic’ automorphisms found by Brin and Guzmán.

In the next subsections for given 1 ≤ r ≤ n we define the Cantor
space Cn,r and the groups Gn,r, Bn,r, and Rn,r mentioned above (and
some other groups of interest as well). After that we give precise state-
ments of our chief results. We will also interleave some discussion of
the state of current research on the questions answered here.

1.1. Cantor spaces and groups. For the remainder of this subsec-
tion, the symbols r and n will represent two natural numbers so that
1 6 r < n. It is fine to allow r ≥ n as well, but we do not as under the
general form of the Higman definition of the groups Gn,r, the groups
Gn,r and Gn,(r+n−1) are isomorphic.

Given such r and n, the Cantor space Cn,r is the space consisting of
all infinite sequences defined as follows:

Cn,r := {ca1a2a3 . . . | ai ∈ {0, 1, . . . , n− 1}, c ∈ ṙ},
where ṙ is the set {0̇, 1̇, . . . , ˙r − 1} which is a set of r symbols disjoint
from {0, 1, . . . , n−1}. That is, Cn,r can be thought of as a disjoint union
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of r copies of the infinite n-ary Cantor space Cn := {0, 1, . . . , n − 1}ω
(the standard topology on Cn,r is the product topology, considering ṙ
and {0, 1, 2, . . . , n− 1} as finite discrete spaces).

Now, the group Gn,r is then precisely the group generated by pre-
fix replacement maps: one specifies two incomparable finite prefixes
c1a1a2 . . . aj and c2b1b2 . . . bk (for some indices j and k), and then
‘swaps’ these prefixes (here, two prefixes are incomparable if neither is a
prefix of the other). For example, a point c1a1a2 . . . ajaj+1aj+2 . . . would
map to c2b1b2 . . . bkaj+1aj+2 . . . while c2b1b2 . . . bkbk+1bk+2 . . . would map
to c1a1a2 . . . ajbk+1bk+2 . . .. Note that one can think of this group as a
group of piecewise affine transformations of the space Cn,r which are
locally orientation preserving. The book [15] introduces these groups
and is still a main source of information on the Higman-Thompson
groups, which family of groups provides the first infinite source of in-
finite, finitely presented simple groups (the commutator subgroup of
Gn,r is always simple, and is equal to Gn,r when n is even, or is index
two in Gn,r when n is odd). The Higman-Thompson groups are much
studied but are still of topical interest, retaining as they do some cloak
of mystery. Some investigations of these groups are [15, 22, 11, 18, 25].

It is well known that in the case n = 2 and r = 1, the group G2,1 is
isomorphic to the R. Thompson group V , and in general, following the
notation of Brown introduced in [7], we will denote Gn,1 as Vn.

Similarly, there are subgroups Fn < Tn < Vn (again adopting the
notation of Brown). The groups Fn, Tn and Vn naturally generalize the
R. Thompson groups F = F2, T = T2, and V = V2. (See Thompson’s
1965 notes [24] or the oft-cited survey [9] for more information on the
R. Thompson groups.) We will not discuss the groups Fn and Tn in any
depth in this article, but we will relate the work done here to previous
work carried out for those groups.

For the Cantor space Cn there is the group Rn of homeomorphisms
of Cn, called the rational group (on n letters) by its discoverers Grig-
orchuk, Nekrashevych, and Suschanskĭı in [12, 13]. This is the group
of homeomorphisms of Cn that can be represented by finite (asynchro-
nous) transducers inducing the appropriate transformations of the infi-
nite sequences corresponding to points in Cn. A transducer is a directed
edge-labelled graph with vertices called states, and with edge labels
taken from a finite alphabet A. In normal usage, a (finite) transducer
is considered to have an active state, and it reads an input letter in the
alphabet A, transitions the active state using the directions provided
by labels on the edges and writes an output word from the alphabet
A according to the edge traversed. The defining characteristic of a
homeomorphism of Cn which admits a finite asynchronous transducer
to represent it is that such a homeomorphism has only finitely many
local actions on the basic open sets of the relevant Cantor space; each
basic open set maps to its image using a scaled version of one of these
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local actions. The local actions then correspond to the states of the
representative transducer.

By an essentially trivial modification of the groups Rn, we introduce
here the groups Rn,r, which are just like the groups Rn except that the
resulting transducers process points in the Cantor spaces Cn,r.

1.2. Discussion and statements of results. Recall that the auto-
morphism groups of F and T are described in Brin’s landmark paper
[4]. In the later paper [6], Brin and Guzmán go on to explore the
automorphism groups of Fn and Tn for n > 2, where they make the
startling discovery of ‘exotic’ automorphisms.

Perhaps surprisingly, the methods of [4, 6] fail to restrict possibilities
sufficiently to create a meaningful description of the automorphisms of
Vn. We say just a few words on this here. The groups Fn and Tn can
be thought of as groups (under composition) of certain piecewise affine
homeomorphisms of the spaces R or S1, respectively. The approaches
of Brin in [4] and of Brin and Guzmán in [6] both make use of Rubin’s
theorem to understand an automorphism of a group Fn or Tn as a
topological conjugation by a homeomorphism of the relevant space.

For a given n > 1, the group Vn can be thought of as consisting of
the piecewise affine transformations of the Cantor space Cn; in some
sense Vn is the group of “PL approximation homeomorphisms” of the
full group of homeomorphisms of Cn. As such, Vn represents a very
“large” group, and Rubin’s theorem again applies. However, Vn takes
full advantage of the totally disconnected and homogeneous nature of
its relevant Cantor space. In consequence, the groupoid of local germs
of elements of Vn turns out to be too flexible to provide sufficiently
restrictive information on its own to characterize the automorphisms
of Vn.

Our first theorem represents a resolution of the problem mentioned
above. Through a heavy use of some versions of transitivity of the
action of Gn,r on Cn,r we are able to show that an automorphism of
Gn,r will only admit finitely many types of local action on Cn,r, so
automorphisms of Gn,r are representable by finite transducers.

The “transitivity” of the action of Gn,r on Cn,r also allows us to see
that for a given automorphism, after finitely many steps, the active
state of our representative transducer has to be in a specific state.

Specifically, a transducer is strongly synchronizing at level m if there
is a natural number m so that whenever the transducer reads an input
word of length m, the resulting active state is then known, regard-
less of the initial active state. A homeomorphism is representable by
a bi-synchonizing transducer if there is a natural number m so that
the homeomorphism and its inverse are both representable by finite
transducers which are strongly synchronizing at level n. Note that
there exist homeomorphisms representable by strongly synchronising
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transducers but where the inverse of the homeomorphism cannot be
represented by a transducer with strong synchronization (see [2] for
examples of these sorts of homeomorphisms).

A transducer which has the property that after reading a specific
string (a reset word) from any state one knows which of the states of
the transducer has become the “active state” is called a synchronizing
transducer (in the literature around the Černý Conjecture and the road
colouring problem (see, e.g., [26, 27])). This established use of the
adjective “synchronizing” motivates our choice of language. Strongly
synchronizing transducers are considered further [1].

Note that there is also another unfortunate collision in nomencla-
ture in the literature. Transducers which transform input strings in
a “one letter in, one letter out” fashion from each of their states are
called synchronous transducers. A typical example of such is the trans-
ducer whose states represent the standard generators of the Grigorchuk
group.

Theorem 1.1. Let Rn,r represent the generalized GNS rational group
of homeomorphisms of the Cantor space Cn,r (that is, those homeomor-
phisms which are representable by finite initial transducers). The sub-
group Bn,r ofRn,r of homeomorphisms representable by bi-synchronizing
finite transducers contains Gn,r, and is isomorphic to Aut(Gn,r).

1.2.1. On outer automorphisms. As mentioned above, the union over
all valid r of the outer automorphism On,r groups of Gn,r forms a group
under an appropriately defined transducer product. Thus we have the
following theorem.

Theorem 1.2. Let r be a positive integer less than n, and denote by
On,r the outer automorphism groups of Gn,r. Then On :=

⋃
1≤r<nOn,r,

with an appropriately defined binary operation extending multiplication
in Out(Gn,r), forms a group.

The path to the proof of this is perhaps of interest. One can show
that any given transducer Aq0 representing an element of Bn,r has a
special sub-transducer (the core of Aq0), which precisely characterises
the outer-automorphism class of the image of the homeomorphism rep-
resented by Aq0 under the natural quotient to the outer automorphism
group. The set of (equivalence classes of) such core transducers admits
an easily computed product operation under which it is the group On,r.

We have the following theorem.

Theorem 1.3. For n > 2, and 1 ≤ r < n a positive integer, the group
On,r, and so On, is infinite.

1.2.2. Further related groups of interest. For given n (and r), the group
On has some very interesting subgroups. One of these subgroups is Ln,
which is the image in On of those homeomorphisms representable by bi-
synchronizing transducers that have locally constant Radon–Nikodym
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derivative. In Bn,r, these elements form the subgroup of homeomor-
phisms with bi-Lipschitz action on the Cantor space Cn,r, which group
we denote as LBn,r. For 1 ≤ r < n, let Ln,r denote the image of the
group LBn,r under the quotient to On,r. In particular, Ln,r = Ln∩On,r.
The group Ln contains a (combinatorially defined) further subgroupHn

of great interest. Similar to the above, we set Hn,r := Hn ∩ On,r. The
elements of Hn correspond to non-initial core transducers which are
not only bi-synchronizing, but also synchronous (one letter read in be-
comes one letter written out, on each transition), and which have some
state that acts as a homeomorphism of Cantor space. As will be shown
in [1], the group Hn embeds naturally as the subgroup of the automor-
phisms of the full shift Aut({0, 1, . . . , n − 1}Z, σ) which are given by
sliding block codes which use no future information. However, it is not
hard to show that the image group mentioned is actually isomorphic
to Aut({0, 1, . . . , n− 1}ω, σ), the automorphisms of the one sided shift
on n letters (as suggested to us by J. Hubbard). It follows that H2

is actually cyclic of order two by a classic result of Hedlund [14]. In
[1], the authors provide a new proof of this classic result using a close
analysis of the automorphism types of specific quotients of de Bruijn
graphs.

Throughout the paper (but, predominantly in Subsection 9.4), we
provide examples of various group elements of the various groups, by
giving representative transducers. While the definitions are sufficient
to immediately prove the first point of the following theorem, the re-
maining points are proven through demonstrations of the existence
of transducers representing various group elements with appropriate
properties.

Theorem 1.4. Let 1 6 r < n be integers. We have

(1) Hn 6 Ln 6 On,
(2) there are elements of On which are not in Ln,
(3) there are elements of Ln which are not in Hn,
(4) for n > 2 there are elements of Hn of infinite order,
(5) there are non-bi-Lipschitz torsion elements of O2, and
(6) there are elements of L2 of infinite order.

1.2.3. An example transducer. For those readers already comfortable
with transducers, the following initial transducer (initial state q0) of
Figure 1 represents an element of B3,2 with natural image in L3,2 non-
trivial.

One can verify, for instance, that the states q2, q3, and q4 are the
states of the core, as reading any fixed word of length two in the al-
phabet {0, 1, 2} from any state (other than q0, which only takes words
with first letter from the alphabet {0̇, 1̇}) will result in the same fixed
state.
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q0

q1

q2

q3 q4

1̇/1̇1

0̇/ε

1/1̇0

0/0̇ 2/1̇2

0/1

1/2
2/0

1/2

0/0

2/1

2/00/2

1/1

Figure 1. An element of B3,2

1.3. Future directions. The paper concludes with some open prob-
lems on which further work is needed.

There are some related articles [1] and [21]. In those papers, the au-
thors investigate many further properties of the groups Hn < Ln < On.
There remain many mysteries. For instance, the author of [21] gives
necessary and sufficient conditions for elements in Hn, and therefore,
for elements of Aut({0, 1, . . . , n − 1}ω, σ), to have finite order. These
conditions, however, do not yield a decision procedure.

It seems likely that the work in this article can be used to investigate
the ‘exotic’ automorphisms which arise for the subgroups Fn < Gn,1 for
various values of n. Indeed, it is relatively easy to build asynchronous
finite transducers Cn → Cn which represent non-PL maps [0, 1]→ [0, 1]
which conjugate Fn to Fn in ways which cannot be realized by any
inner automorphism of Fn (for n ≥ 2).
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1.4. Objects of interest. The following tables lists the monoids and
groups of initial and non-initial transducers contained in this article
and their defining characteristics. The lists are in containment order
with the largest first. The symbol “ ” occurring in a cell means that
there are examples of elements of the corresponding object which do
not have the property heading the column.

The monoids. The following table is of the monoids of initial, strongly
synchronizing transducers acting on Cantor space Cn,r contained in this
article.

Synchronous Lipschitz Bi-Lipschitz
Invertible
as initial

transducer
Page ref.

Mn,r pg.43

Sn,r X pg.44

Table 1. Monoids

Quotient monoids. The following monoid Õn arises from the operation
of “passing to the core” on the monoid Sn,r as a form of quotient. We
note that one can similarly consider such a quotient forMn,r, however,
the resulting monoid does not play a role in this article.

Synchronous Lipschitz Bi-Lipschitz
Invertible

as transducer
Page ref.

Õn pg.66

Table 2. Quotient monoid

The groups. The following table is of the groups of initial, strongly
synchronizing transducers acting on Cantor space Cn,r contained in
this article. We note that as these are groups, all their elements are
bi-synchronizing. We further note that HBn,r is properly contained in
LBn,r and this proper containment is highlighted by Table 1.4.
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Synchronous Lipschitz Bi-Lipschitz
Invertible
as initial

transducer
Page ref.

Bn,r X pg.44

LBn,r X X X pg.8

HBn,r X X X pg.74

Gn,r X X X pg.16

Table 3. Groups

Quotient groups. The following groups arise from the operation of “pass-
ing to the core” on the groups in the preceding table. These groups
are precisely the quotient by normal subgroup Gn,r of the objects in
the preceding table. We note that as these are groups, all their ele-
ments are bi-synchronizing with the suitable definition for non-initial
transducers.

Synchronous Lipschitz Bi-Lipschitz
Invertible

as transducer
Page ref.

On,r X pg.46

Ln,r X X X pg.74

Hn X X X X pg. 74

id X X X X

Table 4. Quotient Groups
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1.5. A table summarising objects of interest.

Group Monoid
Strongly

Synchronizing
Bi-synchronizing Synchronous Lipschitz Bi-Lipschitz

Invertible
elements

Initial Page ref.

Mn,r X X X pg.43

Sn,r X X X X pg.44

Õn X X pg.66

Bn,r X X X X X X pg.44

On,r X X X X X pg.46

LBn,r X X X X X X X X pg.8

Ln,r X X X X X X X pg.74

HBn,r X X X X X X X X pg.74

Hn X X X X X X X X pg.74

Table 5. Summary of objects of interest and their properties
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2. Language, Notation, and Groups

In this section, we will more carefully construct the Cantor spaces
Cn and Cn,r for given 1 6 r < n ∈ N, and the groups Gn,r. We will
also develop notation and equivalence classes for sets of points in Cn,r
which will be valuable in later discussions. First, here are some general
conventions we will follow.

Given topological spaces X and Y , we will denote by Homeo(X, Y )
the full set of homeomorphisms from X to Y . We set Homeo(X) :=
Homeo(X,X), which becomes a group under composition, the group
of self-homeomorphisms of the space X (we will also use H(X) for
Homeo(X) when notation is too heavy, e.g., if G 6 Homeo(X) we will
write NH(X)(G) for the normalizer of G in the full group Homeo(X)).
If G 6 Homeo(X), we say 〈X,G〉 is a space-group pair , and we use
right actions to denote the natural action of G on X. In particular, if
x ∈ X, U ⊂ X, and g,h ∈ G, then we write xg or x · g for the image of
x under the map g, we write

Ug := {ug | u ∈ U},

we write gh := h−1gh and [g, h] := g−1h−1gh. We will extend the right
action language above without too much concern when it is natural
to do so, e.g., if h : X → Y is a homeomorphism, we will write gh
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to represent the self-homeomorphism Y → Y given by the rule y 7→
yh−1gh.

Throughout the remainder of this article, we will use the right-action
notation outlined above. Note also that from now on, we will as-
sume at random times that we have some given 1 6 r < n ∈ N,
so that we can refer to a space Cn,r or a group Gn,r without
comment. Occasionally in discussion we might still explicitly instan-
tiate these constants.

2.1. Cantor spaces revisited. Recall from above that we regard the
Cantor space Cn as the set of all infinite {0, 1, . . . , n − 1}-sequences
under the standard product topology. That is, give the set Xn :=
{0, 1, . . . , n− 1} the discrete topology, and then we have

Cn = Xω
n

under the product topology.
Further, set

Wn,ε := X∗n

(the set of finite or empty words (sequences) over the alphabet Xn,
where we will always use the symbol ε to denote the empty word over
any alphabet), and

Wn := X+
n

(the set of finite non-trivial words in the alphabet Xn). If η, ν ∈ Wn,ε

are so that η is a prefix of ν, we denote this by η 6 ν, and we also
write η < ν if η is a proper prefix of ν.

Definition 2.1. Let ν, η ∈ Wn,ε. We say that ν and η are incomparable
if ν � η and η � ν, and we denote this as ν⊥η.

Remark 2.2. Observe from the definitions that if w ∈ Wn,ε, then
ε ≤ w. Specifically, ε ⊥ w is not true for any w ∈ Wn,ε.

Give the set ṙ :=
{

0̇, 1̇, . . . , ˙r − 1
}

the discrete topology and set
Cn,r := ṙ×Cn (so that Cn,r ∼= ti∈ṙCn and hence Cn,r is a Cantor space).
Further, set Wn,r := ṙ×Wn, and

Wn,r,ε := ṙ×Wn,ε.

By an abuse of notation, we will consider Wn,r ⊂ Wn,r,ε as sets of
nontrivial finite words with first letter from the alphabet ṙ and any
latter letters from the alphabet Xn, and we extend the meaning of
6, <, and ⊥ to Wn,r,ε.

For η ∈ Wn,r,ε ∪Wn,ε and ν ∈ Wn,r,ε ∪Wn,ε ∪ Cn,r ∪ Cn, define ηˆν
to be the concatenation of the sequences η and ν. (In practice, if
ν ∈ Wn,r,ε ∪ Cn,r, then we will have η is the empty word ε.) For
η ∈ Wn,r,ε, we set Uη := {ηˆx | x ∈ Cn}, and we set Uε := Cn,r. We
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call Uη the cone at η. In these cases, we refer to η as the address of the
cone Uη. Set

Un,r := {Uη | η ∈ Wn,r,ε} ∪ {Uε}.
The set Un,r is a clopen basis of the Cantor space Cn,r.

Definition 2.3. If a word w ∈ Wn admits two non-trivial subwords g
and h so that w = gˆh, then we say w is a rotation of the word hˆg.

Notation 2.4. For η ∈ Wn,ε ∪Wn,r,ε and ν ∈ Wn,ε ∪Cn ∪Wn,r,ε ∪Cn,r,
let η 6 ν mean that η is a (possibly empty) prefix of ν. Furthermore,
if η 6 ν, there is τ ∈ Wn,ε ∪ Cn ∪Wn,r,ε ∪ Cn,r such that ηˆτ = ν, and
in this situation we define

ν − η = τ.

Note that in the situation described by Notation 2.4, if τ ∈ Wn,r,ε ∪
Cn,r, then in our practice we will have η = ε.

Definition 2.5. Let ~η = {η0, . . . , ηk−1} be in W k
n,r for some integer k ≥

1. We call ~η a antichain in Wn,r if for any distinct i, j ∈ {0, . . . , k−1},
ηi 66 ηj. Such an antichain will be called a complete antichain if for
every ζ ∈ Wn,r,ε, there is i < k such that ηi 6 ζ or ζ 6 ηi.

For an antichain ~η as in the definition above, we call the integer k the
length of ~η. In general, we may also call a complete antichain in Wn,r

a prefix code. While an antichain is a tuple (implying an ordering),
we use braces in our notation as most of the time we consider them
simply as subsets of Wn,r,ε. The ordering is relevant to the definition
of a prefix code map, defined below in Subsection 2.2.

2.2. The groups Gn,r and some interesting subgroups. We are
also interested in building up complex maps from simpler ones. A
foundation for this is provided as below.

Definition 2.6. If η, ζ ∈ Wn,r,ε define gη,ζ : Uη → Uζ by

(ηˆx)gη,ζ := ζ ˆx

for all x ∈ Cn. For given η and ζ as above, we will refer to the map
gη,ζ as the basic cone map from Uη to Uζ .

Using the cone maps above, and complete antichains in the poset
Wn,r, we can define a specific class of homeomorphisms on the Cantor
spaces Cn,r.

Definition 2.7. Let ~η = {η0, . . . , ηk−1} and ~ζ = {ζ0, . . . , ζk−1} be com-
plete antichains in Wn,r of length k for some fixed positive integer k.
Define

g~η,~ζ :=
∐
i<k

gηi,ζi .
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In the context above, we may call such a map g~η,~ζ a prefix code map.

It is well known (and easy to check) that compositions and inversions of
prefix code maps are prefix code maps, so for fixed r and n, the prefix
code maps over Cn,r form a group of homeomophisms. We denote the
resulting group as Gn,r.

Notation 2.8. Let

Gn,r := {g~η,~ζ | ~η, ~ζ are complete antichains

of Wn,r,ε of the same length}.
We note in passing that in Higman’s framework, the groups Gn,r are

groups of automorphisms of free term algebras. The definition we give
above is a standard translation from the original Higman definition of
the groups Gn,r to a definition of these groups as groups of homeomor-
phisms of spaces. For a detailed discussion of the history behind these
multiple points of view, we refer the reader to section 4B of [7].

Now, from the definition given above for the elements of Gn,r, for
every g ∈ Gn,r there is a minimal integer k and two finite sets of cones

{Uη0 , . . . , Uηk−1
} ⊆ Un,r

and
{Vζ0 , . . . , Vζk−1

} ⊆ Un,r,

each partitioning Cn,r, so that g maps each Uηi to Vζi as the basic cone
map gηi,ζi .

By considering the loops in the transducer in Figure 1, the reader
can see that the transformation it represents cannot be a prefix-code
map (these loops re-write infinite strings to infinite strings using en-
tirely different letters). Specifically, the induced homeomorphism must
project to a non-trivial outer automorphism of G3,2. However, there are
easier examples of the general fact that the group Bn,r has homeomor-
phisms which naturally project to non-trivial elements of On,r. Here
we provide a simple family of such homeomorphisms for the reader to
verify the claim.

Definition 2.9. Let σ ∈ Sn be any permutation on the set Xn. Define
the map σ̂ : Cn → Cn by the rule (a1a2a3 . . .) 7→ (a1σ a2σ a3σ . . .),
and call this map the σ-twist of Cn. Further, define the map σ̂n,r :
Cn,r → Cn,r which is obtained by applying σ̂ to each cone Uk ∼= Cn for
k ∈

{
0̇, 1̇, . . . , ˙r − 1

}
, and call this map the σ-twist of Cn,r.

We observe in passing that the σ-twists of Cn and of Cn,r are home-
omorphisms of the respective Cantor spaces. (Indeed, these homeo-
morphisms are obtained as induced actions on the boundary of the
standard infinite trees used in the construction of the Cantor spaces
under consideration, where the σ-twists actually represent automor-
phisms of these trees.) The relevance of σ-twists is shown by the next
remark.
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Remark 2.10 (Existence of non-trivial Out(Gn,r)). Let 1 6 r < n ∈
Z, and suppose σ ∈ Sn. The map σ̃n,r : Gn,r → Gn,r defined by
g 7→ σ̂−1

n,r · g · σ̂n,r, for σ̂n,r the σ-twist of Cn,r as defined above, is an
automorphism of Gn,r. Furthermore, σ̃n,r belongs to Inn(Gn,r) if and
only if σ is the trivial permutation.

The fact that σ̃n,r is an automorphism of Gn,r is a direct computation
that we leave to the reader. If σ is not trivial, then the conjugacy action
of σ̂n,r cannot coincide with that of an element g ∈ Gn,r as otherwise
conjugation by the product g−1σ̂n,r (which is not in Gn,r) would induce
the trivial action on Gn,r, while it is easy to see that for any given non-
trivial homeomorphism ρ of the Cantor space Cn,r, there are elements
of Gn,r which fail to commute with ρ.

Definition 2.11. We say that g ∈ Homeo(Cn,r) is densely canonical
if for every nonempty open set U ⊆ Cn,r there are words η, ζ ∈ Wn,r,ε

with cones Uη ⊆ U and Uζ so that g|Uη = gη,ζ.

Denote by Gn,r,d the set of densely canonical homeomorphisms of
Cn,r, noting that it is a group under composition.

Definition 2.12. We say that g ∈ Homeo(Cn,r) is pointwise canonical
if for every x ∈ Cn,r there are η1, η2 ∈ Wn,r,ε and y ∈ Cn such that
x = η1 ˆy and xg = η2 ˆy.

Denote by Gn,r,p the set of pointwise canonical homeomorphisms of
Cn,r, noting that it too is a group under composition.

Remark 2.13. For all integers 1 6 r < n, we have

Gn,r 6 Gn,r,d ∩Gn,r,p.

We now give another definition of Gn,r,p. Define a relation on Cn,r
by:

x ∼ y ⇔ ∃η, ν ∈ Wn,r,ε, z ∈ Cn so that x = νˆz and y = ηˆz.

This is an equivalence relation on Cn,r. We denote the set of equiva-
lence classes of ∼ by Cn,r/∼, and the equivalence class of x ∈ Cn,r by
[x]∼. Given x, y ∈ Cn,r, we say x and y have an equivalent tail if and
only if y ∈ [x]∼, and we call [x]∼ the tail class of x. Let Hn,r,∼ be the
group of all homeomorphisms of Cn,r that preserve ∼. That is,

Hn,r,∼ = {g ∈ Homeo(Cn,r) | y ∼ x⇔ yg ∼ xg}.
Clearly, Gn,r,p is a subgroup of Hn,r,∼. By definition, Hn,r,∼ has an
induced action on Cn,r/∼, and from this point of view it is immediate
that Gn,r,p represents the kernel of the action of Hn,r,∼ on Cn,r/∼. That
is, Gn,r,p C Hn,r,∼, and

Gn,r,p = {g ∈ Hn,r,∼ | ∀x ∈ Cn,r, xg ∈ [x]∼}.
We say that Gn,r,p fixes ∼ pointwise.

We observe the following easy lemma.



18 C. BLEAK, P. CAMERON, Y. MAISSEL, A. NAVAS, AND F. OLUKOYA

Lemma 2.14. For all x ∈ Cn,r, the group Gn,r acts transitively on
[x]∼.

Proof. For each y ∈ [x]∼ there are ν, η ∈ Wn,r,ε and z ∈ Cn such
that x = νˆz and y = ηˆz. There exist two complete antichains
~η = {η0, . . . , ηk−1} and ~ν = {ν0, . . . , νk−1} such that η = η0 and ν = ν0,
and hence xg~ν,~η = y. �

3. More on Gn,r,d, Gn,r,p, Gn,r and Hn,r,∼

If X is a topological space and x ∈ X, then we let NbrX(x) denote
the set of open neighbourhoods of x in X. A subset A ⊆ X is some-
where dense, if for some nonempty open set U ⊆ X, the intersection
A ∩ U is dense in U . The following is a version of the main result in
[23].

Theorem 3.1. (M. Rubin) Let 〈X,G〉 and 〈Y,H 〉 be space-group
pairs. Assume that X is Hausdorff, locally compact, and without iso-
lated points, and that for every x ∈ X and U ∈ NbrX(x), the set
{xg | g ∈ G and g|(X−U) = Id |(X−U)} is somewhere dense. Assume
that the same holds for 〈Y,H 〉. Suppose we have a group isomorphism
G ∼=φ H. Then there is ϕ ∈ Homeo(X, Y ) such that ϕ induces φ. That
is, gφ = gϕ for every g ∈ G.

Below, we refer to the homeomorphism ϕ in the statement of Rubin’s
Theorem as a Rubin conjugator .

Corollary 3.2. Aut(Gn,r) ∼= NH(Cn,r)(Gn,r).

Proof. An automorphism of Gn,r is an isomorphism from Gn,r to itself,
so we set X = Y = Cn,r in the statement of Rubin’s Theorem, and we
see that Aut(Gn,r) is a quotient of NH(Cn,r)(Gn,r). It is easy to see that
any self-homeomorphism of Cn,r is a limit of elements of Gn,r so the
kernel of this quotient map is the trivial subgroup. Thus, given any
non-identity element h ∈ Homeo(Cn,r), we can find an element of Gn,r

which fails to commute with h. �

The following lemma is standard in the literature which relies upon
Rubin’s theorem, for example [5, 3, 17].

Lemma 3.3. Let X be a topological space, ∼ an equivalence relation
on X, H∼ the subgroup of Homeo(X) consisting of all the homeomor-
phisms that preserve ∼ and G a subgroup of H∼ fixing all equivalence
classes of ∼ and acting transitively on each equivalence class. Then
{h ∈ Homeo(X) | h−1Gh ⊆ G} ⊆ H∼. In particular, NH(X)(G) 6 H∼.

Proof. Let h ∈ Homeo(X) so that Gh ⊂ G and suppose x ∈ X and
y ∈ [x]∼. Since G acts transitively on [x]∼, there exists g ∈ G such
that xg = y. Calculating, we have xhgh = xhh−1gh = yh. As gh ∈ G,
we see that xh ∼ yh, and since x is an arbitrary element of X, we
conclude that h ∈ H∼. �
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Corollary 3.4. We have:

(1) Aut(Gn,r) ∼= NH(Cn,r)(Gn,r) 6 Hn,r,∼
(2) Aut(Gn,r,p) ∼= Hn,r,∼.

Proof. Point (1) follows directly from Corollary 3.2 and Lemma 3.3.
For Point (2), notice that by the Lemma 3.3 we have NH(Cn,r)(Gn,r,p) 6
Hn,r,∼. Moreover, if h ∈ Hn,r,∼, g ∈ Gn,r,p and x ∈ Cn,r, then xh−1 ∼
xh−1g so xh−1h ∼ xh−1gh = xgh. Thus x ∼ xgh, and as x is arbitrary
in Cn,r, we see that gh ∈ Gn,r,p, and therefore h ∈ NH(Cn,r)(Gn,r,p). �

Part (1) of Corollary 3.4 will be used in Section 6 to find conditions
on automorphisms of Gn,r (as homeomorphisms of Cn,r), enabling us
to show those particular homeomorphisms can be represented by finite
transducers. The following Lemma and Proposition are of independent
interest, but are not used later.

Lemma 3.5. Let g ∈ Gn,r,p and ν, η ∈ Wn,r. Then the set

Ag,ν,η := {x ∈ Cn,r | x = νˆy and xg = ηˆy for some y ∈ Cn}

is closed.

Proof. Suppose that {xi}∞i=0 ⊆ Ag,ν,η is a sequence that converges to
x ∈ Cn,r. For every large index i there is yi ∈ Cn such that xi = νˆyi
and xig = ηˆyi. So as xi → x, we have νˆyi → νˆy = x for some
y ∈ Cn,r such that yi → y. But g is continuous, so xig → xg, that is
ηˆyi → xg. Therefore, ηˆy = xg, hence x ∈ Ag,ν,η. �

Proposition 3.6. Gn,r,p = Hn,r,∼ ∩Gn,r,d.

Proof. Let g ∈ Gn,r,p and let U ⊆ Cn,r be an open set. For every ν, η ∈
Wn,r set AUg,ν,η = Ag,ν,η ∩ U . Since Ag,ν,η is closed in Cn,r, we have that

AUg,ν,η is closed in U . Since g ∈ Gn,r,p, we also have U =
⋃
ν,η∈Wn,r

AUg,ν,η.

Now, U has the Baire property and there are countably many AUg,ν,η’s in

the above union so there exists some ν and η so that AUg,ν,η is somewhere

dense. Let Uζ ⊆ U be a basic cone so that AUg,ν,η∩Uζ is dense in Uζ . But

AUg,ν,η ∩Uζ is closed in Uζ so AUg,ν,η ∩Uζ = Uζ and therefore Uζ ⊆ AUg,ν,η.
Let τ ∈ Wn,ε be such that νˆτ = ζ and set ω = ηˆτ . For every
ζˆx ∈ Uζ we have

(ζˆx)g = (νˆτ ˆx)g = ηˆτ ˆx = ωˆx.

Thus, we have found a cone Uζ ⊂ U and ω ∈ Wn,ε so that g|Uζ = gζ,ω
and hence g ∈ Gn,r,d. Therefore, Gn,r,p 6 Hn,r,∼ ∩Gn,r,d.

Conversely, let g ∈ Hn,r,∼ ∩ Gn,r,d. Since g ∈ Gn,r,d, there exist
ν, η ∈ Wn,r such that g|Uν = gν,η. As every tail class has a representative
in Uν and g ∈ Hn,r,∼, we have that g fixes ∼ pointwise. Therefore,
Hn,r,∼ ∩Gn,r,d 6 Gn,r,p. �
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4. Local Actions

Given h ∈ Homeo(Cn,r) and Uν ∈ Un,r, we would like to investigate
the action of h on Uν . We begin by establishing some notation for
h ∈ Homeo(Cn) and Uν ∈ Un. We will then briefly discuss how to
generalize what is established for homeomorphisms of Cn,r.

For U ⊆ Cn, define the root of U to be ν ∈ Wn,ε such that U ⊆ Uν
and Uν is the minimal element in Un (with respect to inclusion) with
this property. Denote

ν := Root(U).

Definition 4.1. Let h : Cn −→ Cn be a continuous function. The root
function of h is the function θh : Wn,ε −→ Wn,ε defined by:

ν 7→ νθh = Root(Uνh)

for all ν ∈ Wn,ε.

Definition 4.2. Let h : Cn −→ Cn be continuous and injective, and
ν ∈ Wn,ε. The local action of h on ν is the injective continuous map
hν : Cn −→ Cn defined by x · hν = y, where (νˆx) · h = (ν · θh)ˆy.

Remark 4.3. Given any homeomorphism h : Cn → Cn and ν ∈ Wn,ε,
it is easy to verify that:

(1) the local action of h on ν is well defined,
(2) Uν · h ⊆ Uν·θh ,
(3) hν is both continuous and injective,
(4) hν is surjective (and hence hν ∈ Homeo(Cn)) if and only if

Uν · h = Uν·θh , and
(5) if νˆη ∈ Wn,ε, then (νˆη)θh = νθhˆ(ηθhν ).

We now discuss how to generalize these definitions to a homeomor-
phism h from Cn,r to itself.

Let Ph ⊂ Wn,r,ε be the unique maximal set of strings such that:

(1) if ν ∈ Ph, then (Uν)h is contained in a specific cone Ba ∈ Un,r

for some a ∈ ṙ, and
(2) for any proper prefix µ of some ν ∈ Ph, there are a1 6= a2 ∈ ṙ

and x, y ∈ Cn so that {a1ˆx, a2ˆy} ⊂ (Uµ)h.

In the case that r = 1, we note in passsing that Ph = {ε}, since if there
were other elements in Ph we would not be able to satisfy the second
property, as that are not two distinct elements of ṙ.

Observe by the continuity of h and compactness of Cn,r that Ph is
a finite set which makes a complete antichain for Wn,r,ε. If r > 1,
then all members of Ph are non-trivial words. Now define, for any µ
a proper prefix of an element of Ph, that (µ)θh := ε, so that the local
action hµ is a continuous injective map hµ : Cn −→ Cn,r (or from Cn,r
to Cn,r if µ = ε). For each element ν ∈ Ph, we set (ν)θh to be the
unique maximal common prefix of all the points in (Uν)h. We observe
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that for each element ν ∈ Ph, the resulting string (ν)θh will be a non-
empty string beginning with a letter in ṙ and so there is an induced
local action hν : Cn → Cn. Finally, for ν ∈ Ph and all ξ = νˆρ, set
(ξ)θh := νθhˆρθhν , where hν : Cn → Cn is the local action of h at ν, as
mentioned in the previous sentence.

Essentially, one needs a little care with the definition of local actions
for a homeomorphism h ∈ Homeo(Cn,r), to handle the specific cases
arising from the set of letters ṙ. Specifically, there is a unique local
action associated that is a map from Cn,r to Cn,r, there are finitely
many associated local actions which are maps from Cn to Cn,r, and
finally the remaining associated local actions are maps from Cn to Cn.

5. On the Rational Group Rn and the Related Groups
Rn,r

In this section we will specify the group Rn,r, which is akin to the
group Rn of GNS in [12]. For the most part, we follow the ideas and
definitions of [12].

5.1. Defining standard transducers and associated notation.

Definition 5.1. A transducer is a tuple A = 〈Xi, Xo, Q, π, λ〉, where:

(1) Xi is a finite alphabet, the input alphabet,
(2) Xo is a finite alphabet, the output alphabet,
(3) Q is a set, the set of states,
(4) π : Xi ×Q −→ Q is a mapping, the transition function, and
(5) λ : Xi ×Q −→ X∗o is a mapping, the output function. (Recall

that X∗o is the set of all finite strings in the alphabet Xo; that
is, “*” is the “Kleene star” operator.)

An initial transducer is a tuple Aq0 = 〈Xi, Xo, Q, π, λ, q0〉, where A =
〈Xi, Xo, Q, π, λ〉 is a transducer and q0 ∈ Q.

The word “transducer” is used since transducers are meant to model
machines which transform inputs to outputs in a controlled fashion.
In particular, one is to imagine that there is always a specified “active
state” (say q ∈ Q for the purposes of this discussion) from which the
transducer will process its input. The transducer then “processes from
q” as follows. First, it reads a letter a ∈ Xi from an input tape, and
then it performs two actions. These actions are:

(1) the active state changes to the state π(a, q), and
(2) the transducer writes the word λ(a, q) to an output tape.

Thus, transducers transform input strings to output strings. An initial
transducer includes the specification of the initial state from which
processing starts.

The functions λ and π can be extended to the set (X∗i \{ε}) × Q
according to the following recurrence rules:

π(µˆν, q) := π(ν, π(µ, q)) and λ(µˆν, q) := λ(µ, q)ˆλ(ν, π(µ, q)),
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where µ ∈ Xi and ν ∈ X∗i . Now further extend the definition of λ so
that it is defined on inputs from Xω

i in the obvious manner. Note that
an infinite string might still be transformed to a finite string if while
processing the infinite string we at some stage visit a state q with no
output on the next letter, and from then on, always visit states that
give no output as we process the remaining letters of the input string.

In all that follows below, we will assume that our transducers are
constructed in such a way as to never transform an infinite string to
a finite string. In this way, for any state q ∈ Q, we see that λ(·, q) :
Xω
i → Xω

o will always represent a continuous map which map we will
denote hAq : Xω

i → Xω
o . We may also refer to hAq as the local action

(of the transducer A) at q and we might denote its image as Image(q)
when this notation seems clear by context.

5.2. Some technicalities for transducers. Let us now consider a
fixed initial transducer Aq0 := 〈Xi, Xo, Q, πA, λA, q0〉. For both A and
Aq0 , we say the transducer is finite whenever |Q| <∞.

Now consider the transducer Aq0 , and consider the continuous map
h = hAq0 : Xω

i → Xω
o induced by Aq0 . Recall that for any word

τ ∈ X∗i we use the notation hτ to represent the local action of h at
τ , while τθh = Root(Uτh) ∈ X∗o . Let q ∈ Q and ν ∈ X∗i be such
that πA(ν, q0) = q. If λA(ν, q0) is a proper prefix of νθh, then q is
considered a state of incomplete response, as the infinite outputs from
q will have some non-empty guaranteed common prefix. Also, if for
some q ∈ Q and for every ν ∈ X∗i we have π(ν, q0) 6= q, then we say q
is an inaccessible state, noting that such a state q could never have any
bearing on the definition of the map h. Finally, if two states q1, q2 ∈ Q
are so that hAq1 = hAq2 , then we say that q1 and q2 are ω-equivalent
states (this name is given to this concept in [12]). Specifically:

Definition 5.2. We say two initial transducers

Ap0 = (Xi, Xo, QA, πA, λA, p0)

and
Bq0 = (Xi, Xo, QB, πB, λB, q0)

are ω-equivalent if they represent the same continuous function from
Cm to Cn (where |Xi| = m > 1 and |Xo| = n > 1).

We say the transducer Aq0 is minimal if Aq0 has no states of incom-
plete response, has all states accessible, and whenever q1, q2 ∈ Q are
ω-equivalent states, we have q1 = q2.

Aside from the definitions of ω-equivalence above there is also a
stricter definition of equivalence of transducers.

Definition 5.3. We say two transducers A = 〈Xi, Xo, QA, πA, λA〉 and
B = 〈Xi, Xo, QB, πB, λB〉 are strongly isomorphic transducers, denoted
by A =si B, if there is a bijection τ : QA → QB between the states
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of those transducers so that for all q ∈ QA and x ∈ Xi we have
πB(x, τ(q)) = τ(πA(x, q)) and λB(x, τ(q)) = λA(x, q).

Note that this notion represents an equivalence of transducers which
is independent of an initial state. E.g., two strongly isomorphic trans-
ducers, both reading some input alphabetA, when assigned non-corresp-
onding initial states would generally represent different functions on
A∞.

We note that a general transducer is asynchronous in the sense that
reading any input letter from some state, we have no guarantee that the
output of the function λ will be a single letter. In the special case that
for all states q ∈ Q of the transducer, and for all input letters x ∈ Xi,
we have a guarantee that |λ(x, q)| = 1, then we say the transducer is
synchronous . Thus, if we do specify that a transducer is asynchronous,
then this generally means that we are reminding the reader that (at
that time) we have no guarantee that the output of the function λ has
length 1.

One can represent transducers as directed labelled graphs as follows.
Let A be a transducer as above. Our graph ΓA will have vertex set the
set Q, and a directed edge from q to π(a, q) for each pair (a, q) ∈ Xi×Q,
and where we label this edge with the string “a/w” where w = λ(a, q)
is a word in X∗0 .

5.3. Transducers acting on Cn,r. We will use transducers to model
self-homeomorphisms of the spaces Cn,r. This introduces various is-
sues that will cause us to slightly modify our definition of transducers.
Above, we already extended the definition of λ to receive infinite in-
puts. We still need to discuss what needs to be done to represent the
fact that the letters in ṙ only appear once in a string representing a
point in Cn,r. Another technical issue arises in the case r = 1, which
would make the upcoming definitions extremely unwieldy.

Thus, we can specify an initial transducer Aq0 as above with alpha-
bets Xi = Xo = ṙ t {0, 1, 2, . . . , n − 1}, and we can ask when this
transducer induces a continuous map h : Cn,r → Cn,r as above (per-
haps even a self-homeomorphism). Such a transducer will actually map
the Cantor space Xω

i to X∗i tXω
i , which is a much bigger space than

we need if we want to restrict to a map from Cn,r to Cn,r. We thus wish
to consider a class of initial transducers which are found by restricting
these larger transducers to their actions on Cn,r (and only allow such
transducers which turn such infinite inputs into infinite outputs). Of
course, we would like an internal characterisation of these restricted
transducers, which we provide below.

An initial transducer for Cn,r will be a tuple

Aq0 = (ṙ, Xn, R, S, π, λ, q0)

so that:
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(1) R is a finite set, and S is a (finite or countably infinite) set
disjoint from R; in the framework above, Q := R t S is the set
of states,

(2) q0 belongs to R and is the initial state,
(3) π is piecewise defined function (the transition function) taking

an input letter and a state, and producing a state according to
rules, and

(4) λ is a piecewise defined function (the output function) taking
an input letter and a state, and producing a (empty, finite, or
infinite) output string.

The domain of π and λ is

(ṙ× {q0})
⊔

({0, 1, . . . , n− 1} × (Q\ {q0})) ,

the range of π is Q\{q0}, and the range of λ is Wn,εtCntWn,r,εtCn,r.
The functions π and λ (as well as the extended version of λ as de-

scribed above) will obey some further rules, as follows:

(1) whenever π(x, q1) = q2 ∈ R, we have q1 ∈ R and λ(x, q1) = ε,
(2) whenever q1 ∈ R and π(x, q1) = q2, with q2 ∈ S, we have

λ(x, q1) ∈ Wn,r,
(3) if q ∈ S, then for all x ∈ Xn we have λ(x, q) ∈ Wn,ε and

π(x, q) ∈ S,
(4) if q ∈ Q and w is a non-empty word so that π(w, q) = q, then

λ(w, q) 6= ε, and
(5) whenever q ∈ S and x ∈ Cn, we have λ(x, q) ∈ Cn.

The core idea of these conditions is that the letters in ṙ cannot appear
in the output from a single input string more than one time, and then
just at the beginning of the total output string given any initial input
string. Notice the last two conditions guarantee that Aq0 will induce a
function hAq0 : Cn,r −→ Cn,r, since no point (which by definition is given
as an infinite string) will be transformed into a finite output string.
Also, the penultimate condition guarantees that the graph underlying
the transducer admits no directed cycles in the states in R. If either of
the last two conditions fails, the transducer is degenerate; we will call
a transducer as above satisfying all of these conditions non-degenerate.

5.4. Transducers, continuity, and ω-equivalence. Suppose we are
given a non-degenerate initial transducer Aq0 of one of the two varieties
above. In the first case, our transducer induces a map hAq0 : Cn →
Cn, and in the second case, a map hAq0 : Cn,r → Cn,r. It is very
easy, as mentioned above, to prove in either case that the map hAq0 is
continuous, and we say that Aq0 represents the continuous map hAq0 .

Note that if a continuous function h : Cn → Cn or h : Cn,r → Cn,r can
be represented by an initial transducer Aq0 (and we will show below that
it can, following a discussion of [12]) then Aq0 is not unique amongst
all of the transducers which represent h.
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We extend in the obvious fashion the notions of ω-equivalence and
of strong isomorphism to transducers in this context (i.e., transducers
acting on Wn,r,ε and Cn,r).

We now trace through the basics of a construction in [12] but in our
context, to show how to build a tranducer representing a homeomor-
phism from Cn,r to Cn,r. The construction we describe can be used to
build a transducer representing any continuous map from Cn,r to itself,
although in this more general case, the construction might result in a
transducer with a state from which one might read in one input letter
and write as output a point in Cantor space. The construction below,
even in the case of homeomorphisms, can result in a transducer where
the set S (and so, Q) is infinite.

Let h ∈ Homeo(Cn,r). We inductively define a non-degenerate initial
transducer

Ãq0 := (ṙ, Xn, R, S, π, λ, q0)

representing h as follows:

(1) set Q := Wn,r,ε t {ε},
(2) for a ∈ ṙ define π(a, ε) := a,
(3) for a ∈ ṙ define λ(a, ε) := aθh,
(4) for ν ∈ Q\{ε} and x ∈ Xn define π(x, ν) := νˆx,
(5) for ν ∈ Q\{ε} and x ∈ Xn define λ(x, ν) := (νˆx)θh − νθh,
(6) set R ⊂ Q to be the set of states ν ∈ Wn,r,ε t {ε} for which

νθh = ε,
(7) set S := Q\R,
(8) set q0 := ε ∈ Q as the initial state.

In the case that r = 1, replace point (6) with the following:

(6) set R = {ε} (note that in this case, λ(0̇, ε) has prefix 0̇),

Remark 5.4. The following points are worth mentioning. The first is
important notationally, whilst the second is a technical point relating to
our transition from the general rational group to the “rational group
acting on Cn,r.” The third point will be discussed more fully in the
paragraphs to follow, while the fourth point is to support the reader in
recalling what happens over the more standard space Cn.

(1) It is immediate by construction that the initial transducer Ãq0
represents h. That is, h = hÃq0

.

(2) Using the inductive extension of λ to the domain Wn,r,ε t {ε},
we have

λ(x, ν) = (νˆx)θh − λ(ν, ε)

and also

λ(νˆx, ε) = (νˆx)θh

(we take λ(ε, ε) = ε to found the induction).



26 C. BLEAK, P. CAMERON, Y. MAISSEL, A. NAVAS, AND F. OLUKOYA

(3) Even though Ãq0 is a non-degenerate transducer with no inac-
cessible states and no states of incomplete response, it might
not be minimal, and it might not be synchronous.

(4) In the case of transducers representing functions from Cn to Cn,
there would be no set of letters ṙ and no set R of states, so that
the resulting transducer would be listed as a quintuple, with
Q = Wn,ε.

We discuss the third point above. First, note as before that there

is no general algorithm to transform the above transducer Ãq0 to a
synchronous ω-equivalent transducer. For instance, many homeomor-
phisms of Cn,r are not induced by automorphisms of a forest of r infinite

n-ary rooted trees. In general, though, we can still reduce Ãq0 to a min-
imal transducer Aq0 as in the subsection 5.5 below.

Remark 5.5. There is a bijection between the states of the reduced
transducer Aq0 and the set of local actions of h (including the local ac-

tion of h at the empty input). Thus, while Ãq0 is an infinite transducer,

Aq0 might be finite. Finally, we note that if Ãq0 represents a homeo-
morphism of Cn,r, then given a letter-state pair (x, q) in the domain of
λ, we have that λ(x, q) is always a finite word. (Note that, for instance,
for a continuous function f : Cn → Cn which sends an entire cylinder
set Uµ to an eventually periodic point, the transducer produced by
following the construction above may be finite, whilst the guaranteed
output after some finite input might still be an infinite word; but such
a transducer would not represent an injective function.)

The following theorem is direct consequence of Theorem 2.5 of [12].

Theorem 5.6 (GNS). Let 1 6 r < n be integers. Any homeomorphism
h : Cn,r −→ Cn,r can be represented by a finite non-degenerate initial
transducer if and only if the set of local actions of h is finite.

5.5. Reducing transducers. When given a non-degenerate initial
transducer

Aq0 = (QA, X, πA, λA, q0)

recall that we say that Aq0 is minimal if all of its states are accessible,
it has no states of incomplete response, and any two distinct states
represent distinct local actions.

In this section we describe the process of reduction that turns an
initial transducer into a minimal transducer, following the discussion
of [12]. Note that the proofs in [12] are given with a view to trans-
ducers representing self-homeomorphisms of Cn, but the processes are
effectively unchanged in our context of self-homeomorphisms of Cn,r,
so the steps described below take the view that the transducer Aq0 is
representing a continuous function from Cn,r to Cn,r.
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Step 1: (Removing states of incomplete response) Let hAq0 : Cn,r →
Cn,r be the continuous map induced by Aq0 . To simplify notation below,
we will simply refer to this map as h. Recall further that for any word
τ ∈ Wn,r,ε the notation hτ represents the local action of h at τ , while
τθh = Root(Uτh) ∈ Wn,r,ε. Let q ∈ Q and ν ∈ Wn,r,ε be such that
πA(ν, q0) = q. Recall further that if λA(ν, q0) is a proper prefix of νθh,
then q is considered a state of incomplete response. That is, by the time
one traverses the transducer from q0 to q, the output word λ(ν, q) is
only a proper prefix of the word νθh that is eventually guaranteed to be
output as a prefix of the ultimate result on processing any point in Cn,r
with initial prefix ν. In particular, if we were to continue processing
with any sufficiently large input, the transducer will first write the
suffix τ = νθh − λ(ν, q), before writing any other output. Thus, we
strip the impending τ output from the next few transitions away from
q, and add it as a suffix to all current outputs λ(x, p) where x is a
letter and p is a state so that π(x, p) = q. After this is done, we have
a transducer ω-equivalent to our original transducer, while the state q
is no longer a state of incomplete response (see Subsection 5.4 for the
definition of ω-equivalence). Thus, one carries out this process for each
word ν ∈ Wn,r,ε, taken in shortlex ordering, to inductively remove all
states of incomplete response.

Note that in [12], the first step is to add a new initial state q−1,
which has transitions described by a modified transition function π
copying the transitions from q0, and with the first guaranteed outputs
computed to this new initial state. By this method the algorithm of
[12] avoids creating a circuit of modifications (so that the resulting
algorithm might never stop). However, as our transducers act on Cn,r,
we do not need to do this: the state q0 is the unique state that reads
letters from ṙ, and will never admit incoming transitions from elsewhere
in the transducer, as all of our input strings start with such a letter but
also only have one such letter. In particular, we can simply execute
the algorithm of [12] using the original q0 instead of a new state q−1,
thus this step of the algorithm will result in an ω-equivalent transducer
using the same set QA of states as for the original transducer Aq0 .

Step 2: (Removing inaccessible states) Remove from Q every state
that cannot be reached from the initial state q0. That is, if for some
q ∈ Q and for every ν ∈ Wn,r,ε we have π(ν, q0) 6= q, then remove q from
Q. When Q is finite, we can detect in a finite number of steps if at some
length k, the words in Wn,r,ε of length k only cause the transitions of π
from q0 to hit states already seen by following transitions from q0 for
shorter words, at which point any unvisited states will never be visited,
and can be removed. Thus, our new transducer may have fewer states
than the original.
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Step 3: (Identifying states representing the same local actions) If for
two accessible states q, p ∈ Q\{q0} (in the case of a map on Cn, do this
across all of Q) we have that for every ν ∈ Wn the equation λ(ν, q) =
λ(ν, p) holds, then we can identify p and q as a single state. Note that
if we have removed states of incomplete response, then as discussed
by [12], any two ω-equivalent states will satisfy this equivalence across
finite words.

After these potential identifications, our new transducer can have no
more states than the original transducer A.

Grigorchuk et al. prove (in their context, but the proof is essentially
the same in ours) that these steps produce from the transducer Aq0
a reduced non-degenerate initial transducer in its ω-equivalence class,
which is unique up to isomorphism of transducers (see Proposition 2.8
of [12]).

5.6. The groups Rn and Rn,r. Given transducers

A = (Xn, QA, πA, λA) and B = (Xn, QB, πB, λB)

one can form A ∗B, their product transducer , as follows.

A ∗B = (Xn, QA ×QB, πA∗B, λA∗B)

where
πA∗B(x, (p, q)) = (πA(x, p), πB(λA(x, p), q))

and
λA∗B(x, (p, q)) = λB(λA(x, p), q).

If A and B are assigned initial states p0 and q0 respectively, then
the initial state of the product transducer Ap0 ∗Bq0 is taken as (p0, q0).
The reader can easily verify that if Ap0 and Bq0 are transducers repre-
senting continuous functions f and g respectively, then we have fg =
hAp0hBq0 = hAp0∗Bq0 .

In [12] GNS show that a homeomorphism f : Cn → Cn representable
by a finite initial transducer Aq0 has its inverse f−1 also representable
by a finite transducer. We give an exposition of their argument in
Appendix A, as the inversion process plays an essential role in what
follows.

We are now in position to define the rational groups Rn and Rn,r.

Definition 5.7. Define Rn ⊂ Homeo(Cn) and Rn,r ⊂ Homeo(Cn,r) to
be the sets of homeomorphisms which can be represented by minimal
transducers which are finite.

We now have the following lemma.

Lemma 5.8. For integers 1 6 r < n, each of the sets Rn and Rn,r

forms a group under composition.

Lemma 5.8 is proven in the case of Rn in [12] and the details of that
proof work just as well for Rn,r.
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Remark 5.9. The group Gn,r coincides with a subgroup of Rn,r. In
particular, for g ∈ Homeo(Cn,r), we will have g ∈ Gn,r if and only if g
is in Rn,r and if, when g is represented by a minimal non-degenerate
transducer Aq0 = (ṙ, Xn, R, S, π, λ, q0), then there is some constant m
and a state q ∈ S so that for any word w ∈ Wn,r with |w| ≥ m, we
have π(w, q0) = q, and for all x ∈ Xn, we have λ(x, q) = x.

The following is a general proposition for transducers transforming
a Cantor space into itself. For instance, it will apply to elements of the
various types of rational groups we are discussing here. We give the
statement for the GNS form of the rational group.

Proposition 5.10. Suppose A = 〈Xn, Q, πA, λA〉 is a finite trans-
ducer. If, for each state q ∈ Q, the induced map hAq : Cn → Cn is
a self-homeomorphism of Cn, then A is synchronous, has no states
with incomplete response, and for each state q, the restricted map
λA(·, q) : Xn → Xn is a permutation.

Proof. Recall that the map hAq : Cn → Cn is defined as the map on
Cantor space induced as the infinite extension of the map λA(·, q) :
X∗n → X∗n. Now, for each letter a ∈ Xn, we have a word wa := λA(a, q)
and a state qa := π(a, q) ∈ Q.

By assumption, the image of hAq is the whole of the Cantor space,
and hAq is also injective. Therefore, we must have

Cn = Image(hAq) =
⊔
a∈Xn

waˆ Image(hAqa ) =
⊔
a∈Xn

waˆ Cn.

We know that for any a ∈ Xn, we have Image(hAqa ) is all of Cantor
space because the map hAqa is a homeomorphism for each state qa (and
so, wa must represent a complete response for the state q with input
a). Moreover, we know the union above is also a disjoint union of these
cylinder sets: if there are a, b ∈ Xn with a 6= b but waˆ Cn∩wbˆ Cn 6= ∅,
then the map hAq would not be injective.

But this means that the set of words {wa | a ∈ Xn} is a complete
antichain (with cardinality n) for the poset of words X∗n, and the only
such antichain is the set of n distinct words of length 1. In particular,
for all a ∈ Xn, we have |λ(a, q)| = 1, and the restricted map λA(·, q) :
Xn → Xn is actually a permutation. �

Below, given a transducer with state p, we may use Image(p) to
denote the image of the local action hp = λ(·, p) : Cn → Cn.

6. Automorphisms Admit Few Local Actions

This section is devoted to the proof of the following result.

Theorem 6.1. Let φ ∈ Aut(Gn,r), and let ϕ : Cn,r → Cn,r be the Rubin
conjugator representing φ. Then the set

LAϕ = {f : Cn → Cn | ∃ν ∈ Wn,r, f = ϕν}
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is finite.

This paragraph contains an informal description of the steps we carry
out to show this theorem. First, we argue that any homeomorphism h
of Cn,r which preserves ∼ has the property that under any two given
basic cones there is a pair of “parallel” cones (cones at the same relative
address) where the two local actions of h are identical. (Recall that
we have already shown that any automorphism of Gn,r must preserve
∼.) Then, we observe that if we compose a homeomorphism which is
acting the same way on a pair of cones, with another homeomorphism
which after a fixed finite depth under the minimal clopen decomposition
of the images acts the same way everywhere (elements of Gn,r act in
this way), then the composition will have the same local actions on
deep enough parallel cones. Finally, by thinking of elements of Gn,r

as acting on the conjugator h, we can pair off arbitrary local actions
of h and h−1. Since the result of the conjugation must be in Gn,r

these local actions must cancel each other out in finite time to become
the identity action. This implies that we can already witness all of
the interesting local actions of h within the child cones of our initial
two cones, and within a bounded distance: immediately implying the
existence of finitely many local actions.

Note in advance that in this section, if we refer to an antichain for a
subset A of the set Un,r of cones, we are referring to an antichain for
the partial order on Un,r induced by the “containment” partial order
of cones: Uη ≤ Uζ if and only if Uη ⊇ Uζ , which happens if and only if
η ≤ ζ ∈ Wn,r,ε. This isomorphism of partial orders will occasionally be
used without further comment.

Definition 6.2. For any clopen set U ⊂ Cn,r there is a minimal fi-
nite antichain A ⊆ Wn,r,ε such that U =

⋃
Uη∈A Uη. We denote this

antichain by Dec(U), and we call it the decomposition of U .

Note that if A is an antichain in Un,r such that U =
⋃
A, then for

every Uη ∈ A, the set Expη(A) := (A\{Uη}) ∪ {Uη ˆ l | 0 6 l 6 n − 1}
is also an antichain in Un,r that satisfies U =

⋃
A. Let us call the

resulting antichain Expη(A) the basic expansion of A at η. We will not
allow basic expansions for subsets of Un,r which are not antichains, and
we will only define basic expansions for an antichain at the addresses
of cones in that antichain.

Definition 6.3. The antichain Decbal(U) is the minimal antichain A
in Un,r satisfying U =

⋃
A and such that |η1| = |η2| holds for every

Uη1 , Uη2 ∈ A.

We note that from any finite antichain Dec(U) one can find a finite
sequence of basic expansions to create the finite antichain Decbal(U).

Although the next two lemmas are somewhat obvious, we provide
complete proofs.
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Lemma 6.4. Let g, h : Cn,r → Cn,r (or respectively g, h : Cn → Cn)
be two different continuous functions. Then for any j ∈ N there exists
ν ∈ Wn,r (resp. ν ∈ Wn) such that Root(Uνg) ⊥ Root(Uνh) and with
|ν| > j, |Root(Uνg)| > j, and |Root(Uνh)| > j.

Proof. The proofs for the two cases are the same in concept, so we only
give the argument for the case over the Cantor space Cn,r.

Let g, h : Cn,r → Cn,r be two different continuous functions, j ∈ N,
and ζ ∈ Cn,r such that ζg 6= ζh. Set p := ζg and q := ζh. As p 6= q
there are µp, µq ∈ Wn,r, which are non-trivial finite prefixes of p and
q respectively, so that µp ⊥ µq. Consequently, Uµp ∩ Uµq = ∅. (Of
course p ∈ Uµp and q ∈ Uµq .) As g and h are continuous, the preimage
neighbourhoods Nζ,g := Uµpg

−1 and Nζ,h := Uµqh
−1 of ζ are both

open. Hence, there is a long (non-trivial) prefix ν of ζ so that Uν ⊂
Nζ,g∩Nζ,h. We may assume that |ν| > j. By construction we now have
Uνg∩Uνh ⊂ Uµp∩Uµq = ∅, and more specifically, µp ≤ Root(Uνg) while
µq ≤ Root(Uνh), so these roots must be incomparable. By choosing
a long enough string ν we may also insist that |Root(Uνg)| > j and
|Root(Uνh)| > j. �

Lemma 6.5. Let h ∈ Homeo(Cn,r) and Uτ , Uη ∈ Un,r. Then for every
Uτ ′ ⊆ Uτ h there exist η′ ∈ Wn,r and χ ∈ Wn so that Root(Uη h) < η′

and τ ′ < Root(Uτ ˆχ h), η′ < Root(Uη ˆχ h).

Proof. Let h, τ , η, and τ ′ be given so as to satisfy the hypotheses of the
statement (so, e.g., Uτ ′ ⊆ Uτh). Let p ∈ Uτ so that p h ∈ Uτ ′ . Define
δ := p−τ . By continuity, for a long enough non-trivial finite prefix χ̃ of
δ, we have τ ′ < Root(Uτ ˆ χ̃ h). Set q := (ηˆδ)h ∈ Uη h, and determine
η′ a long enough non-trivial finite prefix of q so that Root(Uη h) < η′.
Again by continuity, there is a long enough non-trivial finite prefix χ̂
of δ so that η′ < Root(Uη ˆ χ̂ h). Now set χ to be the longer of the
two words χ̃ and χ̂. By construction, the conclusions of the lemma
statement are satisfied.

�

The following represents a key step in the proof of Theorem 6.1. It
shows (via Corollary 3.4.1) that any automorphism h of Gn,r has the
property that in any two disjoint cones of Cn,r there are subcones found
at the same relative address where h has the same local action.

Proposition 6.6. Let h ∈ Homeo(Cn,r) and let Uτ , Uη ∈ Un,r. Suppose
h ∈ Hn,r,∼. Then there is χ ∈ Wn,ε so that hτ ˆχ = hη ˆχ.

Proof. We will prove the contrapositive statement.
Let h ∈ Homeo(Cn,r) and suppose that Uτ , Uη ∈ Un,r. Suppose

further that for all χ ∈ Wn,ε we have the local actions hτ ˆχ and hη ˆχ

are different. We will show h 6∈ Hn,r,∼.
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Firstly, let {(µi, νi)}∞i=0 ⊂ Wn,r × Wn,r be a sequence which visits
every pair (α, β) ∈ Wn,r × Wn,r infinitely often. That is, for every
α, β ∈ Wn,r we have ∣∣{i | (µi, νi) = (α, β)}

∣∣ = ℵ0.

We will construct by induction four convergent sequences of members
of Wn,r,ε, namely {τi}∞i=0, {ηi}∞i=0, {τ ′i}∞i=0 and {η′i}∞i=0. The sequences
will have the following properties:

(1) τi → ζ,
(2) ηi → ρ,
(3) τ ′i → ζ ′,
(4) η′i → ρ′,

for some ζ, ρ, ζ ′, and ρ′ in Cn,r. Furthermore, we will have by con-
struction that τ0 = τ and η0 = η, and for every i ∈ N, the following
properties will also hold:

(Pa) τi < τi+1, ηi < ηi+1 , τ ′i < τ ′i+1 and η′i < η′i+1,
(Pb) τi+1 − τi = ηi+1 − ηi,
(Pc)

Root(Uτih) < τ ′i < Root(Uτi+1
h)

and

Root(Uηih) < η′i < Root(Uηi+1
h), and

(Pd) if µi < τ ′i and νi < η′i, then (τ ′i − µi) ⊥ (η′i − νi).
(As will be clear from the proof of Claim 6.7 just below, these four

properties are precisely the properties required so that two points from
the same equivalence class under ∼ are sent to two points which cannot
be in the same equivalence class. The property (Pd), and the defining
property of the sequence (µi, νi), allow us sufficient control so that
after removing two arbitrary prefixes from the image points, we can
still determine that the resulting suffixes are incomparable.)

Claim 6.7. If we can construct the four sequences as above, then h /∈
Hn,r,∼.

Proof of Claim: Assume for a while that we have constructed these
sequences. Then we have

(i)
⋂∞
i=0 Uτi = {ζ} and

⋂∞
i=0 Uηi = {ρ},

(ii)
⋂∞
i=0 Uτ ′i = {ζ ′} and

⋂∞
i=0 Uη′i = {ρ′}, and

(iii) ζ − τ0 = ρ− η0,

where we have (i) and (ii) follows from (1)–(4), while (iii) follows from
(Pb). Property (iii) now yields ζ ∼ ρ, while Properties (i), (ii), and
(Pc) give us that

{ζh} =
( ∞⋂
i=0

Uτi
)
h =

∞⋂
i=0

(Uτih) ⊆
∞⋂
i=1

Uτ ′i−1
= {ζ ′},
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{ρh} =
( ∞⋂
i=0

Uηi
)
h =

∞⋂
i=0

(Uηih) ⊆
∞⋂
i=1

Uη′i−1
= {ρ′}.

Thus, ζh = ζ ′ and ρh = ρ′. However, we now show that ζ ′ � ρ′, so
that we can conlude h /∈ Hn,r,∼.

Indeed, if there are α, β ∈ Wn,r and δ ∈ Cn such that ζ ′ = αˆδ and
ρ′ = βˆδ, then choosing i ∈ N satisfying (µi, νi) = (α, β) and also large
enough so that α < τ ′i and β < η′i, then we have that both τ ′i − α
and η′i − β are both non-trivial initial segments of δ and so must be
comparable. But we have τ ′i − α = (τ ′i − µi) ⊥ (η′i − νi) = η′i − β, a
contradiction.

�

We will now construct our sequences. The main tools will be Lemmas
6.4 and 6.5. The main point to control is the growth of the sequences
(τi) and (ηi), noting that the extension of one forces the extension of
the other. Note further that we must maintain sufficient data so as to
guarantee that the resulting image points under h are not in the same
equivalence class under ∼. In fact, all of the difficulties are faced in
the construction at the base level, although we still give the parallel
arguments while carrying out the inductive step.

To begin with the construction of the sequences satisfying (Pa), (Pb),
(Pc) and (Pd) above, carry out the following steps:

(1) Set τ0 := τ , η0 := η, χτ0 := Root(Uτ0h) and χη0 := Root(Uη0h).
We now work to define τ ′0 and η′0 (which will be extensions of
χτ0 and χη0).

(2) Compare (µ0, ν0) with (χτ0 , χη0).
(a) If µ0 
 χτ0 then choose an α′ ∈ Wn so that Uα′ ⊂ (Cn)hτ0 ,

µ0 ⊥ χτ0 ˆα′ (note that if χτ0 < µ0 then by the definition of
the function Root we can choose α′ so that incomparability
is achieved on the first letter of α′, and if χτ0 ⊥ µ0 then
any non-trivial α′ so that Uα′ ⊂ (Cn)hτ0 will do).

(b) Else, if ν0 
 χη0 choose any β′ ∈ Wn so that Uβ′ ⊂ (Cn)hη0
and ν0 ⊥ χη0 ˆβ′, noting that such non-trivial β′ will exist
as in the previous point for choosing α′.

(c) If µ0 6 χτ0 and ν0 6 χη0 , then in these next four subcases
we will choose an α′ ∈ Wn or a β′ ∈ Wn to force a local
incomparability condition:

(i) If χτ0 − µ0 = χη0 − ν0, then as hτ0 6= hη0 , by Lemma
6.4 there exists ν ∈ Wn so that

Root(Uνhτ0) ⊥ Root(Uνhη0).

Now choose some α′ ∈ Wn with Uα′ ⊂ Uνhτ0 .
(ii) Else if χτ0 −µ0 < χη0 − ν0, then set θ := (χη0 − ν0)−

(χτ0 − µ0) (observe θ 6= ε) and choose any α′ ∈ Wn

so that Uα′ ⊂ (Cn)hτ0 and with θ ⊥ α′ (since χτ0 =
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Root(Uτ0h) we can even insist that the first letter of
α′ is different from the first letter of θ).

(iii) Else if χτ0 −µ0 > χη0 − ν0, then set θ := (χτ0 −µ0)−
(χη0 − ν0) (again, θ 6= ε) and choose any β′ ∈ Wn

so that Uβ′ ⊂ (Cn)hη0 such that θ ⊥ β′ (since χη0 =
Root(Uη0h) we can even insist that the first letter of
β′ is different from the first letter of θ).

(iv) Else we must have (χτ0 − µ0) ⊥ (χη0 − ν0). Choose
any α′ ∈ Wn so that Root((Cn)hτ0) < α′.

(3) If we have chosen a value for α′, then it is nontrivial and so
setting τ ′0 := χτ0 ˆα′ we have χτ0 = Root(Uτ0h) < τ ′0. By Lemma
6.5, there exists η′ ∈ Wn,r and χ ∈ Wn so that

Root(Uτ0h) < τ ′0 < Root(Uτ0 ˆχh),

and
Root(Uη0h) < η′ < Root(Uη0 ˆχh).

Now we set η′0 := η′, τ1 := τ0ˆχ and η1 := η0ˆχ.
(4) If instead we have chosen a value for β′, then it is nontrivial and

so setting η′0 := χη0 ˆβ′ we have Root(Uη0h) < η′0. By Lemma
6.5, there exists τ ′ ∈ Wn,r and χ ∈ Wn such that

Root(Uτ0 h) < τ ′ < Root(Uτ0 ˆχ h)

and

Root(Uη0h) < η′0 < Root(Uη0 ˆχh).

Now we set τ ′0 := τ ′, τ1 := τ0ˆχ and η1 := η0ˆχ.

We have
(a) τ0 < τ1, η0 < η1 and τ1 − τ0 = η1 − η0,
(b)

Root(Uτ0h) < τ ′0 < Root(Uτ0 ˆχh)

and

Root(Uη0h) < η′0 < Root(Uη0 ˆχh),

which together imply (Pc) for i = 0.
(c) if µ0 < τ ′0 and ν0 < η′0 (by construction these cases may only arise
from (2).(c)), then (τ ′0 − µ0)⊥(η′0 − ν0) by our choice of α′ or of β′,
(d) hτ1 6= hη1 .
Note that (d) is guaranteed by our general hypotheses that for all
χ ∈ Wn,ε we have hτ ˆχ 6= hη ˆχ. We have now verified the properties
(P∗) for the case i = 0 except the second clause of (Pa), which we
cannot check yet as τ ′1 and η′1 are not yet defined.

Next, assume that we have already defined

{ τ0, . . . , τk}, { η0, . . . , ηk}, { τ ′0, . . . , τ ′k−1} and { η′0, . . . , η′k−1}
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for some k ≥ 1 in such a way that the following holds:
(a) for every 0 6 i < k, we have τi < τi+1, ηi < ηi+1, τi+1−τi = ηi+1−ηi,
and for 0 6 i < k − 2, we have τ ′i < τ ′i+1 and η′i < η′i+1,
(b)

Root(Uτih) < τ ′i < Root(Uτi+1
h)

and

Root(Uηih) < η′i < Root(Uηi+1
h),

for every 0 6 i < k,
(c) if µi < τ ′i and νi < η′i, then (τ ′i − µi) ⊥ (η′i − νi),
(d) hτk 6= hηk .
We want to define τk+1, ηk+1, τ

′
k and η′k. We can do this by following

the logic of the definitions of τ1, η1, τ ′0 and η′0 from the foundational
definitions of τ0 and η0.

Specifically, we carry out the following steps:

(1) Set χτk := Root(Uτkh) and χηk := Root(Uηkh), and note that
τ ′k−1 < χτk and η′k−1 < χηk .

(2) Compare (µk, νk) with (χτk , χτk).
(a) If µk 
 χτk or νk 
 χηk then:

(i) If µk 
 χτk , then choose any α′ ∈ Wn so

Root((Cn)hτk) < α′

and such that µk ⊥ χτk ˆα′, just as in (2).(a) for the
case k = 0.

(ii) Else if νk 
 χηk , then choose any β′ ∈ Wn so that
Root((Cn)hηk) < β′ and so that νk ⊥ χηk ˆβ′, just as
in (2).(b) for the case k = 0.

(b) If µk 6 χτk and νk 6 χηk , then:
(i) If µk = χτk and νk = χηk , then as hτk 6= hηk , by

Lemma 6.4 there exists ν ∈ Wn so that

Root(Uνhτk) ⊥ Root(Uνhηk),

so choose any α′ ∈ Wn with

Root(Uνhτk) < α′.

(ii) Else if χτk−µk < χηk−νk, then set θ := (χηk−νk)−
(χτk − µk) (observe θ 6= ε) and choose any α′ ∈ Wn

so that Root((Cn)hτk) < α′ and with θ ⊥ α′.
(iii) Else if χτk−µk > χηk−νk, then set θ := (χτk−µk)−

(χηk − νk) (again, θ 6= ε) and choose any β′ ∈ Wn so
that Uβ′ ⊂ (Cn)hηk and such that δ⊥β′.

(iv) Else we must have (χτk−µk)⊥(χηk−νk). Here, choose
any α′ ∈ Wn so that Root((Cn)hτk) < α′.
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(3) If we have chosen a value for α′, then it is nontrivial and so
setting τ ′k := χτk ˆα′ we have Root(Uτkh) < τ ′k. By Lemma 6.5,
there exists η′ ∈ Wn,r and χ ∈ Wn so that

Root(Uτkh) < τ ′k < Root(Uτk ˆχh),

and
Root(Uηkh) < η′ < Root(Uηk ˆχh).

Now we set η′k := η′, τk+1 := τkˆχ and ηk+1 := ηkˆχ.
(4) If instead we have chosen a value for β′, then it is nontrivial and

so setting η′k := χηk ˆβ′ we have Root(Uηkh) < η′k. By Lemma
6.5, there exists τ ′ ∈ Wn,r and χ ∈ Wn so that

Root(Uτk h) < τ ′ < Root(Uτk ˆχ h)

and
Root(Uηkh) < η′k < Root(Uηk ˆχh).

Now we set τ ′k := τ ′, τk+1 := τkˆχ and ηk+1 := ηkˆχ.

Note that in the special case of k = 1 in the above construction, we
will construct τ2, η2, τ ′1 and η′1, and specifically, we will have

χτ1 = Root(Uτ1 h) < τ ′1 < Root(Uτ2 h)

and

χη1 = Root(Uη1h) < η′1 < Root(Uη2h).

Recall that we have already determined some shorter strings, and in
particular we can extend these two relationship strings to the left as:

χτ0 = Root(Uτ0 h) < τ ′0 < Root(Uτ1 h) < τ ′1 < Root(Uτ2 h)

and

χη0 = Root(Uη0h) < η′0 < Root(Uη1h) < η′1 < Root(Uη2h).

From this we have τ ′0 < τ ′1 and η′0 < η′1 completing the verification of
the properties (P∗) at the base level.

Now, the verification of the desired properties (P∗) at the kth level
works in similar fashion to the verification at the base level.

This then completes the construction of the sequences, and thus the
proof of the proposition. �

Corollary 6.8. If h ∈ Hn,r,∼ then there exist Uν , Uη ∈ Un,r such that
ν and η are incomparable, Uν ∪ Uη 6= Cn,r and hν = hη.

Definition 6.9. For h ∈ Homeo(Cn,r) and Uν , Uη ∈ Un,r, we say that
h acts on Uν and Uη in the same fashion provided that hν = hη.
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Definition 6.10. Let h ∈ Homeo(Cn,r) and U and W clopen sets in
Cn,r. We say that h acts on U and W almost in the same fashion on
conesprovided that hν ˆχ = hη ˆχ holds for all χ ∈ Wn with |χ| ≥ k and
all Uν ∈ Dec(U), Uη ∈ Dec(W ).

When h acts on U and W almost in the same fashion and k is
the minimal natural number which satisfies the condition in the above
definition, we define crith(U,W ) := k, which we refer to as the critical
level of U and W with respect to h.

Definition 6.11. We say that h acts on clopen sets U and W in the
same fashion uniformly provided that for every Uν ∈ Dec(U) and Uη ∈
Dec(W ), we have hν = hη ˆ ζ for any ζ ∈ Wn,ε.

We say that h acts on U and W almost in the same fashion uniformly
provided that there exists k ∈ N such that for every Uν ∈ Dec(U), Uη ∈
Dec(W ) and χ, ζ ∈ Wn with both |χ|, |ζ| ≥ k, we have hν ˆχ = hη ˆ ζ.

Remark 6.12. Let g ∈ Gn,r and let U and W be any two clopen sets.
Then g acts on U and W almost in the same fashion uniformly. Indeed,
local actions associated to small-enough cones are all the identity map.

The following lemma should be obvious but the two that follow after
will require some explanation.

Lemma 6.13. Let g, h ∈ Homeo(Cn,r) and let Uν , Uη ∈ Un,r. Suppose
that Uνg = Uν′ ∈ Un,r, Uηg = Uη′ ∈ Un,r, g acts on Uν and Uη in the
same fashion and h acts on Uν′ and Uη′ in the same fashion. Then gh
acts on Uν and Uη in the same fashion.

Lemma 6.14. Let g, h ∈ Homeo(Cn,r) and let Uν , Uη ∈ Un,r. Suppose
that g acts on Uν and Uη in the same fashion and h acts on Uνg and
Uηg almost in the same fashion uniformly. Then gh acts on Uν and Uη
almost in the same fashion.

Proof. Suppose g, h ∈ Homeo(Cn,r), Uν , Uη ∈ Un,r, that g acts on Uν
and Uη in the same fashion and also that h acts on Uνg and Uηg almost
in the same fashion uniformly.

We will show that the composition gh acts on Uν and Uη almost in
the same fashion by giving a precise calculation of the action of the
composition for “parallel” cones that are deep enough in Uν and Uη so
that the images under g of these deep cones are themselves contained
in parallel cones that are then deep enough so that h is acting in the
same fashion at both of those latter cones. As the total local actions
of the composition on our initial deep cones are (almost) given as the
composition of the same pair of local actions, they must then be the
same. We now formalise this discussion.

There is k ∈ N so that for all χ, ζ ∈ Wn with both |χ|, |ζ| ≥ k,
and for all ξ, θ with Uξ ∈ Dec(Uνg) and Uθ ∈ Dec(Uηg), we have the
equality hξ ˆχ = hθ ˆ ζ .
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Observe that there is a minimal length m ∈ N so that for all µ ∈
Wn,r,ε of length at least m, such that either Uµ ⊂ Uνg or Uµ ⊂ Uηg,
we have µ = γˆχ for some χ with |χ| > k and for some γ with either
Uγ ∈ Dec(Uνg) or Uγ ∈ Dec(Uηg) (respectively). Therefore for words
µ, φ ∈ Wn,r,ε of length at least m such that Uµ ⊂ Uνg and Uφ ⊂ Uηg
we have hµ = hφ.

Further observe that as g acts on Uν and Uη in the same fashion, for
all long enough χ ∈ Wn, two things must happen. First, gν ˆχ = gη ˆχ,
and second, both |Root(Uν ˆχg)| > m and |Root(Uη ˆχg)| > m. Note
that there is a minimal value s ∈ N so both of these things happen for
all χ ∈ Wn of length at least s.

For the next part of the argument, we extend the concatenation
operator “ˆ”so that it may be applied to sets of strings as follows. If A
and B are sets of strings then we define AˆB := {xˆy | x ∈ A, y ∈ B}.
We also want to allow the operator to join, via concatenation, a single
string to a set of strings, or a set of strings to a string, in the obvious
ways.

Let χ ∈ Wn so that |χ| ≥ s. Notice that

Uν ˆχg = ((νˆχ)θg)ˆ(Cngν ˆχ)

and likewise Uη ˆχg = ((ηˆχ)θg)ˆ(Cngη ˆχ). Thus

Uν ˆχgh = {(((νˆχ)θg)θh)ˆ((Cngν ˆχ)h(ν ˆχ)θg)}
likewise,

Uη ˆχgh = {(((ηˆχ)θg)θh)ˆ((Cngη ˆχ)h(η ˆχ)θg)}.
We will now study how the composition gh moves individual points

from the sets Uν ˆχ and Uη ˆχ. From our above assumptions,

Root(Uν ˆχg) = (νˆχ)θg and Root(Uη ˆχg) = (ηˆχ)θg,

so we have, by the discussion of third and fourth paragraphs of this
proof, that h(ν ˆχ)θg = h(η ˆχ)θg . Now let ρ be the greatest common
prefix of the set (Cngν ˆχ)h(ν ˆχ)θg . Therefore, as gν ˆχ = gη ˆχ, ρ is also
the greatest common prefix of the set (Cngη ˆχ)h(η ˆχ)θg . Thus, we have
Root(Uν ˆχgh) = ((νˆχ)θg)θhˆρ and Root(Uη ˆχgh) = ((ηˆχ)θg)θhˆρ.
It therefore follows that (gh)ν ˆχ = (gh)η ˆχ since for any y ∈ Cn we
have

(νˆχˆy)gh = (((νˆχ)θg)θh)ˆ(((y)gν ˆχ)h(ν ˆχ)θg)

and

(ηˆχˆy)gh = (((ηˆχ)θg)θh)ˆ(((y)gη ˆχ)h(η ˆχ)θg)

where ((y)gν ˆχ)h(ν ˆχ)θg is equal to ((y)gη ˆχ)h(η ˆχ)θg and has ρ as a
prefix.

In particular, we can conclude that gh acts on Uν and Uη almost in
the same fashion. �
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The following represents a “fundamental exercise” for those devel-
oping their understanding within the body of theory relating to the
Higman–Thompson groups.

Lemma 6.15. Let ν1, ν2, η1, η2 ∈ Wn,r such that ν1⊥ν2 , η1⊥η2 , Uν1 ∪
Uν2 6= Cn,r and Uη1 ∪ Uη2 6= Cn,r. Then there exists g ∈ Gn,r such that
g |Uν1= gν1,η1 and g |Uν2= gν2,η2.

Proof. Suppose ν1, ν2, η1, η2 ∈ Wn,r such that ν1⊥ν2 , η1⊥η2 , Uν1 ∪
Uν2 6= Cn,r and Uη1 ∪ Uη2 6= Cn,r. There is a natural k > 2 (with
k ≡ r mod (n − 1)) so that we can find two complete prefix codes
~ν := {α1, α2, . . . , αk}, ~η := {β1, β2, . . . , βk} ⊂ Wn,r with α1 = ν1, α2 =
ν2, β1 = η1, and β2 = η2. In particular, the prefix code map g~ν,~η (see
Definition 2.7) is an element of Gn,r satisfying the conclusion of the
lemma. �

Relating Lemma 6.15 to the ideas above we obtain the following.

Corollary 6.16. Let h ∈ Homeo(Cn,r) such that h−1Gn,rh ⊆ Gn,r.
Then for every Uν , Uη ∈ Un,r such that Uν ∪Uη 6= Cn,r, the map h acts
on Uν and Uη almost in the same fashion.

Proof. By Lemma 3.3, we have h ∈ Hn,r,∼, so by Corollary 6.8 there
exist Uν′ , Uη′ ∈ Un,r such that h acts on Uν′ and Uη′ in the same
fashion. Moreover, we can choose these ν ′ and η′ such that ν ′⊥η′ and
Uν′ ∪ Uη′ 6= Cn,r.

Let Uν , Uη ∈ Un,r be such that Uν ∪ Uη 6= Cn,r. Assume first that
ν⊥η. By Lemma 6.15 there exists g ∈ Gn,r such that g |Uν= gν,ν′ and
g |Uη= gη,η′ . So, by Lemma 6.13, gh acts on Uν and Uη in the same
fashion. Letting f := h−1gh ∈ Gn,r, we have hf = gh. By Remark
6.12 and Lemma 6.14, h = ghf−1 acts on Uν and Uη almost in the same
fashion.

Next, assume that ν 6 η or η 6 ν. Then there exists β ∈ Wn,r such
that ν⊥β, η⊥β and Uβ ∪ Uν 6= Cn,r 6= Uβ ∪ Uη. So by the first case, h
acts on Uν and Uβ almost in the same fashion and h acts on Uη and Uβ
almost in the same fashion. That is, there exists k1 ∈ N such that for
every ζ ∈ Wn with |ζ| ≥ k1, we have that h acts on Uν ˆ ζ and Uβ ˆ ζ in
the same fashion, and there exists k2 ∈ N such that for every χ ∈ Wn

with |χ| ≥ k2, we have that h acts on Uη ˆχ and Uβ ˆχ in the same
fashion. Taking k := max{k1, k2}, we get that for every µ ∈ Wn with
|µ| ≥ k, the map h acts on Uν ˆµ, Uβ ˆµ and Uη ˆµ in the same fashion.
Hence, h acts on Uν and Uη almost in the same fashion. �

We are finally in position to complete the proof of Theorem 6.1, that
is, if h ∈ NH(Cn,r)(Gn,r), then h admits only finitely many types of local
actions (recall this implies that h can be represented by a transducer
with only finitely many states). Notice that the statement below is
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slightly more general in that we also allow homeomorphisms h which
conjugate Gn,r into Gn,r, even if the image of Gn,r under this general
conjugation is a proper subset of Gn,r. (Such homeomorphisms play a
role in [2], for instance.)

Corollary 6.17. Let h ∈ Homeo(Cn,r) be such that h−1Gn,rh ⊆ Gn,r.
Then h uses only finitely many types of local action.

Proof. Let us fix A a complete antichain having at least three ele-
ments. For instance, if n = 2 (and so, r = 1), we can take A :=
{0̇00, 0̇01, 0̇10, 0̇11}, and if n > 2, we can take either A := ṙ × Xn or
A := ṙ ×X2

n. In all cases, A can be taken so that all of its words are
length three.

By Corollary 6.16, for every ν, η ∈ A and a ∈ {0, . . . , n − 1}, the
map h acts on Uν and Uη almost in the same fashion, and it also acts
on Uν and Uν ˆa almost in the same fashion. Set

k := max
{

crith(Uν , Uη) |ν, η ∈ A or ν ∈ A and

η = νˆa for some a ∈ Xn

}
.

Now, let B := {ν0, . . . , νnk−1} be the set of all the ν ∈ Wn with |ν| = k,
ordered by the lexicographic order of Wn,ε.

We claim that for every η ∈ Wn,r with |η| ≥ k+3, there exists ν ∈ B
such that hη = hτ ˆν holds for every τ ∈ A.

To show the claim above, we proceed by induction on m := |η|. If
m = k + 3, then η = χˆν for some χ ∈ A and ν ∈ B. Now, by the
choice of k, we have hχ ˆν = hτ ˆν for every τ ∈ A, as desired.

Assume now that for every η ∈ Wn,r with |η| = m the claim is true.
Let η ∈ Wn,r be such that |η| = m + 1. Write η = χˆbˆη′ for χ ∈ A
and b ∈ {0, 1, . . . , n − 1}. Then |η′| ≥ k, so by the choice of k, we
have that hχ ˆ b ˆη′ = hχ ˆη′ . By the induction hypothesis, for χˆη′ there
exists ν ∈ B such that hχ ˆη′ = hτ ˆν holds for every τ ∈ A. Thus, for
every τ ∈ A, we have hη = hχ ˆ b ˆη′ = hχ ˆη′ = hτ ˆν , as desired. �

We immediately arrive at the following corollary.

Corollary 6.18. Let h ∈ NH(Cn,r)(Gn,r), then h admits only finitely
many local actions and so h ∈ Rn,r and can be represented by a minimal
initial transducer

Aq0 := (ṙ, Xn, R, S, πA, λA, q0).

Now, for ν ∈ Wn,r minimality ensures us that the local action
hν : Cn → Cn is representable by the initial transducer AπA(ν,q0) (since
πA(ν, q0) is not a state of incomplete response). That is, we have
hν = hAπA(ν,q0)

. We now introduce simplified notation, reflecting the
perspective that the local actions of h are determined by the states of
Aq0 .
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Notation 6.19. Suppose h ∈ Rn,r is represented by the minimal initial
transducer

Aq0 := (ṙ, Xn, R, S, πA, λA, q0)

and that q ∈ Q = R t S. By the notation hq we will mean the local
action hν where ν ∈ Wn,r,ε is such that πA(ν, q0) = q.

Note that we will also use the simplified notation hq to represent the
local action hν : Cn → Cn where ν ∈ Wn,ε and Aq0 = (Xn, Q, πA, λA, q0)
is a finite minimal initial transducer representing a rational endomor-
phism h : Cn → Cn.

7. Finding our Place in the Rational Group Rn,r

Corollary 3.2 shows that Aut(Gn,r) ∼= NH(Cn,r)(Gn,r) where H(Cn,r) is
the full group of homeomorphisms Homeo(Cn,r). Meanwhile, Theorem
6.1 shows that any element φ ∈ NH(Cn,r)(Gn,r) is a homeomorphism
of Cn,r that admits only finitely many types of local actions. Thus,
Theorem 5.6 then implies that any such homeomorphism φ is actually
an element ofRn,r, since it is a homeomorphism that can be represented
by a (non-degenerate) finite transducer. In this section we complete
the proof of Theorem 1.1. That is, given φ ∈ Homeo(Cn,r), then φ ∈
Aut(Gn,r) if and only if φ is representable by a finite bi-synchronizing
transducer Aq0 .

We note that the arguments of Section 6 can be strengthened, using
the ability of Gn,r to move small basic open sets freely, to show that
if φ ∈ Aut(Gn,r) is represented by a finite transducer Aq0 then in fact
Aq0 is strongly synchronizing. We give a combinatorial argument here,
with the purpose of preparing the reader for the fully combinatorial
discussions occurring in our analysis of the outer automorphism groups
On,r.

7.1. Getting in sync. Here we formally define the strongly synchro-
nizing property of transducers. The central idea of the following def-
inition is that given any large enough input word, the active state
resulting from reading the input word is fully determined only by that
initial word.

Definition 7.1. Let A = 〈Xi, Xo, QA, πA, λA〉 be a transducer, m be a
natural number, and s : Xm

i → QA be a function so that if w ∈ Xm
i and

q ∈ QA, then πA(w, q) = s(w). In this case we call s a synchronizing
map for A and we say that A is synchronizing at level m or simply
strongly synchronizing. If A is initial and A represents a homeomor-
phism h on Cn and h−1 also admits a representative initial transducer
Bq0 = 〈Xo, Xi, QB, πB, λB, q0〉 which is synchronizing at level m, then
we say A is bi-synchronizing (at level m).

Note that our language is not parallel in the sense that we use
“bi-synchronizing” (instead of, e.g., “bi-strongly-synchronizing”) for a
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transducer with the property that it and its inverse are both strongly
synchronizing. We have chosen this language as it seems easier on the
reader. In agreement with the use in automata theory we say that a
word w ∈ Xm

i is a synchronizing word or alternatively a reset word, if
π(w, q) does not depend on the state q. Thus, A is synchronizing at
level m whenever all words of length m are reset words.

The above definitions extend to transducers acting on Cn,r in the
obvious way, using all valid strings of length m (if a string begins with
a letter from ṙ, then it must be processed from the initial state).

Remark 7.2. The transducer in Figure 1 of the Introduction is bi-
synchronizing at level 2 and represents a homeomorphism of C3,2.

The reader can easily verify the points of the following remark.

Remark 7.3. Suppose A = (ṙ, Xn, R, S, π, λ, q0) is a transducer repre-
senting a homeomorphism h ∈ Homeo(Cn,r) and m is a positive integer
so that A is synchronizing at level m with synchronizing map s taking
all inputs of length m to states in Q := R ∪ S. We have the following:

(1) For all natural n > m, A is synchronizing at level n.
(2) for all q1 ∈ Q and q2 ∈ Image(s), there is a nontrivial word w

so that π(w, q1) = q2,
(3) for all q ∈ Image(s) and all w ∈ Wn, we have π(w, q) ∈

Image(s), and
(4) Image(s) ⊆ S.

The image of the synchronizing map is therefore an inescapable set
of states in its transducer. In the remainder of this section, our initial
transducers will all be given as acting on some space Cn,r, but all of
the definitions apply similarly in the context of the original rational
groups {Rn}n>1 of GNS.

Again, let Aq0 = (ṙ, {0, 1, . . . , n − 1}, R, S, π, λ, q0) be a transducer
that is synchronizing at level m. We call the maximal sub-transducer
of Aq0 which uses Image(s) as its set of states the core of A, which we
denote as Core(A). (Note that we drop the reference to the initial state
q0 in this notation, as the core is independent of initial state if Aq0 is
strongly synchronizing.) Observe that Core(A) is a non-initial trans-
ducer in its own right with transition function π̃ and output function

λ̃ where these functions are defined as the restrictions of the functions
π and λ to the domain Xn × Image(s). That is, we have the induced
transducer

Core(A) := 〈Xn, Image(s), π̃, λ̃〉.
Observe that if Aq0 synchronizes at level n for some integer n, then
there is some m 6 n so that Core(A) synchronizes at level m.

Remark 7.4. Note that for a strongly synchronizing transducer

Ap0 = (ṙ, {0, 1, . . . , n− 1}, RA, SA, πA, λA, p0)
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and an input letter x that can be read from a state in Core(Ap0), there
is a unique state q of Core(Ap0) which satisfies πA(x, q) = q.

The reader may easily verify that if

Bq0 = (ṙ, {0, 1, . . . , n− 1}, RB, SB, πB, λB, q0)

is another strongly synchronizing transducer with Core(Ap0) strongly
isomorphic to Core(Bq0), then this strong isomorphism of the cores is
unique.

Theorem 7.5. Let Mn,r be the set of all endomorphisms τ : Cn,r →
Cn,r which are representable by strongly synchronizing transducers with
all outputs finite. The set Mn,r forms a monoid under composition of
maps.

Proof. First observe that if φ, ρ are two endomorphisms of Cn,r that are
representable by strongly synchronizing transducers then these trans-
ducers are ω-equivalent to finite transducers, since the core of each of
these transducers is finite, and one can only visit finitely many states
on directed paths in these transducers from the initial states to the
cores (else these transducers would admit accessible cycles containing
states outside of their core states, which would violate the strong syn-
chronizing condition). Therefore, we will assume in the remainder of
this argument that we have two initial transducers A and B represent-
ing the maps φ and ρ respectively, which are minimal and strongly
synchronizing, and so finite. We will denote the output and transition
functions of these transducers as λA, λB, πA, and πB in the obvious
fashion.

We follow the direct product construction in [12] of the composition
of two endomorphisms φ and ρ inMn,r, to show the result can be rep-
resented by a finite transducer with set of states given as the product
sets of the states of A and B, and with all outputs finite. From the
general product, we pass to its minimised equivalent transducer follow-
ing this outline: first we may need to remove some inaccessible states,
secondly, we might need to modify some (finite) outputs to remove
states of incomplete response, and thirdly, we may need to identify
some equivalent states (which can be seen as restricting further within
the set of direct-product states).

We claim that the resulting transducer C is also strongly synchro-
nizing.

To this end observe firstly that the resulting transducer (and as well
the transducers A and B) has no cycles of states with ε outputs, lest
the transducer map a point in the Cantor space Cn,r to a finite string.
In particular, there is a number N so that from any state q in A, if we
read an input of length N , the output will be at least length one.

Next, suppose that A synchronizes at level k while B synchronizes
at level m. Increase N if necessary, so that mN > k, notice that A
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still has the property that upon reading an input of length N from
any state q, the output will be a non-trivial word. We claim that C
synchronizes at level mN .

The reader can see this by considering how the output and transition
functions of C are defined. If one considers some state (a, b) as the
active state for C, where a is a state in A and b is a state in B,
then for each letter j ∈ Xn we have λC(j, (a, b)) = λB(λA(j, a), b)
while πC(j, (a, b)) = (πA(j, a), πB(λA(j, a), b). As the transitions in A
synchronise on inputs of length k < mN , then as the first coordinate
of the transitions of C mirrors the transitions of A, we see that the
first coordinate is completely determined by an input of length mN .
Similarly, as A must produce a word of length at least m on reading
any word of length mN from any state, and as the second coordinate
of the transitions of C mirrors the transitions of B over the outputs
of A, we see that the second coordinate must be synchronised as well,
and our claim is supported.

Therefore, it is the case that Mn,r is at least a semigroup, however,
the setMn,r contains an endomorphism representing the identity map
on Cn,r (since this can be represented by a two-state, synchronous and
strongly synchronizing transducer), and thus Mn,r is a monoid. �

Remark 7.6. Observe that for two endomorphisms of Mn,r, repre-
sented by strongly synchronizing transducers A and B with all outputs
finite, the transducer representing the product of these endomorphisms
has as set of states a subset of the product of the states of A and of
B, and has its core occurring over a subset of the states arising in the
product of the states in the cores of A and B.

Notation 7.7. We denote by Sn,r the set of all homeomorphisms of
Cn,r which are representable by strongly synchronizing transducers. We
further denote by Bn,r the set of all homeomorphisms of Cn,r which are
representable by bi-synchronizing transducers.

We observe in passing that Bn,r ⊂ Sn,r =Mn,r ∩Rn,r.
Theorem 7.5 has the following corollary.

Corollary 7.8. The subset Bn,r of Rn,r forms a subgroup of Rn,r under
composition of homeomorphisms.

We call the group Bn,r the group of bi-synchronizing homeomor-
phisms of Cn,r, or correspondingly the bi-synchronizing group when the
Cantor space being acted upon is clear.

We point out, from the proof of Theorem 7.5, that if one simply takes
the full transducer product of two minimal transducers representing el-
ements of Bn,r, then the result will be a connected transducer. However,
it can happen that some of the states of that product will be inaccessi-
ble. Indeed, it can happen that a state corresponding to the product of
two core states also might not be accessible (although, one can always
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read some input starting from this state to get into the core of the
product transducer). Thus, after computing any such general product,
it is practically of great value to minimize the resulting transducer.

7.2. Properties of strongly synchronizing and bi-synchronizing
transducers. In this subsection, we take a detour to unearth a more
detailed structure theory for minimal, strongly synchronizing (or bi-
synchronizing) transducers.

We begin our investigations by looking into how synchronization
combines with the basic methods of minimization.

Lemma 7.9. Suppose that 0 < m ∈ N and that A is an initial trans-
ducer that represents a self-homeomorphism φ of Cn,r and which syn-
chronizes at level m. Let B be the minimal transducer ω-equivalent to
A produced by the minimisation algorithm. Then B has finitely many
states and synchronizes at level m as well.

Proof. We suppose that 0 < m ∈ N and that Aq0 = (ṙ, {0, 1, . . . , n −
1}, u1, S1, πA, λA, q0) is an initial transducer that synchronizes at level
m and which represents a self-homeomorphism φ of Cn,r for some 0 <
r < n ∈ N.

We consider the minimisation algorithm as discussed in Section 5.5.
The first operation is to remove states of incomplete response. Recall

that a state q has incomplete response to an input letter x if the word
z = λ(x, q) is smaller than the guaranteed eventual output of q on
reading long enough inputs with initial letter x. As our initial states
cannot be in any cycle within the transducer (since the ṙ letters are
only processed from one state which is never revisited) the process of
removing states of incomplete response is simply to inductively adjust
all outputs from accessible states by “back-propagating” guaranteed
responses as far as possible. Thus, transitions in the new transducer
mirror transitions in the old transducer, and the synchronization level
is preserved.

The next operation is to remove inaccessible states. It is immediate
that this does not increase the synchronization level (it could decrease
the synchronization level, if we remove an inaccessible state q from
which the transitions into Core(A) require long inputs). Also, we ob-
serve that the number of states has not increased, and that q0 is still
the initial state of the resulting transducer, which we will denote by
A1.

We can observe that the transducer A1 must now have only finitely
many states: the states in the core, (which is a finite set), and all the
states one can visit on the way to the core from the initial state (again,
a finite set, since after we have read an input of length m, we are in
the core).

The third operation is to identify each set of equivalent states to
a single state. If two states q1 and q2 are to be identified, then the
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resulting state will be the image under the new synchronizing map of
any word that would have resulted under the old map in either of the
two initial states. If an input letter x is processed by A1 at the two
states q1 and q2, then we will have that λA1(x, q1) = λA1(x, q2) and
while the two states πA1(x, q1) and πA1(x, q2) might be different in A1,
they will induce identical local actions, so πA1(x, q1) and πA1(x, q2) will
also have to have been identified. Thus, the synchronization level of the
resulting transducer might become shorter, but it cannot be increased
by this process. �

Grigorchuk, et al., in [12], argue the uniqueness (up to what we call
strong isomorphism in this article) of any two minimal finite transduc-
ers representing the same homeomorphism of Cantor space. Therefore,
we introduce the following notation.

Notation 7.10. Let h ∈ (Rn,r ∪Rn). By Ah we will mean a minimal
initial finite transducer representing h.

Definition 7.11. We set the notation

On,r := {Core(Ag) | g ∈ Bn,r}
for the set of cores of the minimal transducers representing elements
of Bn,r, up to equivalence under strong isomorphism (we suppress this
equivalence in the notation).

Definition 7.12. Let T1, T2 ∈ On,r. We define a product T1T2 ∈ On,r
as follows:

(1) Compute the full transducer product T1 ∗ T2.
(2) Pick any state q of T1 ∗ T2. Apply the “Remove States of In-

complete Response” algorithm in the paper [12] to the initial

transducer (T1 ∗ T2)q to produce an initial transducer (T1T2)q′.

(3) Pass to the core of (T1T2)q′ to produce the result (T1T2)
◦
.

(4) Identify equivalent states of (T1T2)
◦

to produce the result in
On,r, which we denote by T1T2.

We have the following structural lemma about the core of (minimal)
transducers representing elements of Bn,r.

Lemma 7.13. For any g, h ∈ Bn,r, we have:

(1) Core(Ag) Core(Ah) is strongly isomorphic to Core(Agh);
(2) if Core(Ag) is strongly isomorphic to Core(Ah), then there is

an element v ∈ Gn,r so that gv = h.
(3) if g and h are in the same coset of Gn,r in Bn,r, then Core(Ag)

is strongly isomorphic to Core(Ah).

Proof.

(1) The first point is essentially a direct computation. Observe
that the full transducer product of the initial transducers Ag



AUTOMORPHISMS VIA DYNAMICS 47

and Ah is the initial transducer Ag ∗ Ah which is ω-equivalent
to Agh by [12]. Moreover, it contains as a sub-transducer the full
transducer product of Core(Ag) with Core(Ah). The last three
paragraphs of the proof of Theorem 7.5 shows that Ag ∗ Ah
is strongly synchronizing, and Core(Ag ∗ Ah) is contained in
Core(Ag) ∗ Core(Ah). Thus Agh, the minimal transducer rep-
resenting the initial transducer Ag ∗ Ah contains a transducer
strongly isomorphic to Core(Ag) Core(Ah). However since Agh
is synchronizing, it follows that Core(Agh) is strongly isomor-
phic to Core(Ag) Core(Ah).

(2) The second point will follow from the characterisation of Gn,r as
the subgroup of Bn,r consisting of those homeomorphisms which
are represented by reduced transducers with core a single state
which acts as the identity.

The argument below relies on the inversion algorithm of GNS
(Proposition 2.21 of [12]). This algorithm, at the request of
early readers of this manuscript, is given in detail in Appen-
dix A and applies to any finite non-degenerate transducer Aφ
inducing a homeomorphism φ of Cantor space. Note that for a
given q the injectivity of hq implies that the set of such valid w
is finite. Similarly, the transitions and outputs for the minimal
transducer representing the inverse function depend precisely
on the transitions and outputs of the original transducer. In
particular, since Ag and Ah (in our context) have strongly iso-
morphic cores, the transducers Ag−1 and Ah−1 created by this
algorithm will have strongly isomorphic cores. It is now the
case that the product transducer Ag−1 ×Ah must have its core
strongly isomorphic to the core of the product Ah−1×Ah. From
this it follows that Ag−1h has core acting as the identity, thus
v := g−1h must be in Gn,r.

(3) To see the third point, observe that if g and h are in the same
coset, then there is an element f ∈ Gn,r such that gf = h.
Noting that, as f ∈ Gn,r, Core(Af ) is the single state identity
transducer. We have that Core(Ag) Core(Af ) is strongly iso-
morphic to Core(Agf ) by Lemma 7.13.1. However, as Core(Af )
is the single state identity transducer, we have

Core(Ag) Core(Af ) = Core(Ag) Core(A1Gn,r
)

which (by Lemma 7.13.1) is strongly isomorphic to Core(Ag)
(here we are taking 1Gn,r as the identity element of Gn,r). Thus,
it follows that Core(Ah) = Core(Agf ) is strongly isomorphic to
Core(Ah).

�

Drawing out implicit points in the argument for Lemma 7.13, we
have the following.
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Corollary 7.14. The group Gn,r ≤ Bn,r consists of those homeomor-
phisms which are represented by reduced transducers with core a single
state which acts as the identity. Furthermore, Gn,r is normal in Bn,r.
Proof. The proof of Lemma 7.13.(2) states the first part. The second
part is then immediate from Lemma 7.13.(1): if v ∈ Gn,r and h ∈ Bn,r
then Core(Avh) = Core(Av) Core(Ah) = Core(Ah) = Core(Ah) Core(Av) =
Core(Ahv). �

It immediately follows that we may characterise On,r as a group
under the product of Definition 7.12, where On,r is isomorphic to the
quotient group Bn,r/Gn,r.

Theorem 7.15. (1) The set On,r together with the multiplication
of Definition 7.12 forms a group.

(2) The map Core from Bn,r to On,r defined by g 7→ Core(Ag) is a
surjective group homomorphism to the group of point (1) above
with kernel Gn,r.

Remark 7.16. Considering the nature of On,r, we should mention that
the elements can be far stranger than one might expect. For instance,
Figure 3 demonstrates an element of O4,3 which has no state that acts
on C4 as a homeomorphism, even though the element admits a comple-
tion to an element of B4,3 which of course does act as a homeomorphism
of C4,3. This is one example of why having a combinatorially defined
product for elements of On,r (given by Definition 7.12) without having
to pass up to Bn,r is desirable.

7.3. Invertible rational endomorphisms of Gn,r are strongly
synchronizing. By Corollary 3.2 we know Aut(Gn,r) ∼= NH(Cn,r)(Gn,r).
By Corollary 6.18 we know that NH(Cn,r)(Gn,r) ≤ Rn,r and by Corol-
lary 7.14 we know that Bn,r ≤ NH(Cn,r)(Gn,r). Here, we show every
element of NH(Cn,r)(Gn,r) is in Bn,r. If this is true, it implies that
Aut(Gn,r) ∼= Bn,r/K, where K is the kernel of the conjugation action
of Bn,r on Gn,r. As already observed in Corollary 3.2 the kernel of
the conjugation action of NH(Cn,r)(Gn,r) on Gn,r is trivial and thus the
kernel K of the conjugation action of Bn,r on Gn,r is trivial as well. It
follows that to prove Theorem 1.1, we only need to verify that every
element of NH(Cn,r)(Gn,r) is already an element of Bn,r.

The following Definitions 7.17 and 7.18 and also Lemma 7.19 are
given in the context of a transducer representing a continuous (invert-
ible) homeomorphism of a Cantor space Xω

A, in order to simplify the
notation in the argument of Lemma 7.19. However, as is explained in
Remark 7.20 given right after the proof of Lemma 7.19, this is just a
convenience for the reader.

We require some further language.

Definition 7.17. Let Aq0 = (XA, QA, πA, λA, q0) be an initial, finite
transducer, and let p ∈ QA a state such that there is a path from q0
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to p with non-empty output for Aq0, we call such states non-trivially
accessible (in Aq0).

We also need to expand the notion of inverse homeomorphisms to
transducers.

In the definition below, that the inverse transducer Bp−1
0

exists and

has finitely many states is a standard result in the theory of the rational
group as in [12]. Still, we give a detailed proof of this in our Appendix
A, where the corresponding statement is given as Lemma A.8. (The
transducer Bp−1

0
in our definition below corresponds to the transducer

described as A′(ε,q0) constructed just prior to the statement of Lemma
A.8. Note also Lemma A.21 for the statement for the case of the Cantor
space Cn,r.)

Definition 7.18. Let Aq0 = 〈XA, QA, πA, λA, q0〉 be a minimal, initial,
finite transducer representing a self-homeomorphism hq0 of the Cantor
space Xω

A. Let Bp−1
0

= 〈XB, QB, πB, λB, p
−1
0 〉 represent the finite mini-

mal initial transducer (with an initial state denoted by p−1
0 ) so that the

induced homeomorphisms hq0 and hp−1
0

are inverse (so, in particular,

XA = XB). We will refer to A and B as inverse transducers.

Note, if Aq0 is a given minimal initial finite transducer, and one
creates its inverse transducer Bp−1

0
as in the definition above, we will

use a convention of writing elements in the set QB with a superscript
“−1” (e.g., a state denoted by p−1 would represent a state in QB,
whereas a state denoted simply as q would represent a state in QA).
This is to avoid confusion in our arguments below. Note that generally
there is not a bijection between QA and QB. See the appendix on
inversion for details.

We can now prove the main result of this subsection. The follow-
ing lemma provides a key insight into why automorphisms of Gn,r are
strongly synchronizing.

Note that in the next subsection we give a combinatorial description
of when an automaton is strongly synchronizing (that is, not involving
inversion), which in practice is much easier to use.

When we conjugate an element α ∈ Gn,r by a rational homeomor-
phism φ, the element α will apply a prefix-exchange map “in the mid-
dle” of the conjugation (so, any triple of resulting states from the prod-
uct has middle state acting as the identity, for long enough inputs).
Thus, any such conjugations arbitrarily pair states of the inverse con-
jugator to states of the conjugator in the resulting action, as we can
ignore the identity state in the middle. The resulting product will be
in Gn,r only if all such pairings result in “local prefix exchanges”. The
following lemma proves the converse also holds. As the argument is
technical and lengthy we give it in the simpler context of homeomor-
phisms of Cantor space Cn = Xω

A and we also break it into three stages
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(a set-up phase, then building local bases/prefix codes, and finally a
local-to-global phase where we put everything together). Recall that
in Remark 7.20 we explain why the argument still holds in the context
of Cn,r.

Recall for the proof below Definition 2.3 of a rotation of a word.

Lemma 7.19. Let Aq0 = 〈Xn, QA, πA, λA, q0〉 be a minimal, initial,
invertible finite transducer. Let p−1

0 represent the initial state of the
minimal transducer

Bp−1
0

= 〈Xn, QB, πB, λB, p
−1
0 〉

which is the inverse transducer of Aq0. Suppose that for all states p−1 ∈
QB and for all q ∈ QA we have the initial transducer Bp−1Aq admits
a complete prefix code ~xp−1,q for Wn,ε so that for all γ ∈ ~xp−1,q there is
δγ ∈ X∗n so that for all Γ ∈ Xω

n we have (γΓ)Bp−1Aq = δγΓ. Then Aq0
is strongly synchronizing.

Proof. We shall show that there exists t, a finite set of synchronizing
words for Aq0 , such that every word in Cn has a prefix belonging to
t. We shall call such a set of words a base. (Note that the base t
we produce might admit pairs of words which are comparable.) The
maximum length of a word in our base will be a synchronizing length
for Aq0 .

One of the main ideas of the proof which follows is that if Aq and
Bp−1 eventually act as inverses (on an infinite tail), independent of our
choices of p−1 and q, then after reading a long enough output of B the
transducer A must start processing in such a way as to revert input
strings to what they originally were when read into B. This will require
that after reading long enough inputs from any state of A, then the
current state of A should become determined.

The initial set-up:
Using the finiteness of the sets of states of the transducers Aq0 and

Bp−1
0

, set u to be the minimal natural number so that for any q ∈ QA

and p−1 ∈ QB, and for each γ ∈ Xu
n there is δγ ∈ Wn so that for all

Γ ∈ Xω
n we have (γΓ)Bp−1Aq = δγΓ. (Note that if we were to take

a larger value for u, then for the correspondingly longer words γ, the
dependent δγ will become some extension of the original δγ by some
suffix of γ.) Further determine l as the minimal length such that if,
for all γ ∈ Xu

n and some q ∈ QA and p−1 ∈ QB and for all Γ ∈ Xω
n we

have (γΓ)Bp−1Aq = δγΓ, then |δγ| ≤ l. That is, l is the maximal length
of an output prefix for all of the resulting (determined by value of u)
prefix exchange maps. Finally, let ū ≥ u be such that for any word
γ̄ ∈ X ū

n and for any q ∈ QA and p−1 ∈ QB, we have |(γ̄)Bp−1Aq| ≥ l (we
need this as possible incomplete response in the composite might mean
that reading an input η of length u could fail to produce a completely
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determined output ζ (which would eventually appear if we read longer
input strings)).

Now fix a state p−1 in QB. Since p−1 is a state of the minimal
inverse transducer for Aq0 , by the GNS algorithm p−1 = (w, p) for
some state p ∈ QA and a word w such that w is a prefix of an element
of Image(p) with Lp(w) = ε. (Recall we use Image(p) to denote the
image of the map hp = λ(·, p) : Cn → Cn and that Lp(w) is the greatest
common prefix of the set (Uw)(hp)

−1 := {δ ∈ Cn | (δ)hp = wδ′, δ′ ∈
Cn}.) Let x1x2 . . . xuxu+1 . . . xū ∈ X ū

n , and let y1, . . . , yt be such that
(x1x2 . . . xū)B(w,p) = y1 . . . yt.

We will now begin to build a base of synchronizing words for Aq0 .
Let us first focus on the cone at y1 . . . yt. We do not yet know that
y1 . . . yt is a synchronizing word for Aq0 : it may be the case that there
are two states of Aq0 such that if we read y1 . . . yt from these states,
the resulting state will not be unique. We show that there is a base of
extensions of y1 . . . yt which synchronise Aq0 .

Finding a (local) base for Aq0 over the cone Uy1...yt :
Let q1 and q2 be any arbitrary states of A. There are minimal indices

u1 and u2, both less than or equal to u, so that for all words x̃u1+1 . . . x̃ū
and x̃u2+1 . . . x̃ū in X∗n, and for any ξ ∈ Cn we have

(x1x2 . . . xu1x̃u1+1 . . . x̃ūξ)B(w,p)Aq1 = δ1x̃u1+1 . . . x̃ūξ

and
(x1x2 . . . xu2x̃u2+1 . . . x̃ūξ)B(w,p)Aq2 = δ2x̃u2+1 . . . x̃ūξ

for δ1 and δ2 ∈ X∗n with |δ1| ≤ l and |δ2| ≤ l. Let

(y1 . . . yt)Aq1 = z1 . . . zl1xu1+1 . . . xu1+i

and
(y1 . . . yt)Aq2 = u1 . . . ul2xu2+1 . . . xu2+j.

Thus, l1+1 is the index at which xu1+1 . . . xū begins to be written in the
image word (x1x2 . . . xu1xu1+1 . . . xū)B(w,p)Aq1 ; l2 is defined analogously
for (x1x2 . . . xu2xu2+1 . . . xū ∈ X ū

n)B(w,p)Aq2 . Observe in passing that l1
and l2 are determined by the minimality of u1 and u2.

Notice that it cannot be the case that

(y1 . . . yt)Aq1 = z1 . . . zl1xu1+1 . . . xūρ

for some ρ ∈ X+
n . This is true as picking a word ρ′ which is incompa-

rable to ρ in its first letter would give

(x1 . . . xūρ
′)B(w,p)Aq1 = z1 . . . zl1xu1+1 . . . xūρζ

for some ζ, but from the definition of l1 above we should have ρ = ρ′,
which is impossible. A similar argument is valid for (x1 . . . xūρ

′)B(w,p)Aq2 .
Therefore, we may assume that u1 + i ≤ ū and u2 + j ≤ ū.
Now let πB(x1 . . . xū, (w, p)) = (v, s). Now by the inversion algorithm

we have wx1 . . . xū − λA(y1 . . . yt, p) = v and πA(y1 . . . yt, p) = s. Since
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A−1
q0

has only finitely many states we may further assume that ū is
chosen large enough so that v is a suffix of x1 . . . xū (this is a convenient,
but not necessary, assumption). To see this, note that for each state s′

of A, there are only finitely many words w′ such that w′ is a prefix of an
element of Image(s) and Ls(w

′) = ε. Hence, we may pick ū such that for
any state p′ of A and any word γ′ ∈ X ū

n , we have |λA(λB(γ, (w, p)), p′)|
is also greater than the maximum size of any word w′ such that (w′, s)
is a state of B. Moreover we also have Lp(wx1 . . . xū) = y1 . . . yt. Let
wx1 . . . xk = λA(y1 . . . yt, p) for some k ≤ ū. Let m be minimal such
that for any state q of A and any word α ∈ Xm

n we have |λA(α, q)| ≥
ū − k. Now notice that there is a maximal set α = {α1, . . . , αm1} a
subset of Xm

n such that the greatest common prefix of the elements of
α is the empty word, and such that λA(αa, s) = xk+1 . . . xūρa for some
ρa ∈ X∗n and 1 ≤ a ≤ m1. This is because Lp(wx1 . . . xū) = y1 . . . yt
and πA(y1 . . . yt, p) = s. Further notice that the set α depends only on
x1 . . . xū, (w, p) and (v, s), i.e. it is independent of the choice of q1 and
q2.

Fix an αa ∈ α. Let ra = πA(αa, s). Observe that

Ls(vρa Image(ra)) = αa and (ρaˆ Image(ra))B(v,s) = Uαa .

Now let t1 := πA(y1 . . . yt, q1) and t2 := πA(y1 . . . yt, q2). Observe that

(x1 . . . xūρaˆ Image(ra))B(w,p) = y1 . . . ytUαa .

Now since (y1 . . . yt)Aq1 = z1 . . . zl1xu1+1 . . . xu1+i and (y1 . . . yt)Aq2 =
u1 . . . ul2xu2+1 . . . xu2+j it must be the case for any ρ ∈ Cn that the
string

xu1+i+1 . . . xūρa

is a prefix of λA(αaρ, t1). In a similar way xu2+j+1 . . . xūρa is a prefix of
λA(αaρ, t2). Now since we assumed that Aq0 has no states of incomplete
response, it must also be the case that λA(αa, t∗) = xu∗+]+1 . . . xūρa for
(∗, ]) ∈ {(1, i), (2, j)}. This is because otherwise Image(πA(αa, t∗)), for
∗ ∈ {1, 2}, will have a non-trivial common prefix contradicting the fact
that Aq0 has no states of incomplete response. Now let ρ′ ∈ Image(ra)
be arbitrary, and let (x1 . . . xūρaρ

′)B(w,p) = y1 . . . ytαaρ, then we must
have that (ρ)AπA(αa,t1) = (ρ)AπA(αa,t2) = ρ′. Since ρ′ was arbitrary
and (ρaˆ Image(ra))B(v,s) = Uαa we have that for all ρ′ in Cn there is
some ρ in Cn such that this holds. Thus, πA(αa, t1) and πA(αa, t2) are
ω-equivalent states.

Now as q1 and q2 were arbitrary states of Aq0 we must have, for any
pair q′1, q

′
2 of states of Aq0 , that πA(y1 . . . ytαa, q

′
1) and πA(y1 . . . ytαa, q

′
2)

are ω-equivalent (and so equal by minimality) for all αa ∈ α. Therefore
the set of words {y1 . . . ytαa | 1 ≤ a ≤ m1} is a synchronizing set of
words.

Now we need to consider the elements of β := Xm
n \α. Note that

these elements are independent of the choice of q1 and q2. Let β :=
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{β1, . . . , βm2}. Let βb ∈ β be arbitrary, in this paragraph we will show
that there is a positive integer m′1 and a set of synchronizing words
{y1 . . . ytβbηc | 1 ≤ c ≤ m′1} where the ηc’s all have the same length
and form a complete antichain for words with prefix y1 . . . ytβb. By
assumption we have that |λA(βb, s))| ≥ ū − k. Let x′k+1 . . . x

′
ūρ
′
b :=

λA(βb, s). Now x1 . . . xkx
′
k+1 . . . x

′
ūρ
′
b has length greater than or equal to

ū. Therefore we may repeat the arguments in the paragraph above with
|x1 . . . xkx

′
k+1 . . . x

′
ūρ
′
b| in place of |ū| and x1 . . . xkx

′
k+1 . . . x

′
ūρ
′
b in place

of x1 . . . xkxk+1 . . . xū. Notice that λA(x1 . . . x
′
ūρ
′
b, (w, p)) is either a pre-

fix of y1 . . . yt or contains y1 . . . yt as a prefix. Let λA(x1 . . . x
′
ūρ
′
b, (w, p)) :=

y′1 . . . y
′
t′ , and let (v′, s′) := πA(x1 . . . x

′
ūρ
′
b, (w, p)). After repeating the

argument, we end up with a new set of synchronizing words, however
this new set of synchronizing words now contains a subset {y1 . . . ytβbηc |
1 ≤ c ≤ m′1} where the ηc’s all have the same size and form a com-
plete antichain for words with prefix y1 . . . ytβb. Take the union of the
sets {y1 . . . ytβbηc | 1 ≤ c ≤ m′1} and {y1 . . . ytαa | 1 ≤ a ≤ m1} and
let u(y1 . . . yt) denote the union. Continuing in this way across all the
βb ∈ β, and letting u(y1 . . . yt) denote the total union at each stage, we
see that u(y1 . . . yt) is a base for the clopen set Uy1...yt .

From local to global:
Now to finish to proof it suffices to construct a finite set M ⊂ Wn,ε,

and D ∈ N satisfying the following conditions:

(1) for every word γ ∈M , u(γ) exists and is a base of synchronizing
words for Aq0 for the clopen set Uγ,

(2) if N := ∪γ∈Mu(γ) then for every element of ν ∈ Wn,ε of length
greater than or equal to D there is an element of N which is a
prefix of a (possibly trivial) rotation of ν.

We will first explain why these conditions suffice. Let us suppose
that we have such M , D, and N . Set t to be the set of all words of
length D. We will show that such a set t is a base of synchronizing
words.

If each word of length at least D contains a proper contiguous sub-
string which is an element of u(γ) for some γ ∈ M then all strings
of length at least D contain a synchronizing word for Aq0 , so D is a
synchronizing length for Aq0 . If not, and assuming Aq0 is not strongly
synchronizing, then there is a word v = v1v2 . . . vm and two distinct
states • and ? so that πA(v, •) = • while πA(v, ?) = ? (this follows
by considering the sets of pairs of states that one gets when reading
long strings of inputs from some initial pair (•′, ?′), as eventually some
pair (•, ?) must be repeated due to the finiteness of the automaton
underlying the transducer). Now, there is some minimal k so that
k ·m ≥ D. We observe that vk has a rotation which has a prefix in N ,
but then we must have that reading v2k will be a synchronizing word
for Aq0 , so that • = ?, which is a contradiction.



54 C. BLEAK, P. CAMERON, Y. MAISSEL, A. NAVAS, AND F. OLUKOYA

We will show we can construct M and D as described above.
Let P be the set of all non-trivially accessible states of B(ε,q0), ob-

serving that P is not empty. For each (w, p) ∈ P let O((w, p)) :=
{λB(ϕ, (w, p)) | ϕ ∈ X ū

n}. The arguments above demonstrate that
for each word ϕ ∈ X ū

n , and each state (w, p) ∈ P, there is a set
s(λB(ϕ, (w, p))) of synchronizing words which is a base for Aq0 over
the clopen set UλB(ϕ,(w,p)). Set M := {γ ∈ Wn | ∃(w, p) ∈ P : γ ∈
O((w, p))} and correspondingly set N := {ζ | ∃γ ∈M, ζ ∈ u(γ)}.

Set the following values

C := max
γ∈M
|γ|,

D := max
ζ∈N
|ζ|.

Note that D ≥ C as each word in N is an extension of a word in M .
We are now ready to verify that D and M as determined satisfy our
two properties.

Let δ ∈ X∗n so that |δ| ≥ D. Note that there is a ρ ∈ Cn such that,
(ρ)h−1

q0
= (ρ)h(ε,q0) = δδδ . . . = δω. Let ρ1 be the minimal prefix of

ρ such that πB(ρ1, (ε, q0)) = (w, p) ∈ P. Let ρ2 ∈ X ū
n be such that

ρ1ρ2 is a prefix of ρ. Observe that since πB(ρ1, (ε, q0)) = (w, p) ∈ P

then we must have λB(ρ1, (ε, q0)) 6= ε. Observe also (by definition)
that λB(ρ2, (w, p)) ∈ M . Therefore, by the definition of D and as
(ρ)h(ε,q0) = δω, we have λB(ρ2, (w, p)) is a prefix of a (possibly trivial)
rotation of δ . Since δ ∈ X∗n was chosen arbitrarily amongst words of
length at least D, it follows that for every element ν ∈ X∗n of length at
least D there is an element of M which is a prefix of a possibly trivial
rotation of ν. Recall that for all γ ∈ M , u(γ) ⊆ N is a base for Uγ, in
particular, any word of length at least D which has a prefix γ in M ,
actually has a prefix in u(γ) ⊂ N . �

If one considers the proof above, it is clear that one can ignore the
states of A and of B which can be reached without writing any output,
in the construction of the synchronisation function of A. This follows
as we pass into consideration of states of B which appear on cycles of
the automaton when we consider inputs to B of the form δω for a finite
word δ.

In particular, the construction of the synchronisation function follows
just as well in other contexts, such as for the transducers representing
elements ofRn,r. The following remark extracts the necessary hypothe-
ses for the construction of these particular synchronisation functions.

Remark 7.20. Let Aq0 = (ṙ, Xn, RA, SA, πA, λA, q0) be a minimal, ini-
tial, invertible finite transducer for an element ofRn,r, and with inverse
homeomorphism represented by the minimal, initial finite transducer
Bp−1

0
= (ṙ, Xn, RB, SB, πB, λB, p

−1
0 ). Let P ⊂ SB be such that for

any word δ ∈ Wn there is a (possibly trivial) rotation φ of δ, a state
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p−1 ∈ P and word ρ ∈ Cn such that (ρ)hp−1 = φω. Let Q ⊂ SA be
such that for all states p−1 ∈ P and for all q ∈ Q we have the ini-
tial transducer Bp−1Aq admits a complete prefix code ~xp−1,q for Wn,ε

so that for all γ ∈ ~xp−1,q there is δ ∈ X∗n so that for all Γ ∈ Cn we
have (γΓ)Bp−1Aq = δΓ. Then, there is a k ∈ N such that for any word
γ ∈ Wn of length k the function πA(γ, �) : Q→ SA takes only one value.

We observe that in Remark 7.20 the proof of Lemma 7.19 demon-
strates that we may take P to be the set of all non-trivially accessible
states of Bp−1

0
.

Corollary 7.21. Let h ∈ Rn,r be such that h = hq0 for

Aq0 = (ṙ, Xn, RA, SA, πA, λA, q0)

a minimal, initial, invertible finite transducer, where Gh
n,r ≤ Gn,r. Then

Aq0 is strongly synchronizing.

Proof. Let h and Aq0 be as in the statement, and suppose h−1 is rep-
resented by some minimal, initial finite transducer

Bp−1
0

= (ṙ, Xn, RB, SB, πB, λB, p
−1
0 ).

Let P be the set of non-trivially accessible states of Bp−1
0

and let Q :=

SA. We observe that elements of SA, by definition, are accessible from
the initial state q0 of A by a non-empty word.

Fix a pair (p−1, q) ∈ P × Q. Let γ, µ, ν ∈ Wn,r be such that
πB(γ, p−1

0 ) = p−1, λB(γ, p−1
0 ) = µ 6= ε and πA(ν, q0) = q. Let g ∈ Gn,r

be such that g acts on the cone Uµ as a prefix replacement map, re-
placing the prefix µ with ν. Let Cs0 = (ṙ, Xn, RC , SC , πC , λC , s0) be
the minimal transducer representing g. Observe that when the word γ
is read from the state (p−1

0 , s0, q0) of the product B ∗ C ∗ A, then the
resulting state is (p−1, s, q) where s is the unique state of Cs0 such that
hs : Cn → Cn is the identity map. Thus, we may identify the state
(p−1, s, q) of B ∗ C ∗ A with the state (p−1, q) of B ∗ A. Now since
hp−1

0
ghq0 ∈ Gn,r by definition, it follows that the map h(p−1,q) = hp−1hq

must act on Cn as a prefix exchange map, since it is a local action of
hp−1

0
ghq0 . However, as (p−1, q) was an arbitrary state of P×Q it follows

that for any pair ((p′)−1, q′) ∈ P× Q the map h(p′)−1hq acts on Cn as a
prefix exchange map. Therefore by Remark 7.20, it follows that there
is a number k ∈ N such that for any word γ ∈ Wn of length k the map
πA(γ, �) : SA → SA takes only one value. Now observe that there is
an integer j such that for any word ζ ∈ Wn,r of length j, πA(ζ, �) is a
map from SA t RA to SA. Hence we conclude that A is synchronizing
at length j + k. �

We have now completed the proof of Theorem 1.1.
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8. Combinatorial properties of strongly synchronizing
transducers

In this section we explore combinatorial properties of strongly syn-
chronizing transducers. In the first subsection we study cycles in
strongly synchronizing transducers, we also investigate conditions for
when such transducers possess states that induce homeomorphisms.
Some of the results of that subsection are used in our analysis of the
outer automorphism groups appearing in Section 9. In the second sub-
section we introduce an algorithm for detecting when an automaton is
strongly synchronizing.

8.1. Prime words, circuits, and homeomorphism states. We call
a word w ∈ Wn a prime word if there is no prefix z < w and k ∈ N,
with k > 1, so that zk = w. For all w ∈ Wn, there is a shortest prefix z
of w so that there is a positive integer k so that w = zk, we call z the
prime root of w, and note that the prime root of w is in fact a prime
word.

Definition 8.1. Let Ap0 = (ṙ, {0, 1, . . . , n−1}, RA, SA, πA, λA, p0) be a
strongly synchronizing finite transducer representing a continuous map
Cn,r → Cn,r. We say a word w ∈ Wn represents a basic circuit of Ap0
(at p) if there is state p so that πA(w, p) = p and if w1 is a non-trivial
proper prefix of w then πA(w1, p) 6= p.

The following lemma consists of various points which are all easy
exercises. We will prove points 1, 2, and 7, leaving the other points to
the reader.

Lemma 8.2. Suppose that

Ap0 = (ṙ, Xn, RA, SA, πA, λA, p0)

is a strongly synchronizing finite transducer, with all outputs on finite
inputs finite.

(1) Given a core state p and a word w so that π(w, p) = p, then if
z is the prime root of w, then π(z, p) = p.

(2) Given any word w ∈ Wn, there is a unique state p so that
πA(w, p) = p.

(3) If w represents a basic circuit of Ap0, then the unique state p
so that πA(w, p) = p has the property that p is in Core(A), and
furthermore, the word w is prime.

(4) Let p ∈ Core(A), and let Wp represent the set of all words
representing basic circuits of A (at p). Then, Wp is finite.

(5) The setsWp, for p running over the states in Core(A), partition
the set of all words representing basic circuits of A.

(6) Given a core state p, given any letter x ∈ Xn, there is a word
in Wp beginning with the letter x.
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(7) For any state q the set of minimal elements of the set {λq(w) |
w ∈ X∗}\{ε} (under the partial order on words in Wn, where
w1 6 w2 if w1 is a prefix of w2) has no common initial prefix.

Proof. Suppose m ∈ N, w ∈ Wn, and Ap0 = (ṙ, Xn, RA, SA, πA, λA, p0)
a strongly synchronizing finite transducer, with all outputs on finite
inputs finite, and where Ap0 synchronizes at level m for some non-
negative integer m.

First suppose p is a state of Core(A) and π(w, p) = p. Let z be the
prime root of w, and k be a positive integer so that zk = w. Consider
the word zm. It is immediate that zm is at least m in length, and
so it synchronizes Ap0 to some state. Meanwhile, π(wm, p) = p and
wm has suffix zm, so zm must synchronize Ap0 to p. But now, zm+1

also synchronizes Ap0 to p, since zm+1 has zm as a suffix. Therefore,
π(z, p) = p. This shows point 1. Release the variable p now.

Since |w| > 0 it is immediately clear that there is a length m suffix
of wm so in particular wm synchronizes Ap0 to some state p ∈ Core(A).
It is then the case that π(wm, p) = p. Note that the prime root z of w
is also the prime root of wm, so by point 1 the prime root z of w has
π(z, p) = p. It is then immediate that π(w, p) = π(zk, p) = p, which
shows point 2.

Note that point 7 follows from the fact that our transducer is mini-
mal. If there were a non-trivial common prefix w for the output words
from a state q, then the minimalisation procedure would have the tran-
sitions to q having all their outputs ending with w as a suffix, while w
would be removed from the prefixes of all of the outputs of q. �

The following lemma is effectively a continuation of Lemma 8.2, now
under the context that our transducer is bi-synchronizing (and hence,
acts bijectively on its target Cantor space).

Lemma 8.3. Let 1 6 r < n ∈ N and h ∈ Homeo(Cn,r) be represented
by a finite minimal bi-synchronizing transducer A with set of states Q.
We have the following.

(1) For any prime word w there exists a unique circuit C in A so
that for each state q of C, the output of C based at q is some
rotation ŵ of the word w.

(2) If q ∈ Q is such that the local action hq : Cn → Cn is bijective,
then for all p ∈ Q such that π(l, p) = q for some l ∈ Xn, we
have λ(l, p) 6= ε.

(3) If p ∈ Q so that the local action hp : Cn → Cn is a homeo-
morphism, and so that its outputs {λ(l, p) | l ∈ Xn} are all
different from the empty word, then each such output word has
length one, and the induced map λ(·, p) : Xn → Xn is a permu-
tation.

(4) If p ∈ Q so that the local action hp : Cn → Cn is a homeomor-
phism, and so that its outputs {λ(l, p) | l ∈ Xn} are all of length
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one, then for all q so that π(l, p) = q for some l ∈ Xn, the local
action hq is also a homeomorphism.

Proof. Point 1 is essentially the dual of point 2 of Lemma 7.9. One can
work in a minimal transducer B representing h−1, to detect the word
v of output produced by reading w on the cycle that accepts w in B.
Since w is prime, the word v is also prime. (If v = rt for some integer t
and prime word r, we have that A has a cycle that accepts r, and the
output of reading rt on this cycle must be w̃ (for some rotation w̃ of
w) but now by the primality of w we see that t = 1.) Now it follows
that there is a unique cycle C of A labelled by v, and the output of
reading the input v along the cycle C must be some rotation ŵ of w.
(Note that if there were no ε-outputs along the cycle C then our output
would be w on the nose, instead of (possibly) a rotation of w.)

Point 2 follows from the fact that q can produce a full copy of Cn as
output. Let l be a letter in Xn so that π(l, p) = q, and x ∈ Xn\{l}.
Then, there is an output from p obtained by first reading x, and then
reading any infinite word. This output can also be obtained from p by
first reading l. In particular, h would fail to be injective.

Point 3 follows as we must be able, for any given word w ∈ Wn, to
find some word z ∈ Wn so that λ(z, p) has w as a prefix. Therefore, we
need to be able to write words with the n distinct one letter prefixes
provided by our alphabet Xn, so, the n outputs of p must begin with the
n distinct letters in Xn. Furthermore, if for some j ∈ Xn, the output
wj = λ(j, p) has length greater than one and initial letter k, then from
the state p there will be at least n−1 outputs beginning with the letter
k that cannot occur as prefixes of any output written from the state
p. In particular, the length of all outputs from state p on one-letter
inputs is one, and these outputs form a function λ(·, p) : Xn → Xn

which must be a permutation.
Finally, point 4 follows as each of the states in the image of the

transition function π(·, p) : Xn → Q is responsible for a full Cantor set
of outputs. (The state π(j, p) must produce all prefixes of all words in
the Cantor space Cn so that p itself will admit all outputs with prefix
the letter λ(j, p).) �

Lemma 8.4. Let 1 6 r < n ∈ N and h ∈ Bn,r be represented by a
finite minimal bi-synchronizing transducer A with set of states Q. If
for some state q in Q, in the initial transducer Aq any finite word in
Wn can be obtained as an initial segment of some output, then the local
action hq is a self-homeomorphism of Cn.

Proof. By definition, Range(λq) is a clopen set in Cn and by our as-
sumption, every basic cone in Cn intersects Range(λq), thus

Range(λq) = Cn.

�
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Definition 8.5. Let h ∈ Rn,r tRn be represented by a minimal trans-
ducer Aq0. We call any state q of Aq0, where the map hq is a self-
homeomorphism of Cn, a homeomorphism state.

Given h ∈ Bn,r for some 1 6 r < n ∈ N, represented by a minimal
transducer A, we have seen above (see Lemma 8.2(2)) that A has, for
each letter l ∈ Xn, a unique state ql so that π(l, ql) = ql. We call the
state ql the l-loop state. We define the set

LoopStates(A) = {q ∈ Q | q is the l-loop state for some l ∈ Xn} .

We now give some sufficient conditions for a loop state and its neigh-
bours to be homeomorphism states.

Lemma 8.6. Let 1 6 r < n ∈ N, and h ∈ Bn,r be represented by a
minimal transducer A. For each l ∈ Xn let ql ∈ LoopStates(A) be the
l-loop state. Suppose that for some l ∈ Xn we have that for all j ∈
Xn\{l} the word λ(j, ql) is not trivial and has no non-trivial common
prefix with λ(l, ql). Then, the local action hql is a homeomorphism
hql : Cn → Cn, and in this case we have the following:

(1) |λ(j, ql)| = 1, for each j ∈ Xn,
(2) the map λ(·, ql) : Xn → Xn is a permutation, and
(3) for each state pj := π(j, ql), the state pj is a homeomorphism

state.

Proof. Assume that ql is the loop state for some l ∈ Xn, and that for
all j ∈ Xn\{l}, the word λ(j, ql) is not trivial and has no non-trivial
common prefix with λ(l, ql). For all j ∈ Xn, set wj := λ(j, ql). Observe
that {ql} represents the only circuit with output wl. Further, as the
outputs from the state ql on reading one-letter inputs are never trivial,
given any letter k ∈ Xn, there is some j ∈ Xn so that λ(j, ql) begins
with the letter k. (Otherwise, the homeomorphism h would not be sur-
jective. This is because it would be impossible, for large enough values
of t, to produce any infinite sequence of letters representing a point in
Cantor space with a contiguous sub-string of the form λ(l, ql)

tˆk.)
Therefore, we see that from the state ql we can produce all strings

of length 1 as prefixes of outputs. However, the argument above is
generic, since given any word w ∈ Wn, the only way for h to produce
infinite sequences representing points of Cantor space, with contiguous
sub-strings of the form (λ(l, ql))

tˆw for arbitrarily large t, is to have an
infinite string of input with a sub-string of the form lm for some s near
t (that is, for values of t much larger than the synchronizing length m),
followed by some word z so that λ(z, ql) has prefix w.

Therefore, ql is a homeomorphism state by Lemma 8.4.
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Furthermore, as ql is a homeomorphism state with all transitions
with non-empty outputs, we have by Lemma 8.3 Point 3 that all the
outputs on those transitions are length one and that the map λ(·, ql) :
Xn → Xn is a permutation. We also have that for all states q in the set
{π(j, ql) | j ∈ Xn} that Aq induces a homeomorphism on Cn by Lemma
8.3 Point 4. �

8.2. Detecting if an automaton is strongly synchronizing. In
this section we outline a combinatorial method for detecting when an
arbitrary finite automaton is strongly synchronizing.

This method consists of iteratively applying the ‘collapsing proce-
dure’, which we define below, until there are no more ‘collapses’ to be
performed.

Definition 8.7 (Collapsing procedure). Let A = 〈X,QA, πA〉 be a fi-
nite automaton. For each state q ∈ QA let [q] be the set of states p ∈ QA

such that the functions πA(�, p) : X → QA and πA(�, q) : X → QA are
equal. Let QA1 := {[q] | q ∈ QA} and observe that QA1 is a partition of
QA. Form a new automaton A1 = 〈X,QA1 , πA1〉 where, for i ∈ X and
[q] ∈ QA1, we set πA1(i, [q]) = [πA1(i, q)].

Remark 8.8. Let A be an automaton and let A1 be the automaton
resulting from applying the collapsing procedure to A as above. Ob-
serve that if a collapse is possible then |A1| < |A|, otherwise |A1| = |A|
and A1 =si A. The strong isomorphism arises as for a state q of A, the
state [q] of A1 is the set {q}.

Let A = 〈X,QA, πA〉 be an automaton. Form a sequence (Ai)i∈N of
automata where A0 = A and such that, for j ∈ N1, Aj = 〈X,QAj , πAj〉
is the result of applying the collapsing procedure to the automaton
Aj−1. The set of states QAj of Aj is a partition of QAj−1

the set of
states of Aj−1. Since QA1 is a partition of QA0 , then, by induction,
the set QAj of states of Aj corresponds to a partition P(QAj) of QA.
Thus for j ∈ N1, we identify the states of Aj with the elements of this
partition so that states of QAj correspond to subsets of QA. For q ∈ QA

and j ∈ N we fix the notation [q]j for the state of QAj containing q;
if j = 0, set [q]0 := q. By definition of the collapsing procedure, for
j ∈ N, and distinct states [p]j and [q]j of Aj, [p]j+1 = [q]j+1 if and only
if the functions πAj(�, [p]j) and πAj(�, [q]j) are equal. In particular we
have the following claim:

Claim 8.9. For x ∈ X and q ∈ QA, πAj(x, [q]j) = [πA(x, q)]j.

Proof. We proceed by induction. By construction the claim holds
for A1. Let k ∈ N1 and assume that the claim holds for Ai for all
1 ≤ i < k. Let x ∈ X and [q]k be a state of Ak. Observe that
[q]k = {p ∈ QA | πAk−1

(y, [p]k−1) = πAk−1
(y, [q]k−1) for all y ∈ X}.

However by the inductive assumption we have: [q]k = {p ∈ QA |
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[πA(y, p)]k−1 = [πA(y, q)]k−1}. Thus for any p ∈ [q]k and any y ∈ X,
we have [πA(y, q)]k = [πA(y, p)]k since [πA(y, p)]k−1 = [πA(y, q)]k−1. �

Whenever we have an automaton A and a sequence (Ai)i∈N of au-
tomata with A0 = A and such that each subsequent term of the se-
quence is obtained from the previous one by applying the collapsing
procedure, we shall identify, as above, the set QAj of states of Aj with
a partition of QA and elements of QAj with subsets of QA. Further
observe that if i, j ∈ N and i < j, then |Ai| ≤ |Aj|. Thus the sequence
(Ai)i∈N is eventually constant.

We have the following result.

Lemma 8.10. Let A = 〈X,QA, πA〉 be an automaton and (Ai)i∈N be the
sequence such that A0 = A and each subsequent term is the automaton
resulting from applying the collapsing procedure to the previous one.
Let p, q ∈ QA, then [p]i = [q]i in Ai for some i ∈ N if and only if for
all words Γ ∈ X i πA(Γ, p) = πA(Γ, q).

Proof. We proceed by induction on i. Let i = 0 and p, q be states of
A such that [p]0 = [q]0. Since A0 = A, we have p = q. Moreover, for
any s, t ∈ QA such that πA(ε, s) = πA(ε, t) then since s = πA(ε, s) and
t = πA(ε, t), we conclude that s = t. This establishes the base case.

Assume that for k ∈ N1 and for all i < k, i ∈ N , the statement of
the lemma holds.

Let p, q ∈ QA be such that [p]k = [q]k. Let Γ ∈ Xk−1 and x ∈ X be
arbitrary. Since [p]k = [q]k, by construction of the Collapsing procedure
it follows that for all y ∈ X, [πA(y, p)]k−1 = [πA(y, q)]k−1. Thus if
p′ := πA(x, p) and q′ := πA(x, q), then we must have, [p′]k−1 = [q′]k−1.
Therefore by the inductive assumption we have, πA(Γ, p′) = πA(Γ, q′),
from this it follows that πA(xΓ, p) = πA(xΓ, q). Since x ∈ X and Γ ∈
Xk−1 were arbitrary, we conclude that the functions πA(�, p) : Xk → QA

and πA(�, q) : Xk → QA are equal.
Now let p, q ∈ QA be such that the functions πA(�, p) : Xk →

QA and πA(�, q) : Xk → QA are equal. Let x ∈ X be arbitrary,
and p′ = πA(x, p) and q′ = πA(x, q). Observe that the functions
πA(�, p′) : Xk−1 → QA and πA(�, q′) : Xk−1 → QA are equal since
the functions πA(�, p) : xXk−1 → QA and πA(�, q) : xXk−1 → QA

are equal. Thus by the inductive assumption for k − 1 we have that
[p′]k−1 = [q′]k−1. Therefore as x ∈ X was arbitrary, we have that for
all y ∈ X, πAk−1

(y, [p]k−1) = πAk−1
(y, [q]k−1), and so [p]k = [q]k as

required.
�

We may restate the lemma above as follows:

Lemma 8.11. Let A = 〈X,QA, πA〉 be an automaton and (Ai)i∈N be the
sequence such that A0 = A and each subsequent term is the automaton
resulting from applying the collapsing procedure to the previous one.
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Let p, q ∈ QA. Then [p]i 6= [q]i in Ai for some i ∈ N if and only if there
is a word δ ∈ X i such that πA(δ, p) 6= πA(δ, q).

We thus have the following theorem characterising when a finite au-
tomaton is strongly synchronizing.

Theorem 8.12. Let A = 〈X,QA, πA〉 be an automaton. Form the se-
quence (Ai)i∈N where A0 = A and each subsequent term of the sequence
is the result of applying the collapsing procedure to the preceding term.
Let k be minimal such that |Ak| = |Ak+1|. Then A is strongly synchro-
nizing if and only if Ak consists only of a single state. Moreover, if k is
minimal such that |Ak| = 1, then k is the minimal synchronizing level
of A.

Proof. In what follows, for a given non-negative integer k, we use Nk
to denote the set of all naturals greater than or equal to k.

Observe that for all l ∈ Nk we have Al = Ak by Remark 8.8. Thus
if |Ak| 6= 1, then |Al| 6= 1 for any l ∈ Nk. Therefore for any j ∈ Nk−1,
there is a pair of states q, p ∈ QA such that [q]j+1 6= [p]j+1 and so, by
Lemma 8.11, for any j ∈ Nk−1 there is a word δ ∈ Xj+1 and states
p, q ∈ QA such that πA(δ, q) 6= πj(δ, p). From this we conclude that A
is not strongly synchronizing.

Now suppose that |Ak| = 1 then by Lemma 8.10 we have that for
any pair p, q ∈ QA and any word Γ ∈ Xk, πA(Γ, p) = πA(Γ, q) and
so A is strongly synchronizing. Moreover since k is minimal such that
|Ak| = 1, Lemma 8.11 guarantees that it is the minimal synchronizing
level of A. �

We conclude with some examples and non-examples.

Example 8.13. Consider the following automaton, A, below:

q0

q1 q2

0|0

2|01|2

0|0

1|2
2|1

1|1

0|2

2|0

Then Ā is as follows:
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q0

q1 q2

0

21

0

1
2

1

0

2

After one iterate of the collapsing procedure we find that the states q0

and q1 are in the same equivalence class and q2 is in a class on its own.
The quotient automaton is shown below:

q0

q2

0

2

1
1

0
2

After the second iterate of the procedure the quotient automaton is as
follows:

q0

0

21

We can likewise perform, the same process on Ā−1, which is given
below:

q0

q1 q2

1

02

0

2
1

1

2

0

This automaton can also be collapsed to a single state automaton in
2 steps. One can check that A is bi-synchronizing on the second level
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with map given by:

f :

 00 7→ q0 10 7→ q0 20 7→ q1

01 7→ q1 11 7→ q1 21 7→ q0

02 7→ q2 12 7→ q2 22 7→ q2

We now illustrate a non-example. Let B be the following transducer:

q0

q1 q2

0|0

1|22|1

1|0

2|2
0|1

2|2

0|0

1|1

This transducer is not synchronizing at any level, for instance there is
no single state into which the automaton enters after reading any finite
string of zeroes. Consider B̄ below:

q0

q1 q2

0

12

1

2
0

2

0

1

No two states of this automaton are related under the equivalence class
given in the procedure, and so the quotient automaton returned after
the first iterate of the collapsing procedure is exactly the same as B.
Therefore the procedure returns that the automaton is not strongly
synchronizing.

9. The natural quotient Bn,r � On,r

We begin by defining, for a given n, a set Õn of non-initial minimal

strongly synchronizing transducers. We show that Õn is a monoid and
contains a group On which has as subgroups the groups On,r, for each
1 ≤ r < n. We prove Proposition 9.15 giving a nesting criteria for the
subgroups On,r inside On. We then give an example of an element of
O4,3 which is not an element of O4,r for any r ∈ {1, 2}, thus showing
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that On,r depends on r (although, this remains open at the level of
isomorphism). To close the section, we give a direct, combinatorial
method of inverting elements in On which does not rely on passing to
a completion in Bn,r, inverting, and then taking the core.

9.1. Classes and sets. For what follows, we establish two conven-
tions. The first convention faces a technical problem that must be
dealt with, whilst the second simply supports a nicety.

The first convention we establish is that we will regularly confound
a (finite) transducer with its equivalence class under strong isomor-
phism. That is, if we refer to a transducer, we are really referring to
the class of all transducers which are strongly isomorphic to it. Simi-
larly, if we refer to a set of transducers, then we are actually referring
to a set of equivalence classes of transducers, where all of the trans-
ducers in a given equivalence class are strongly isomorphic. If we refer
to the states of a transducer, the reader will be assumed to have cho-
sen a representative of the appropriate equivalence class of transducers
(under strong isomorphism) for the discussion that follows. We em-
ploy this language to avoid having to explicitly choose representative
transducers and having to constantly discuss independence of choice
of transducers at each turn. On occasion, however, we will still use
the congruence notation “=si” for a strong isomorphism between any
two given particular transducers when we think it will aid the reader
in catching some pointed observation.

Thus, when we define below a monoid or group of transducers, the el-
ements of that monoid or group will actually be the equivalence classes
of the transducers specified.

The second convention is not strictly necessary, but it allows us to use
equivalence classes of transducers (under strong isomorphism) where
each equivalence class is actually a set. To achieve this, we place the
sets of states of our transducers on a firmer foundation.

Specifically, recall that the set Vω from the von Neumann hierarchy
of sets has the property that all of its elements are finite sets. Fur-
thermore, as in Chapter 1 of Kunen’s text [16], by interpreting (in the
natural cases) the elements of a direct product of two sets X and Y as
sets of the form {x, {x, y}}, where x ∈ X and y ∈ Y , one sees that Vω
has the following two properties:

(1) for all Q ∈ Pfin(Vω), we have Q ∈ Vω, and
(2) for all X, Y ∈ Vω, we have X × Y ∈ Vω.

Here, note that we are using Pfin(Vω) to represent the set of all finite
subsets of Vω. The two properties above are exactly what is required in
our discussions for working combinatorially with finite transducers (e.g,
we might sometimes pass to subsets of the set of states, for instance
when passing to the core of a synchronizing transducer, and secondly,
the set of states of a product transducer is the direct product of the
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sets of states). From this point forward, when we discuss a transducer,
we are implicitly assuming the set of states of T is an element of Vω,
and the alphabet of T will be one of the sets Xn, or in the case of a
transducer representing an element of Gn,r, the alphabet will be the
union of the sets ṙ and Xn for some r and n natural with 0 < r < n.
Thus, the reader may assume if they choose that all of our transducers
come from a specific set of transducers (as opposed, e.g., to a class of
transducers). Note that in the discussions below we will treat direct
products simply as sets of ordered pairs of elements, as in standard
usage.

We can now proceed with the main discussion of the section.

9.2. Around a monoid Õn. We first define our monoid of interest.

Definition 9.1. Let Õn be the set consisting of those transducers T =
〈Xn, QT , πT , λT 〉 satisfying the following conditions:

(1) T is synchronizing at level k for some natural k,
(2) Core(T ) = T ,
(3) T is minimal, and
(4) for each state q of T , the induced map λ(·, q) : Cn → Cn is

injective and has clopen image.

Recall that in the above context, we sometimes confound a state q
of T with the corresponding map λ(·, q) : Cn → Cn (as we consider
states to represent local actions). This leads to the appearance of the
notation “Image(q)” which seems clear enough and is lighter to read
than the full “Image(λ(·, q)).”

The following definition simply generalises the multiplication of Def-
inition 7.12 to our broader context (of working with the transducers in

Õn).

Definition 9.2. Let T1, T2 ∈ Õn. We define the product T1T2 ∈ Õn as
follows:

(1) Compute the full transducer product T1 ∗ T2.
(2) Pick any state q of T1 ∗ T2. Apply the “Remove States of In-

complete Response” algorithm in the paper [12] to the initial

transducer (T1 ∗ T2)q to produce an initial transducer (T1T2)q′
and perform the following operations:

(3) Pass to the core of (T1T2)q′ to produce the result (T1T2)
◦
.

(4) Identify equivalent states of (T1T2)
◦

to produce the result in Õn,
which we denote by T1T2.

The following lemma discusses aspects of the product above, includ-
ing that it is well defined. Its proof is straightforward but mildy tedious:
we give a brief discussion of the key ideas.

Lemma 9.3. Let T1, T2 ∈ Õn. We have:
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(1) For a connected strongly synchronizing transducer, the process
of removing states of incomplete response does not change the
set of states that are in the core;

(2) For a connected strongly synchronizing transducer without states
of incomplete response, the processes of identifying equivalent
states and of passing to the core commute;

(3) For a connected strongly synchronizing transducer, the processes
of identifying equivalent states and of removing states of incom-
plete response generally do not commute;

(4) The product transducer T1T2 defined in Definition 9.2 is well
defined, and does not depend on the state q chosen in step 2 of
that definition.

Discussion:
To see this lemma one should recall that the “Remove states of incom-
plete response” process simply adds a new initial state q̃ (which will
not survive passage to the core as it has no incoming edges), and then
it modifies the output words of transitions (without modifying desti-
nations). Therefore, the transformation of a core state of incomplete
response into a core state of complete response depends only on the
other states within the core. In particular, the multiplication process
is independent of the choice of initial state used in part 2 of Definition
9.2.

Further, we observe the simple fact from topology that the compo-
sition of two injective continuous maps from Cn to itself, where each of
these maps has image a clopen set, will be another injective map with
image a clopen set. Thus, each state in the product (before removing
incomplete response) gives an injective map with clopen image. We
then observe that removing incomplete response from such a state just
removes the greatest common prefix from the set of infinite words that
are output from that state, and this does not impact injectivity or the
fact that the image of that state is clopen.

In Figure 2 below, we provide an example transducer with two core
states where the processes of removing states of incomplete response,
and identifying equivalent states, do not commute when applied to the
core (proving Point 3).
�
Note that Õn contains the sets On,r for each 1 ≤ r < n, and the

multiplication of On,r agrees with the multiplication of Õn over any of
those sets. In fact we have the following result.

Proposition 9.4. The set Õn with the multiplication defined above is
a monoid.
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q0

b c

0|ε 1|ε

0|0
1|0

0|1
1|1

Figure 2. A bi-synchronizing transducer representing
the identity.

Proof. This is a straightforward but somewhat tedious exercise in the
definitions. The central point for checking associativity is the indepen-
dence of the set of core states that arises when one removes incomplete
response from different choices of states starting that process. �

We have the following theorem. Recall for what follows that Sn,r
is the submonoid of Rn,r corresponding to homeomorphisms repre-
sentable by strongly synchronizing transducers (note Sn,r is not closed
under inversion).

Theorem 9.5. Let T = (Xn, QT , πT , λT ) be a transducer. Then T is

an element of Õn if and only if there is a natural r with 1 ≤ r < n and
an initial transducer

Aq0 = (ṙ, Xn, R, S, πA, λA, q0)

(with QT ⊂ S) representing an element hq0 ∈ Sn,r with Core(Aq0) = T .

Proof. Let Aq0 be a minimal transducer representing an element of
Sn,r, so in particular Core(A) is synchronizing. Conditions (1) and
(2) follow immediately from the definition of Sn,r. As Aq0 represents
a homeomorphism of Cantor space then (3) follows as well as each
state produces a local action which must be injective and which can be
expressed as an open projection of a restriction of a homeomorphism
to clopen set, and thus has clopen image.

For the reverse implication, let T ∈ Õn. We now describe how to
construct a strongly synchronizing transducer representing a homeo-
morphism of Cn,r, for appropriate n and r, with core equal to T .

Let q be a state of T . By assumption Image(q) is clopen, and so
can be written as a union of finitely many disjoint basic open sets⋃

1≤i≤k Uηi where ηi ∈ X∗n. Let M = max1≤i≤k{|ηi|}, and let ν ∈
X∗n be a prefix of some element of Image(q) such that |ν| ≥ M . Let
N ∈ N be such that for all words φ ∈ XN

n we have |λT (φ, q)| ≥ M .
Let φ1, . . . , φj be all those elements of XN

n for which ν is a prefix of
λT (φi, q) for all 1 ≤ i ≤ j. Now set, for all 1 ≤ i ≤ j, λT (φi, q) = νρi
for some ρi ∈ X∗n. Let πT (φi, q) = pi for 1 ≤ i ≤ j. Now since
Image(q) is clopen, and since ν ≥ ηl for some 1 ≤ l ≤ k, then we
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must have that
⋃

1≤i≤j ρiˆ Image(pi) = Cn (here ρiˆ Image(pi) = {ρix |
x ∈ Image(pi)}). Note that since q is injective the ρiˆ Image(pi) are
pairwise disjoint.

Now set m = (n − 1)j and r = n − 1. Observe that there are
maximal finite anti-chains of Wn,r of size m and n − 1 respectively.
Let {ξ1, . . . , ξm} and {ζ1, . . . , ζn−1} be two such antichains. Since m is
divisible by j, we may partition the first antichain into blocks of length
j as follows: {ξ1, . . . , ξm} = t0≤i<n−1{ξij+1, . . . , ξ(i+1)j}. Then we may
define a map αT : Cn,r → Cn,r by ξij+lx 7→ ζiρlλT (x, pl) for 0 < l ≤ j
and 0 ≤ i < n − 1. It follows that αT is a homeomorphism since⋃

1≤i≤j ρiˆ Image(pi) = Cn where, as observed above, this is a union of
disjoint sets. We may now apply the procedure laid out in Section 5.4
to compute a minimal initial transducer in Rn,r representing αT where
we observe that the resulting transducer is strongly synchronizing as
processing any word ξt will result in processing from a state in T for
all extensions.

�

Remark 9.6. Let Ap0 , Bq0 , Cp0q0 be minimal initial strongly syn-
chronizing transducers respectively representing elements hp0 , hq0 and
hp0hq0 of Sn,r, respectively, for some given n and r. Since the core of
the product is contained in the product of the cores, we see that the

well-definedness of the product in Õn gives

Core(C(p0,q0)) = Core(Core(Ap0) Core(Bq0)).

We can now specify the subgroup On,r of the monoid Õn as those

elements of Õn which correspond to minimal cores of elements of Bn,r.
Specifically we obtain the following theorem.

Theorem 9.7. For 1 < r < n ∈ N, we have On,r ∼= Out(Gn,r).

Proof. This follows from Remark 9.6, and from the fact that Gn,r is
precisely the subgroup of Bn,r consisting of the homeomorphisms that
are representable by transducers with representative cores which act as
the identity.

�

Inversion of elements in the subgroup On,r currently depends on
passing up to an element of Bn,r, inverting a homeomorphism, and
passing back through the quotient to On,r. This is unsatisfactory: we
will give a combinatorial process for inversion in Subsection 9.6 which
depends only on the element of On,r as a transducer and produces the
correct inverse.

We are now in position to define On as the subgroup of Õn generated
by the union of the subgroups On,r.
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9.3. Viable combinations, transducer completions, and nesting
conditions on the groups On,r. In order to explore the relation-
ships amongst the subgroups On,r of On, we will need to provide some
combinatorial constructions which will help us to understand when an
element of On,i is also an element of On,j, for i 6= j.

Figure 3 depicts an element T of L4 ⊂ O4,3 which has two very in-
teresting properties. Firstly, and not directly relevant to the discussion
of this section, the reader may verify that T has no state which acts
as a homeomorphism state, even though it is synchronous and it is the
core of an element in B4,3 (discussed in Subsection 9.5). Secondly, and
motivating the discussion in this subsection, T has no completion to a
transducer representing an element of B4,1 or of B4,2, so T 6∈ (O4,1∪O4,2)
even though T ∈ O4,3.

q1

q4

q5

q3

q2

0|0

1|0, 3|1

2|1
1|2

3|3

0|2

2|3

3|1

2|1

1|2

0|2

0|0
3|0,1|1

2|1

1|0, 3|3

0|0

2|3

Figure 3. An element T of L4 without homeomorphism states

In Theorem 9.5 we build a homeomorphism αT depending on some

initial choice of state q in a strongly synchronizing transducer T of Õn.
In general, it turns out that starting from an initial choice of state q as
above is too limited for producing the set of all possible completions to
homeomorphisms. The process below weakens our dependencies and
enables us to determine the nesting structure for the subgroups On,r.

Definition 9.8 (Viable combinations). For a transducer T ∈ Õn we
call a tuple vj := ((ρ1, . . . , ρj), (p1, . . . , pj)) such that:

(1) (ρ1, . . . , ρj) ∈ (X∗n)j and (p1, . . . , pj) ∈ Qj
T .
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(2) ρiˆ Image(pi) ∩ ρj ˆ Image(pj) = ∅ for i 6= j.
(3)

⊔
1≤i≤j ρiˆ Image(pi) = Cn

a (full) viable combination for T .
If condition (3) is replaced by the weaker condition that⊔

1≤i≤j

ρiˆ Image(pi)

is just a clopen subset of Cn, then we say vj a partial viable combina-
tion.

Remark 9.9. Notice that given a T ∈ Õn and a viable combination
vj for T there is an induced a homeomorphism hvj from Cn,j → Cn by

ȧx 7→ ρaλT (x, pa) for all ȧ ∈ {1̇, . . . , j̇} and arbitrary x ∈ Cn (the index
a is the value of ȧ with the “dot” removed). Here, and throughout
this section, we allow j ≥ n.

Definition 9.10 (Single expansions of viable combinations). Let T =

〈Xn, Q, π, λ〉 ∈ Õn and let vj = ((ρ1, . . . , ρj), (p1, . . . , pj)) be a viable
combination for T . Fix an i such that 1 ≤ i ≤ j, and let ρi,l :=
ρiˆλ(l, pi) and pi,l := π(l, pi) for l ∈ Xn, then

vj+n−1 := ( ( ρ1, . . . , ρi−1, ρi,0, . . . , ρi,(n−1), ρi+1, . . . , ρj),

( p1, . . . , pi−1, pi,0, . . . , pi,(n−1), pi+1, . . . , pj))

is called a single expansion of vj.

Remark 9.11. It follows from the fact that a viable combination in-
duces a homeomorphism that a single expansion of a viable combina-

tion for an element T ∈ Õn results in a new viable combination for T .
Therefore a sequence of single expansions applied to a viable combina-
tion for T also results in a new viable combination for T .

Definition 9.12. For a transducer T ∈ Õn we say a full viable com-
bination

vj := ((ρ1, . . . , ρj), (p1, . . . , pj))

arises from a state q ∈ T if there is a word η ∈ X∗n and a set {φ1, . . . , φj}
of incomparable words, such that the following holds:

(1) λT (φi, q) = ηρi, πT (φi, q) = pi and,
(2) t1≤i≤jηρi Image(pi) = Uη.

Note that implicit in the proof of Theorem 9.5 is a full viable com-
bination arising from a state.

Now we may modify the construction given in the proof of Theorem
9.5.

Lemma 9.13. Let 1 ≤ r ≤ n− 1 ∈ N, T ∈ Õn and v denote the set of
all viable combinations for T . The transducer T can be extended to an
initial transducer Uq0 representing an element of Sn,r with Core(U) = T
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if and only if there exists vj1 , . . . , vjm a sequence of viable combinations
such that r ≡ Σ1≤i≤mji ≡ m mod n− 1.

Proof. Let us assume that T ∈ Õn, v denotes the set of all viable
combinations of T , 1 ≤ r ≤ n − 1, and there exists vj1 , . . . , vjm a
sequence of viable combinations such that r ≡ Σ1≤i≤mji ≡ m mod n−
1. We will show that T can be extended to a transducer U as claimed.

First, set j := Σ1≤i≤mji. There exist finite complete antichains
{ξ1, . . . , ξj} and {ζ1, . . . , ζm} of Cn,r. Decompose {ξ1, . . . , ξj} as

{ξ1, . . . , ξj} := t1≤l<m{ρl,1, ρl,2, . . . , ρl,jl},
where ρl,k denotes the string ξΣ1≤i≤l−1ji+k, when 1 ≤ l < m and 1 ≤
k ≤ jl. In particular we have

{ξΣ1≤i≤l−1ji+1, . . . , ξΣ1≤i≤lji} = {ρl,1, ρl,2, . . . , ρl,jl}.
For a fixed l, 1 ≤ l < m, consider the block {ρl,1, ρl,2, . . . , ρl,jl}, then

αT acts on the space t1≤i≤jlUρl,i
∼= Cn,jl as the map hvjl as in Remark

9.9 (note here, it is possible that jl > n). Noting that Cn,jl
∼= Cn and

injecting the image to the cone Uζl , we can extend this definition across
each of the blocks {ρl,1, ρl,2, . . . , ρl,jl} for the full range of values of l to
get a well defined homeomorphism αT of Cn,r with finitely many local
actions, and where the set of local actions corresponding to the states
of T are the only ones which appear infinitely often (so that T is the
core of the minimal transducer Vq0 representing αT .

The other direction is technical but straightforward. Assume that

T ∈ Õn, and T extends to an initial minimal transducer Vq0 with
Core(Vq0) = T representing an element of Sn,r, with initial state q0 and
output and transition functions λ and π, respectively. As T is the core
of Vq0 it is already the case that if we look at all strings of Wn,r of length
k + 1 where k is the synchronizing length of Vq0 , then this provides a
complete antichain for Wn,r and reading any of these strings from the
initial state of Vq0 results in moving to a state in T .

Since core states of Vq0 cannot write a letter from the alphabet ṙ we
observe firstly that each word λ(w, q0) is non-empty for any w ∈ Wn,r

of length k + 1, and further, as hq0 is a homeomorphism of Cn,r that
for each letter ȧ ∈ ṙ we have that the cone Uȧ decomposes as a disjoint
union

Uȧ = tw∈Xaλ(Uw, q0)

where Xa denotes the set of strings of length k + 1 in Wn,r so that
if w ∈ Xa we have λ(w, q0) is a string with first letter ȧ. Let Ya :=
(yw1 , yw2 , . . . , ywp) where we have |Xa| = p, and where we order w1 <
w2 < . . . < wp in the dictionary order on Xa, and where we further
determine ywi by the rule ȧywi = λ(wi, q0) for each wi ∈ Xa. For each
1 ≤ i ≤ p set qi = π(wi, q0) the state reached in Vq0 upon reading the
word wi from q0. Further set Za = (q1, q2, . . . , qp), so that (Ya, Za) is
a viable combination. Now repeating this for each letter in ṙ gives us
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a set of viable combinations satisfying the modular arithmetic of the
claim.

�

We may refer to a transducer Aq0 ∈ Sn,r, which has core transducer
T , as a completion of T in Sn,r. Note that if Aq0 is bisynchronizing,
then we might refine this language and say that Aq0 is a completion of
T in Bn,r.

As the completions found in Lemma 9.13 create no cycles outside of
the core transducer T given to the process, thus, the resulting trans-
ducer in Sn,r is actually in Bn,r when T ∈ On (that is, bi-synchronizing,
not just strongly synchronizing). Therefore, we obtain the following
corollary.

Corollary 9.14. Let 1 ≤ r ≤ n− 1 ∈ N, T ∈ On and v denote the set
of all viable combinations for T . The transducer T admits a completion
to an initial transducer Uq0 representing an element of Bn,r if and only
if there exists vj1 , . . . , vjm a sequence of viable combinations such that
r ≡ Σ1≤i≤mji ≡ m mod n− 1.

We are finally in position to discuss nesting properties for the sub-
groups On,r within On.

Below, for integers i, j, and n, we write i | j mod (n− 1) if there is
an integer k so that i divides j + k(n− 1) in the ring of integers.

Proposition 9.15. Suppose 0 < i ≤ j ≤ n − 1 are natural numbers.
If i | j mod (n− 1) then On,i ≤ On,j.
Proof. Let 0 < i ≤ j ≤ n − 1 be natural numbers and assume i | j
mod (n − 1), and A ∈ On,i and B ∈ Bn,i with core A. We will show
that A ∈ On,j.

Since i | j mod (n − 1), there is a complete antichain χ in Wn,j of
length mi for some m > 1, where we may assume that every element
of this antichain is a word of length at least two (i.e., not just a dotted
letter).

Build a partition ρ of χ into m disjoint sets of cardinality i, and
give each of these sets a bijection to the set of dotted letters from 0 to
i − 1. Construct a homeomorphism θA,B of Cn,j as m copies of B, by
using a copy of B for each element of the partition ρ, where we replace
each dotted letter (from the perspective of B) by the string from the
corresponding element of the partition under the appropriate bijection.
The homeomorphism θA,B, when realised as a minimal transducer, has
core A and is an element of Bn,j. In particular, A ∈ On,j.

�

Proposition 9.15 shows that subgroups On,r of On have a type of
lattice structure, with the group On,1 being minimal and a subgroup
of the other groups while the group On,n−1 is a container for all of the
other groups and hence is On. In particular, we have.
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Proposition 9.16. The set On under the multiplication inherited from

Õn forms a group.

Proof. This follows from Proposition 9.15 as we immediately haveOn =
On,n−1, while On,n−1 is a group.

�

9.4. On Lipschitz conditions, the groups On, and subgroups
of interest. Recall our notation that LBn,r represents the subgroup
of Bn,r corresponding to the homeomorphisms of Cn,r that are bi-
Lipschitz. Also recall that we call On,r the image of Bn,r under the
quotient by its normal subgroup Gn,r, and the image of LBn,r in On,r is
the group Ln,r. We further have the subgroup HBn,r of LBn,r consist-
ing of homeomorphisms which can be represented by transducers with
cores that are in fact synchronous, bi-synchronizing, and which contain
a state which is a homeomorphism state, and we denote the similarly
defined subgroup of On as Hn. (The condition above on the existence
of a homeomorphism state is in fact necessary to create a subgroup
for the synchronous bi-synchronizing core automata arising. In [1] the
authors give an example of a transducer with all of the other prop-
erties which when squared becomes asynchronous after minimisation.)
In this subsection we explore some properties of these various groups.
The examples and discussion provided here imply all of the statements
of Theorem 1.4.

In what follows, we often discuss the core transducers which are
simultaneously sub-transducers of initial transducers representing el-
ements of the groups Sn,r and Bn,r, but also, they represent images
under the quotients mentioned in the last paragraph. These transduc-
ers do not naturally have initial states. We show in Figure 3 of the
following subsection an example of a transducer in L4,3 which has no
homeomorphism state, even though it is in fact synchronous. Thus, in
these investigations, sometimes we focus on the combinatorics of the
transducers as finite objects, and sometime we focus on their “local
dynamics” as determined by their local actions.

For given 1 6 r < n ∈ N, recall that elements ofGn,r are bi-Lipschitz.
Also, due to its strong condition of being bi-synchronizing, any general
element of Bn,r might be expected to be bi-Lipschitz. However, this
first impression turns out to be false.

Theorem 9.17. For 1 6 r < n, for n > 2, the group Bn,r contains
elements which are not bi-Lipschitz.

Proof. The transducer B depicted in Figure 4 is bi-synchronizing (at
level two), minimal, and is its own core. However, it is not synchronous.
In this case we are demonstrating for n = 3.

Although the initial transducer Ba is bi-synchronizing (at level two)
and will induce a self-homeomorphism of C3, it does not produce a
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a

b c

1|0 0|2

2|1

2|1

0|00

1|ε

0|02

1|2
2|01

Figure 4. A non-bi-Lipschitz core transducer of infinite order.

Lipschitz map on Cantor space. Consider the cycle of edges labelled
by inputs 2 and 0 respectively (connecting a to b and then going back
to a). This cycle has length two in the directed graph underlying the
transducer and so input word of length two. However, the output word
written on reading this input while traversing this cycle has length
three. In particular, the point p = 2020 maps to q = 100100 in a
non-Lipschitz fashion as points from ever-smaller basic cones about
2020 face an ever-increasing general contraction factor (a witness to
this is the sequence of points ((20)k0)k∈N, where the kth such point has
distance 1/2(2k+1) from p, but lands under φ at the point (100)k2 at
distance 1/23k+1 from q.

It is not hard to build similar examples for any alphabet of size n,
for n > 2, based on this example. In particular, we can build elements
of Bn,r for any n > 2 which are not bi-Lipschitz.

To see that we can build a bi-synchronizing transducer B̂n,r repre-

senting an element B̃n,r of Bn,r which uses B as part of its core, we
will simply add a state to the transducer B depicted above, and many
transition edges, as described below.

Figure 5 depicts the resulting transducer B̂4,2 (so, for n = 4 and
r = 2). Details of the construction follow.

The added state will be an initial state q0. For each symbol x ∈ ṙ,
the transitions will be given by the rules π(x, q0) = a and λ(x, q0) = x.
That is, q0 admits r edges from q0 to a, one for each input from ṙ, and
each transition acts as the identity transformation on its letter of ṙ.

The remaining transitions are as follows. For each symbol x in
Xn\{0, 1, 2}, set π(x, a) = a and λ(x, a) = x. Furthermore, set

π(x, b) = a and λ(x, b) = x.

Finally, set π(x, c) = a and λ(x, c) = 0x.
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q0

a

b c

0̇|0̇ 1̇|1̇1|0 0|2

3|3
2|1

2|1

0|00

3/3

1|ε

0|02
3|03

1|2

2|01

Figure 5. A non-bi-Lipschitz transducer B̂4,2 of infinite
order in S4,2.

The reader can verify that the transducers so constructed are bi-
synchronizing and represent self-homeomorphisms for the spaces Cn,r.

�

As mentioned above, it is perhaps surprising that for n > 1 and
1 ≤ r < n, the group Bn,r contains elements that are not bi-Lipschitz.
As in fact the subgroup LBn,r of bi-Lipschitz homeomorphisms within
Bn,r is proper, one might now go to the other extreme, and wonder that
perhaps LBn,r would not have a complicated image in On,r (observing
of course that Gn,r ≤ LBn,r). However, while the bi-Lipschitz condition
is a very strong further condition on the bi-synchronizing maps, in [1]
the authors are able to show that the group LBn,r contains (most of)
the complexity of the automorphism group of the (two-sided) full shift
on n letters.

The example depicted in Figure 6 is of an element in L2 that is not
in the subgroup H2, and which is of infinite order.

We observe that elements of On act on the quotient space XZ
n/〈σ〉,

where σ is the shift. (Note that a transducer representing an element
of On has no well defined index to which it is writing; for instance, this
is clear if it does not represent the core of a Lipschitz transformation.
However, because of synchronisation, such a transducer will transform
a bi-infinite string to another bi-infinite string; one always has sufficient
history to know what to do with a new letter of input. Note that this
operation takes any two shift-equivalent bi-infinite sequences to two bi-
infinite sequences which are also shift equivalent if indices are assigned.)
From this perspective, we can verify that the transducer in Figure 6
is actually of infinite order by finding an infinite orbit of the induced
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action on this quotient space. For this purpose, the equivalence class of
the point . . . 111(001)ω (take as representative the point defined using
coordinate entries of value 1 at all negative indices, and with its first
entry of value 0 occurring at index 0), serves nicely. The reader can
verify this by a simple induction tracing the orbit as given below.

. . . 111(001)ω 7→ . . . 111 · 01 · (001)ω 7→
. . . 111 · 0101 · (001)ω 7→ . . . 111 · (01)3(001)ω 7→k

. . . 111 · (01)k+3 · (001)ω

ab

q0

d e

fg

h

i j

0|ε

1|ε

0|100

1|01

0|0 1/1

0|ε

1|ε

0|01

1|101

0|1

1|01

1|11

0|00

1/1

0|0
0|00

1|1

0|ε

1|ε

Figure 6. An element of L2 of infinite order, which is
not in H2.

It is not hard, using the method of the construction following the
example in Figure 5, to increase the alphabet size to n for any given
integer n > 2.

We give two further example transducers, exploring the boundary
cases when n is small.

The first such example, depicted in Figure 7, is of a transducer rep-
resenting an element of H3 which is of infinite order. One can prove
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by induction that the point p := (pi) ∈ {0, 1, 2}Z given by the rules

pi =

{
2 if i < 0
1 if i > 0.

witnesses an infinite orbit under the iterated action of the transducer
of Figure 7.

q0 b

0/1

1/2
2/0

1/1

0/2

2/0

Figure 7. An element of H3 with infinite order.

Our final example, depicted in Figure 8, is of a non-bi-Lipschitz
torsion element of O2,1, given as below. One can check combinatorially
that the transformation represented by this transducer has order two.

q0

b c

d

0/0

1/10/10

1/ε

0/0
1/11

0/0

1/1

Figure 8. A torsion non-bi-Lipschitz map in O2.

9.5. More on the dependence of Out(Gn,r) on r. In Proposition
9.15, we give a condition determining the nesting of the subgroups On,r
of On. In this subsection we give an example transducer T representing
an element of L4,3 with no homeomorphism states. The transducer T
admits no completion to a larger transducer representing an element
of B4,1 or of B4,2. This shows us, e.g., that the induced actions of the
cores of the transducers representing elements of the groups B4,2 and
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B4,3 on the set {0, 1, 2, 3}Z are not the same. Therefore, we highlight
the possibility that neither of the groups O4,1 and O4,2 are isomorphic
to O4,3.

Consider the transducer T in Figure 3, we shall show below that all
possible completions of this transducer are in S4,3.

Lemma 9.18. Let T be the transducer in Figure 3. Every possible
completion of T is in S4,3.

Proof. First observe that Image(q1) t Image(q4) = Cn, Image(q3) t
Image(q4) = Cn and Image(q2) t Image(q5) = Cn. Moreover, for
(qi, qj) ∈ QT × QT\{(q1, q4), (q3, q4), (q2, q5)}, the union Image(qi) ∪
Image(qj) is not a disjoint union, and also, is not equal to Cn.

Let Aq0 be a completion of T in S4,r for 0 < r < 4. Let l be such that
for all words Γ of length l in W4,3 we have π(Γ, q0) is a state of T , and
for all words χ ∈ W4 of length l and any state q of QA\{q0} we have
π(χ, q) is a state of T . Let φ1, . . . , φj be all words of length l in W4,3 (so
in particular j = 3 · 4l−1). Let ρi := λA(φi, q0) and let pi := πA(φi, q0),
for 1 ≤ i ≤ j. Let ρkˆxk,i := ρkˆλA(i, pk), and pk,i = πA(i, pk) for
1 ≤ k ≤ j and i ∈ X4. Observe that for any state q of T , the map
λT (�, q) : X4 ↪→ X4 has image size two and the set of preimages of a
point in the image also has size 2. Moreover if i1 6= i2 are elements of
X4 which have the same image under λT (�, q) then (πT (i1q), πT (i2q)) ∈
{(q1, q4), (q4, q1), (q3, q4), (q4, q3), (q2, q5), (q5, q2)}. This means that for
a given k with 1 ≤ k ≤ j, ρkˆxk,i1 = ρkˆxk,i2 for some distinct i1 and
i2 in X4. Moreover since Image(pk,i1)t Image(pk,i2) = C4, then ρ′kˆxk′,i
is incomparable to ρkˆxk,i1 otherwise Aq0 is not injective. Thus the set
{ρkˆxk,i | 1 ≤ k ≤ j, i ∈ Xn} has size 2j. Since Aq0 is a homeomor-
phism, we must have that the set {ρkˆxk,i | 1 ≤ k ≤ j, i ∈ Xn} forms
an antichain for C4,3 otherwise t1≤k≤j, i∈Xnρkˆxk,iˆ Image(pk,i) 6= C4,3.
We conclude that 2j ≡ r mod 3. However, since j = 3 · 4l−1 we see
that j ≡ 0 mod 3. Thus, we can conclude r is congruent to 0 mod 3,
and therefore r = 3. �

Having shown that O4,1 and O4,2 sit properly as subgroups of O4,3,
one could now consider whether or not the On,r have their isomorphism
type depending on r for a fixed n. We mention this question in the
final section.

9.6. Constructing inverses within On. In this subsection, we will
look at the combinatorial construction of inverses of elements of On.

Here and until the statement of the next lemma, fix T ∈ On. Let
q ∈ T be an arbitrary state. Let Image(q) = Uη1 t Uη2 t . . . t Uηl for
ηj ∈ X∗n. Fix i such that 1 ≤ i ≤ l and let νi := Lq(ηi), pi := π(νi, q)
and wi = ηi − λ(νi, q). Notice that by definition of the function Lq
we must have that Uwi ⊆ Image(pi). Further observe that Lq(ηix) =
Lq(ηi)ˆLpi(wiˆx). Therefore we may recursively define sets Q′j by the
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rules
Q′0 := {(wi, pi) | 1 ≤ i ≤ l}

and for k ≥ 0 let

Q′k+1 := { (wx− λ(Lp(wˆx), p), π(Lp(wˆx), p)) | x ∈ Xn, (w, p) ∈ Q′k}
∪Q′k.

By the previous observation if (w, p) ∈ Q′k for some k then Lp(w) = ε
and Uw ⊆ Image(p). Now since each state p ∈ T has clopen image and
T has finitely many states, there are only finitely many words w ∈ X∗n
such that Lp(w) = ε and such that Uw ⊆ Image(p). Therefore there is a
j ∈ N such that Q′j = Q′j+1. Set Q′ := Q′j. Now let T ′ = 〈Xn, Q

′, π′, λ′〉
be the transducer with state set Q′ and input and output function
defined as follows:

π′(x, (w, p)) = (wx− λ(Lp(wˆx), p), π(Lp(wˆx), p)) ;

λ′(x, (w, p)) = Lp(wˆx)

for all x ∈ Xn and (w, p) ∈ Q′. We may extend the definition of
π′ and λ′ to elements of Cn in the obvious way. Observe that since
λ′(δ, (w, p)) = Lp(wδ) = (wδ)(Tp)

−1 for δ ∈ Cn and (w, p) a state of Q′,
then (w, p) induces an injective map on Cn.

Note that T ′ has no states of incomplete response: if there is some
state (w, p) of Q′ such that the set of words {λ′(x, (w, p)) | x ∈ Xn}
admits a non-trivial common prefix, then L(p, w) 6= ε which is not
possible by our construction.

Denote by T−1 the result of identifying equivalent states of T ′. Mo-
tivated by the following lemma, we call T−1 the core inverse of T .

Lemma 9.19. Let T = 〈Xn, Q, π, λ〉 ∈ On, and

Aq0 = (ṙ, Xn, R, S, π0, λ0, q0)

be a completion of T representing an element of Bn,r (where Q ⊆ S).
Further suppose Bq1 is the minimal transducer representing the inverse
of Aq0. If T−1 = 〈Xn, Q

′, π′, λ′〉 is the core inverse of T as constructed
above then Core(Bq1) is ω-equivalent to T−1.

Proof. Let A(ε,q0) = (ṙ, Xn, R
′, S ′, λ′0, π

′
0, (ε, q0)) be the transducer con-

structed by the GNS inversion algorithm in [12]. Notice that Bq1 is
ω-equivalent to A(ε,q0). Our strategy will be to show that after reading
any sufficiently long input in A(ε,q0) the resulting active state is a state
of T ′.

Let q be a state of T and let Image(q) = Uη1 t Uη2 t . . . t Uηl for
some ηi ∈ X∗n. Let M := max{ηi | 1 ≤ i ≤ l} and let µ be any
word in X∗n such that λ(µ, q) = ηiˆ∆ for some ∆ ∈ X∗n and some
1 ≤ i ≤ l. Let Γ ∈ Wn,r be any word such that π0(Γ, q0) = q, observe
that since q ∈ S it must be the case that λ0(Γ, q0) 6= ε. We there-
fore have that λ0(Γˆµ, q0) = λ0(Γ, q0)ˆλ(µ, q). Consider now the set
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Lq0(λ0(Γ, q0)ˆηi). Since Uηi ⊂ Image(q), either Aq0 is not injective or
Γ is a prefix of Lq0(λ0(Γ, q0)ˆηi). Thus we have Lq0(λ0(Γ, q0)ˆηi) =
ΓˆLq(ηi) and

π′0(λ0(Γ, q0)ˆηi, (ε, q0)) = (λ0(Γ, q0)ˆηi − λ0(ΓˆLq(ηi), q0),

π (ΓˆLq(ηi), q0))

= (ηi − λ(Lq(ηi), q), π(Lq(ηi), q)).

By construction, (ηi−λ(Lq(ηi), q), π(Lq(ηi), q)) is a state of T ′. Since
Γ ∈ Wn,r was arbitrary such that π0(Γ, q0) = q and since Core(Aq0) =
T , we may chose Γ as long as we please, so that λ0(Γ, q0)ˆηi can be made
arbitrarily long. Since A(ε,q0) is strongly synchronizing, as Aq0 ∈ Bn,r,
then it follows that for sufficiently long λ0(Γ, q0)ˆηi,

π′0(λ0(Γ, q0)ˆηi, (ε, q0))

is a state of Core(A(ε,q0)) and also a state of T ′. Now, since the core of
Bq1 is connected and minimal, we have T−1 = Core(Bq1). �

Corollary 9.20. For any 1 ≤ r < n, if T ∈ On,r then T−1 ∈ On,r and
we have TT−1 = 1On,r = T−1T .

Remark 9.21. For T ∈ On, the lemma above demonstrates that if
there is a completion of T which is bi-synchronizing, then all com-
pletions of T are bi-synchronizing. In particular all completions of T
belong to some Bn,r for appropriate r and the cores of their inverses
are all strongly isomorphic to T−1.

10. Root functions, and detecting flavours of
synchronicity

The goal of this section is to explore further properties of the root
function, and to determine when a specific homeomorphism of Cn,r
begins to act (locally) as a synchronous transducer. While not central
to the main results of the paper, we find these results to be of interest
when working with the group Bn,r, and in particular when one is trying
to discern conditions that force a general element in Bn,r to actually
reside in one of the subgroups LBn,r or HBn,r.

For our discussion in this section, recall our notation νθh of Section 4,
which for a continuous function h : Cn,r → Cn,r and a word ν ∈ Wn,r,ε,
gives the longest common prefix Root(Uνh) of elements of the clopen
set Uνh. Similarly recall our notation of Section 6 that for a clopen set
U we have DecU represents the minimal finite antichain A ⊆ Wn,r,ε

such that U =
⋃
Uη∈A Uη.

We start this discussion with the next lemma.

Lemma 10.1. Let g, h ∈ Homeo(Cn,r), and let ν, η ∈ Wn,r,ε. Then:

(1) θh is monotonic.
(2) νθh = ηθh and hν = hη =⇒ ν = η.
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(3) θh is injective ⇐⇒ θh is an automorphism of Wn,r,ε.
(4) (νθh)θg 6 (νθhg).
(5) (νθh)θg = νθhg ⇐⇒ hνg(νθh) = (hg)ν.

(6) (νθh)θh−1 = ν ⇐⇒ (h−1)(νθh) = (hν)
−1 ⇐⇒ Uνh = U(νθh).

(7) If νθh 6 ν ′θh implies ν 6 ν ′ for every ν ′ ∈ Wn,r,ε, then Uνh =
U(νθh).

(8) Assume that Uνh = U(νθh) and νθh < (νˆa)θh for all a ∈
Xn. Then there is a permutation π ∈ Sn so that Uν ˆ ah =
U((ν ˆ (aπ))θh) for all a ∈ Xn.

(9) Uν′h = U((ν′)θh) holds for every ν ′ ∈ Wn,r,ε if and only if θh ∈
Aut(Wn,r,ε).

(10) There is no common nontrivial initial segment for all minimal
elements of the set {τθhν | τ ∈ Wn} \ {ε}.

Proof. (1) For ν, η ∈ Wn,r, we have

ν 6 η ⇐⇒ Uν ⊇ Uη ⇐⇒ Uνh ⊇ Uηh,

and the last inclusion implies that Root(Uνh) 6 Root(Uηh), thus νθh 6
ηθh.

(2) νθh = ηθh and hν = hη imply that Uνh = Uηh, which happens if
and only if Uν = Uη, thus ν = η.

(3) One direction is trivial. In the other direction, assume that θh
is injective. We prove by induction on l = |ν| that |ν| = |νθh|. That
will imply that θh is a bijection, and since it is also monotonic, the
assertion follows.

The claim is obvious for l = 0. Assume that for all η ∈ Wn,r,ε

with |η| < l, |η| = |ηθh| and Uηh = U(ηθh). Let η, ν ∈ Wn,r,ε and
j ∈ {0, 1, . . . , n − 1} such that ν = ηˆj and |η| = l − 1. Then by the
induction hypothesis,

Uηh = U(ηθh) = Uη ˆ 0h ∪ Uη ˆ 1h ∪ . . . ∪ Uη ˆn−1h.

So as θh is injective we must have that

{Uη ˆ 0h, Uη ˆ 1h, . . . , Uη ˆn−1h} = {U(ηθh ˆ 0), U(ηθh ˆ 1), . . . , U(ηθh ˆn−1)}.
Thus Uη ˆ jh = U(ηθh ˆ i) for some i ∈ {0, 1} which also implies that
νθh = ηθhˆi. Hence Uνh = U(νθh) and |ν| = |νθh|.

(4) Since (Uν)h ⊆ U(νθh) we have that Uν(hg) = (Uνh)g ⊆ U(νθh)g.
Thus (νθh)θg 6 νθ(hg).

(5) For every y ∈ Cn,r we have on one hand that

(νˆy)hg = νθhgˆ(y)(hg)ν

and on the other that

((νˆy)h)g = (νθhˆ(y)hν)g = (νθh)θgˆ((y)hν)g(νθh) .

Thus (νθh)θg = νθhg ⇐⇒ (y)(hg)ν = ((y)hν)g(νθh) for every y ∈ Cn,r.

(6) The first equivalence is a special case of (5) with g = h−1. For the
second equivalence note that (νθh)θh−1 = ν =⇒ U(νθh)h

−1 ⊆ Uν ⇐⇒



AUTOMORPHISMS VIA DYNAMICS 83

U(νθh) ⊆ Uνh. But by definition U(νθh) ⊇ (Uν)h, thus U(νθh) = (Uν)h.
The other direction is clear.

(7) If (Uν)h ( U(νθh), then there exists ν � η ∈ Wn,r,ε such that
Uηh ( U(νθh), hence νθh 6 ηθh.

(8) Assume that (Uν)h = U(νθh) and νθh < νˆaθh for all a ∈ Xn. By
the first condition we get that

U(νθh) =
∐
a∈Xn

(Uν ˆa)h.

So by the second condition, we must necessarily have νˆaθh = νθhˆaπ
for all a ∈ Xn for some permutation π of Xn. Thus, for all a ∈ Xn, we
have Uν ˆah = U(νθh ˆπ(a)).

(9) If θh ∈ Aut(Wn,r,ε) then θ−1
h = θh−1 . Therefore, by (6), for every

ν ′ ∈ Wn,r,ε we have Uν′h = U(ν′)θh . Conversely, assume that for every
ν ′ ∈ Wn,r,ε we have Uν′h = U(ν′)θh . Then by (6), we have θhθh−1 = Id,
which implies that θh is injective, and therefore by (3), θh ∈ Aut(Wn,r,ε).

(10) This follows as τθhν = Root(Uτhν). �

Lemma 10.2. Let h ∈ Homeo(Cn,r) and ν, η, τ ∈ Wn,r be such that
Uη ∈ Dec(Uνh). Then:

(1) If η 6 τ , then ν 6 τθh−1.
(2) If τ < η, then τθh−1 < ν.

Proof. (1) Since Uη ∈ Dec(Uνh), we have Uη ⊂ Uνh, hence Uηh
−1 ⊂ Uν .

If η 6 τ then this implies Uτh
−1 ⊆ Uν , thus ν 6 τθh−1 .

(2) If τ < η then Uτ * Uνh, hence Uτh
−1 * Uν . But τθh−1 6 ηθh−1

and ν 6 ηθh−1 so we must have τθh−1 < ν. �

When we are given a homeomorphism h ∈ Homeo(Cn,r), starting
with the root function θh of h, we can build another function θ̄h :
Wn,r,ε −→ Wn,r,ε, which we call the local root function of h.

Definition 10.3. Define εθ̄h := ε, and for every ν ∈ Wn,r,ε and l ∈
{0, . . . , n− 1}, define (νˆl)θ̄h := (νˆl)θh − νθh.

Note that this function essentially detects the suffix which is added
to νθh when constructing (νˆl)θh.

Lemma 10.4. For all h ∈ Homeo(Cn,r), the following are equivalent:

(1) θh ∈ Aut(Wn,r,ε),
(2) νθ̄h ∈ {0, . . . , n− 1} holds for every ν ∈ Wn,r,
(3) νθ̄h 6= ε holds for every ν ∈ Wn,r,
(4) θh is injective.

Proof. (1)⇒ (2): This follows from the monotonicity of θh.
(2)⇒ (3): This is trivial.
(3) ⇒ (1) Assume that for every ν ∈ Wn,r, we have νθ̄h 6= ε. Then

as Uεh = (Cn,r)h = Cn,r = U(εθh), by Lemma 10.1 (8), we get that for
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every j ∈ {0, . . . , n−1} there exists l ∈ {0, . . . , n−1} such that jθ̄h = l
and Ujh = Ul. Now the claim follows by induction.

(1)⇐⇒ (4) By Lemma 10.1 (3). �

Recall that for a permutation π ∈ Sym({0, . . . , n − 1}), we defined
(c.f., Definition 2.9) the maps π̂n : Cn → Cn and π̂n,r : Cn,r → Cn,r
by twisting each entry according to π (except at the first index which
remains unchanged in the case of Cn,r). The next lemma should be
obvious.

Lemma 10.5. An element h ∈ Homeo(Cn,r) coincides with π̂ up to a
permutation of the first coordinate if and only if for every ν ∈ Wn,r

we have that Uνh is a cone Uη ∈ Un,r and Uν ˆ lh = Uη ˆπ(l) for all
0 6 l 6 n− 1.

The following proposition detects when a homeomorphism of Cn,r
acts, on some cone, as an iterated permutation.

Proposition 10.6. Let h ∈ Homeo(Cn,r) and ν ∈ Wn,r. If hν =
hν ˆ l holds for every 0 6 l 6 n − 1, then hν = π̂n for some π ∈
Sym({0, . . . , n− 1}).

Proof. Suppose that h ∈ Homeo(Cn,r), ν ∈ Wn,r, and hν = hν ˆ l for
every 0 6 l 6 n− 1.

We first observe that |ν| ≥ 1 so if we extend ν using a letter x ∈ Xn

we obtain νˆx ∈ Wn,r. Now, by assumption, the local action of h on
any sub-cone in Uν is equal to the local action hν , so the map hν can
be represented by a one-state transducer which we will call A, with
solitary state q. As h is injective we see that hν is injective as well.

We now argue that hν must be surjective onto Cn, using compactness
and continuity. Suppose hν is not surjective. Observe first that the
image of Uν under h is both open and closed, and hence the complement
of this set is both open and closed. In particular, since hν is not
surjective, there is a finite word Γ ∈ Wn so that the image of hν is
disjoint from the cone UΓ in Cn. That is, for no input to A will A
produce an output with prefix Γ. Now, let w be the output of A from q
on reading the input ‘0’. Clearly the point w is in the image of hν , and
there is a minimal length prefix x so that νˆ0h = xˆw. However, there
is a sequence of points (pi) ∈ Cn,r\Uν so that zi = pih = xˆw(i)Ξ ˆΓˆw
for Ξ some increasing function, since h is surjective, but the points
w(i)Ξ ˆΓˆw are not in the image of hν . Thus, there is some point p (a
limit of a subsequence of (pi)) in Cn,r\Uν so that p · h = xˆw as well,
which contradicts the fact that h is a homeomorphism. Therefore, we
may indeed assume that hν is surjective.

Our argument is actually complete: the transducer A has all states
(there is only one) simultaneously injective and surjective, and so by
Proposition 5.10, the state q also must act locally as a permutation. �
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11. Open problems

Apart from the general problem of understanding better the groups
introduced in this paper, we mention a few specific projects in need of
further attention (for 2 ≤ m,n).

From Proposition 9.15 and basic number theory, we know that if
gcd(n − 1, u1) = gcd(n − 1, u2) then On,u1 = On,u2 . In [20] a form of
converse is shown. The work of Pardo and also of Dicks and Mart́ınez-
Pérez (see [22, 10]) establishes that Gm,r

∼= Gn,s if and only if m = n
and gcd(n− 1, r) = gcd(n− 1, s). We wonder the following:

Question 11.1. Let n ∈ N, and 1 < u1 < u2 < n. If gcd(n− 1, u1) =
gcd(n − 1, u2) then On,u1 = On,u2 so On,u1 ∼= On,u2 . Is the converse
true?

Question 11.2. Is it true that On 6∼= Om for m 6= n? What about for
L and H?

Further fundamental questions we can ask are as follows.

Question 11.3. Describe the normal subgroup structure of On ∼=
On,n−1. For instance, does the commutator subgroup of On have fi-
nite index in On?

A related question which might not be difficult is the following.

Question 11.4. If n is odd, then On,r has a double cover given by

1→ Gn,r/G
′
n,r → Aut(Gn,r)/G

′
n,r → On,r → 1,

where Gn,r/G
′
n,r is of order two. Does this cover split?

The following question is a bit more technical, but its importance is
clear from Section 10 and from our following investigations [1] into the
automorphisms of the shift.

Question 11.5. Find presentations for the groups On, Ln and Hn.

Note that for Question 11.5, we know from the found connections to
the automorphism groups of the full shift (one-sided and two-sided, as
mentioned in the introduction), that Ln and Hn are not finitely gener-
ated. However, having meaningful infinite presentations can often be
of more practical use than having finite presentations, so this question
is likely of interest for all three families of groups.

Question 11.6. Find weaker conditions for a homeomorphism state
than those given in Lemma 8.6. (The conditions of the lemma are all
used in the proof but we do not know whether they are all necessary.)

Appendix A. The inversion construction

In order to keep this work self-contained and as we have made heavy
use of the inversion construction in certain proofs, we give here a more
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detailed exposition and justification of this construction. Our expo-
sition is based on the treatment within the paper [12], and the more
detailed explanation given in the PhD thesis [19]. We shall give the
construction in the first instance for an arbitrary transducer which
induces a homeomorphism from its input space to its output space.
We then indicate how this approach can be modified for the specific
transducers considered in this article, that is, those initial transducers
inducing self-homeomorphisms of the Cantor space Cn,r as defined in
Subsection 5.3.

A.1. General transducers. Throughout this section Xi and Xo shall
be finite alphabets, and all transducers shall have input alphabet Xi

and output alphabet Xo, thus, we shall often not write this out ex-
plicitly. We shall also make the implicit assumption, unless we state
otherwise, that transducers are accessible and non-degenerate.

Notation A.1. As in the main text, for a ∈ {i, o} and ν ∈ X∗a we set
Uν := {νδ | δ ∈ Xω

a }.

Definition A.2. Let Aq0 = 〈Xi, Xo, QA, πA, λA〉 be an initial trans-
ducer. Then Aq0 is called invertible if the map hq0 : Xω

i → Xω
o is a

homeomorphism.

We have the following straight-forward lemma.

Lemma A.3. Let Aq0 = 〈Xi, Xo, QA, πA, λA〉 be an invertible trans-
ducer. Then for all states q ∈ QA, hq : Xω

i → Xω
o is injective and

Image(q) := (Xω
i )hq is clopen.

Proof. Let q ∈ QA be arbitrary. Since Aq0 is accessible by assumption,
it is clear that for any state q ∈ QA, hq is injective.

To see that Image(q) is clopen we proceed as follows. Since Aq0
is accessible, there is a word Γ ∈ X+

i , such that πA(Γ, q0) = q. Let
∆ = λA(Γ, q0). Now as hq0 induces a homeomorphism from Xω

i to Xω
o ,

and since UΓ is clopen, then (UΓ)hq0 is also clopen. Since (UΓ)hq0 is
clopen, it is compact, and so we may find words ν1, . . . , νm ∈ Wn,ε such
that

⋃
1≤i≤m Uνi = (UΓ)hq0 . Observe that since for all 1 ≤ i ≤ m,

Uνi ⊂ (UΓ)hq0 , then ∆ 6 νi for all 1 ≤ i ≤ m. Set µi = νi −∆, then it
follows that

⋃
1≤i≤m Uµi = Image(q) yielding the result. �

We now define below a function which enables us, by shifting the
origin, to compute the preimage of an element of the output space in
steps.

Definition A.4. Let Aq0 be a transducer and q ∈ QA be a state. Define
a map Lq : X∗o → X∗i , by Lq(ν) = Root({δ ∈ Cn | (δ)hq ∈ Uν}). In
other words, Lq(ν) returns the longest common prefix of the preimage
of the cone Uν.

We have the following results.
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Lemma A.5. Let Aq0 be an invertible transducer, (w, q) ∈ X∗o × QA

be a pair such that Uw ⊂ Image(q) and Lq(w) = ε, and let x ∈ Xo

be arbitrary. Then the pair (v, p) ∈ X∗o × QA defined by v := wx −
λA(Lq(wx), q) and p := πA(Lq(wx), q) also satisfies Uv ⊂ Image(p) and
Lp(v) = ε.

Proof. We begin by showing that Uv ⊂ Image(p).
Set u = λA(Lq(wx), q), and note that by definition of v, wx = uv.

Let ρ ∈ Xω
o be arbitrary. Since Uw ⊂ Image(q), there is a word δ ∈ Xω

i

such that (δ)hq = wxρ. By definition of the function Lq, there is a
δ̄ ∈ Xω

i such that δ = Lq(wx)δ̄. Now observe that as λA(Lq(wx), q) =
u, then (δ̄)hp = vρ. Since ρ ∈ Xω

o is arbitrarily chosen, we have
Uv ⊂ Image(p).

We now argue that Lp(v) = ε. As

λA(Lq(wx), q) = u and πA(Lq(wx), q) = p,

it must be the case that Lq(wx) = uLp(v) yielding the equality, ε =
Lp(v). �

Lemma A.6. Let Aq0 be an invertible transducer and (w, q) ∈ X∗o×QA

be a pair such that Uw ⊂ Image(q) and Lq(w) = ε. Then there is a word
Γ ∈ X∗o such that Γ− λA(Lq0(Γ), q) = w and πA(Lq0(Γ), q0) = q.

Proof. Since Aq0 is accessible, fix a word ∆ ∈ X+
i such that πA(∆, q0) =

q. Set γ = λA(∆, q0) and consider the word γw. Since Uw ⊂ Image(q),
and hq0 induces a homeomorphism from its input space to its output
space, it follows that Lq0(γw) = ∆Lq(w) = ∆. Thus setting Γ =
γw, the following equalities are valid: Γ − λA(Lq0(Γ), q0) = w and
πA(Lq0(Γ), q0) = q. �

Lemma A.7. Let Aq0 be an invertible transducer and q ∈ QA. There
are only finitely many words w ∈ X∗o such that Uw ∩ Image(q) 6= ∅ and
Lq(w) = ε.

Proof. Let q be a state of A and let N (q) := {q} t {πA(x, q) | x ∈ Xi}.
For each p ∈ N (q), let Cp ⊂ X∗o be minimal such that,

⋃
ν∈Cp Uν =

Image(p). Since Image(p) is clopen for any state p ∈ QA, such a
set exists. For p ∈ N (q) let mp = max{|ν| | ν ∈ Cp} and M =
maxp∈N (q){mp}.

Observe that as Aq0 is assumed to be non-degenerate and |N (q)| <
∞, there is a j ∈ N such that for any word γ ∈ Xj

i , and any p ∈ N (q),
|λA(γ, p)| ≥M .

Let γ ∈ Xj
i and x ∈ Xi. Let ν = λA(x, q), p = πA(x, q) and

η = λA(γ, p). Observe that as |η| ≥ M , we must have Uη ⊆ Image(p),
since there is a prefix of η which is an element of Cp. Moreover, as q
is injective, Lq(νη) must have prefix x, since if there a word ξ ∈ Wn,ε

and a letter y ∈ Xi with y 6= x such that λA(yξ, q) has νη as a prefix,
then (Uyξ)hq ⊆ (Ux)hq a contradiction.
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By choice of j, the set Iq := {λA(Γ, q) | Γ ∈ Xj+1
n } ⊂ Xp

i satisfies⋃
µ∈(Iq)

Uµ = Image(q), moreover, since γ ∈ Xj+1
i was chosen arbitrarily

in the previous paragraph, for any µ ∈ Iq we have, Lq(µ) 6= ε. �

We are now in a position to construct the inverse transducer.
Let Aq0 be an invertible transducer. Set

QA′ := {(w, q) ∈ Xo ×QA | Uw ⊂ Image(q), Lq(w) = ε}.
Define functions πA′ : Xo ×QA′ → QA′ and πA′ : Xo ×QA′ → X∗i by,

π′A(x, (w, q)) = (wx− λA(Lq(wx), q), πA(Lq(wx), q))

and λ′A(x, (w, q)) = Lq(wx). Then set A′(ε,q0) := 〈Xo, Xi, QA′ , πA′ , λA′〉.
We have the following result.

Lemma A.8. Let Aq0 be an invertible transducer. Then the transducer
A′(ε,q0) := 〈Xo, Xi, QA′ , πA′ , λ

′
A〉 is well-defined, accessible, has no states

of incomplete response, is non-degenerate, and satisfies h(ε,q0) = h−1
q0

.

Proof. That the transducer A′(ε,q0) is well-defined and accessible is a
consequence of Lemmas A.5 and A.6.

We now demonstrate that A′(ε,q0) is non-degenerate, has no states of
incomplete response and does in fact induce the inverse of hq0 .

All of these statements will follow from the following claim.

Claim A.9. Let Γ ∈ X∗o and (w, q) ∈ QA′. Then λA′(Γ, (w, q)) =
Lq(wΓ) and πA′(Γ, (w, q)) = (wΓ− λA(Lq(wΓ), q), πA(Lq(wΓ), q)).

Proof. We proceed by induction on the size of Γ. By definition of the
output function, the cases |Γ| = 0 and |Γ| = 1 are satisfied.

Assume that the claim hold for words of length k. Let Γ ∈ Xk
o and

x ∈ Xo. We have

λA′(Γx, (w, q)) = λA′(Γ, (w, q))ˆλA′(x, πA′(Γ, (w, q)))

= Lq(wΓ)ˆλA′(x, πA′(Γ, (w, q))).

Let (v, p) = πA′(Γ, (w, q)), then by the inductive assumption,

v = wΓ− λA(Lq(wΓ, q) and p = πA(Lq(wΓ), q).

Thus we have that Lq(wΓ)ˆLp(vx) = Lq(wΓx). Since Uv ⊂ Image(p),
hq is injective, wΓ = λA(Lq(wΓ), q)ˆv and πA(Lq(wΓ), q) = p, then
Lq(wΓx) = Lq(wΓ)ˆLp(vx). Thus the equality:

λA′(Γx, (w, q)) = Lq(wΓx)

is valid.
Now as πA′(Γx, (w, q)) = πA′(x, πA′(Γ, (w, q))), we have

πA′(Γx, (w, q)) = πA′(x, (v, p)).

By definition π′A(x, (v, p)) = (vx − λA(Lp(vx, p), πA(Lp(vx), p). How-
ever we observe that since Lq(wΓx) = Lq(wΓ)ˆLp(vx), then

wΓx− λA(Lq(wΓx), q) = wΓx− λA(Lq(wΓ), q)ˆλA(Lp(vx), p).
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Therefore

wΓx− λA(Lq(wΓx), q) = vx− λA(Lp(vx), p).

Moreover,

πA(Lq(wΓx), q) = πA(Lp(vx), πA(Lq(wΓ), q) = πA(Lp(vx), p).

Thus the equality

πA′(Γx, (w, q)) = (wΓx− λA(Lq(wΓx), q), πA(Lq(wΓx), q))

is valid. �

Now since for each state q ∈ QA, hq is injective and continuous, it
follows that for a sequence (Γi)i∈N such that |Γi| tends to infinity as
i tends to infinity and UΓi ⊂ Image(q), then |Lq(Γi)| tends to infinity
also. Thus, it follows that h(ε,q0) = h−1

q0
. More generally, for a state

(w, q) ∈ QA′ , and a word δ ∈ Xω
o , (δ)h(w,q) = (wδ)h−1

q .
To see that A′(ε,q0) has no states of incomplete response we observe

that for x ∈ Xo and a state (w, q) ∈ QA′ :

λA′(x, (w, q)) = Lq(wx) = Root((Uwx)h
−1
q )

= Root({(δ)h(w,q) | δ ∈ Xω
o }).

�

The lemma below is a consequence of Lemma A.7.

Lemma A.10. Let Aq0 be a finite invertible transducer, then A′(ε,q0) is
also finite.

Remark A.11. We observe that given Aq0 an invertible transducer,
A′(ε,q0) is not far from minimal. More specifically, A′(ε,q0) can be made
minimally by performing the operation of identifying its ω-equivalent
states. Although carrying out this operation potentially reduces the
size of the transducer making it easier to compute with, in practise,
the obfuscation resulting from the identification of ω-equivalent states
makes the minimal representative difficult to work with when trying to
prove things. It is therefore much easier to work with the transducer
A′(ε,q0) and then deduce conclusions about its minimal representative.

A.2. Transducers acting on Cn,r. We now demonstrate how to adapt
the construction in Subsection A.1 for transducers acting on Cn,r. We
omit most proofs as they are not dissimilar to those given in the gen-
eral case. All notation is as in the main text, and we implicitly assume
throughout this section that transducers act on Cn,r, are connected
and are non-degenerate unless we state otherwise. We recall that for a
transducer Aq0 = (ṙ, Xn, RA, SA, πA, λA) acting on Cn,r, QA = RA t SA
and q0 ∈ RA.

First let us extend the definitions of the previous subsection. We
observe that as some of the states of a transducer acting on Cn,r induce
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maps from Cn and others induce maps on Cn,r, the value Uε might mean
either Cn,r or Cn depending on the map under consideration. This does
not result in confusion as an element hq has domain Cn,r if and only
q = q0 while it has range Cn,r if and only if q ∈ RA (see Subsection 5.3).
Thus in the definition below of the map Lq, Lq takes a value ε satisfying
Uε = Cn,r or Uε = Cn depending on whether or not q = q0.

Definition A.12. Let Aq0 = (ṙ, Xn, RA, SA, πA, λA) be a transducer
acting on Cn,r. Then Aq0 is called invertible if hq0 : Cn,r → Cn,r is a
homeomorphism.

Definition A.13. Let Aq0 be a transducer and q ∈ QA\{q0} be a state.
Define a map Lq : Wn,r,ε tWn,ε → Wn,ε, by Lq(ν) = Root({δ ∈ Cn |
(δ)hq ∈ Uν}). We also define Lq0 : Wn,r,ε → Wn,r,ε by Lq0(ν) =
Root({δ ∈ Cn,r | (δ)hq0 ∈ Uν}). In other words, for q ∈ QA, initial
or not, Lq(ν) returns the longest common prefix of the preimage of the
cone Uν.

Remark A.14. Let Aq0 be a transducer, then Lq maps all elements of
Wn,r,ε to ε if q ∈ SA and it maps all elements of Wn,ε to ε if q ∈ RA.

The lemmas of the previous subsection are equally valid when re-
stated in the context of transducers acting on Cn,r. As we mentioned
above, the proofs only need to be adjusted to account for the action
on Cn,r and so we state the lemmas below without proof. However,
we first require the following lemma which clarifies a confusion arising
from the notation Uε used when constructing the inverse.

Lemma A.15. Let Aq0 be an invertible transducer acting on Cn,r, and
let q ∈ QA be a state. Let ε and ε both represent the empty word, where
ε ∈ Wn,r,ε and ε ∈ Wn,ε so that Uε = Cn,r and Uε = Cn. Then the pair
(ε, q) satisfies Uε ⊂ Image(q) if and only if q = q0 and (ε, q) satisfies
Uε ⊂ Image(q) implies that q ∈ SA.

Proof. This is a straight-forward consequence of the the definition of
transducers acting on Cn,r. Let (ε, q) for q ∈ QA satisfy Uε ⊂ Image(q),
then this implies that the range of q = Cn,r, thus q ∈ RA. However as
Aq0 induces a homeomorphism and is accessible, then range of q is all
of Cn,r if and only if q = q0.

Now suppose (ε, q) satisfies Uε ⊂ Image(q). By definition of elements
of RA, there is a letter ȧ ∈ ṙ such that if q ∈ RA, then Image(q) ⊂ Uȧ,
thus it must be the case that q ∈ SA. �

Remark A.16. Given Aq0 an invertible transducer acting on Cn,r, the
Lemma above enables us to write a pair (ε, q) for q ∈ QA without
ambiguity, as Uε represents Cn,r if and only if q = q0. Therefore we will
only use the ε symbol for the empty word going forward.

Lemma A.17. Let Aq0 = (ṙ, Xn, RA, SA, πA, λA) be an invertible trans-
ducer acting on Cn,r. Then for all states q ∈ QA, hq is injective and
Image(q) is clopen.
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Lemma A.18. Let Aq0 be an invertible transducer, (w, q) ∈ (Wn,r,ε t
Wn,ε) × QA be a pair such that Uw ⊂ Image(q) and Lq(w) = ε, and
let x ∈ ṙ t Xn be arbitrary such that x ∈ ṙ if w = ε and q = q0

and x ∈ Xn otherwise. Then the pair (v, p) ∈ (Wn,r,ε t Wn,ε) × QA

defined by v := wx−λA(Lq(wx), q) and p := πA(Lq(wx), q) also satisfies
Uv ⊂ Image(p) and Lp(v) = ε.

Lemma A.19. Let Aq0 be an invertible transducer and

(w, q) ∈ (Wn,r,ε tWn,ε)×QA

be a pair such that Uw ⊂ Image(q) and Lq(w) = ε. Then there is a word
Γ ∈ Wn,r,ε such that Γ− λA(Lq0(Γ), q0) = w and πA(Lq0(Γ), q0) = q.

Lemma A.20. Let Aq0 be an invertible transducer and q ∈ QA, then
there are only finitely many words w ∈ Wn,r,ε tWn,ε such that Uw ∩
Image(q) 6= ∅ and Lq(w) = ε.

We may now construct the inverse transducer.
Let Aq0 be an invertible transducer. Set

QA′ := {(w, q) ∈ (Wn,r,ε tWn,ε)×QA | Uw ⊂ Image(q), Lq(w) = ε}.

Define functions πA′ : (ṙtXn)×QA′ → QA′ and λA′ : (ṙtXn)×QA′ →
Wn,r,ε tWn,ε by

π′A(x, (w, q)) = (wx− λA(Lq(wx), q), πA(Lq(wx), q)),

and

λ′A(x, (w, q)) = Lq(wx)

for x ∈ Xn if q ∈ QA\{q0} and x ∈ ṙ otherwise. Set SA′ := {(w, q) ∈
QA′ | q 6= q0} and set RA′ := QA′\SA′ . This definition is justified since
if (w, q0) ∈ RA′ and x ∈ ṙ tXn (x ∈ ṙ if w = ε and x ∈ Xn otherwise)
are such that Lq0(wx) 6= ε, then πA(Lq0(wx), q0) 6= q0. Finally set
A′(ε,q0) := (ṙ, Xn, RA′ , SA′ , πA′ , λA′).

Lemma A.21. Let Aq0 be an invertible transducer. Then the trans-
ducer A′(ε,q0) := (ṙ, Xn, RA′ , SA′ , πA′ , λA′) is well-defined, accessible, has
no states of incomplete response, is non-degenerate, and satisfies

h(ε,q0) = h−1
q0
.

If Aq0 is finite then so also is A′(ε,q0).

Observe that this construction may produce a transducer with equiv-
alent states, but these may be identified resulting in a minimal trans-
ducer.
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