90 research outputs found

    Effects of nacelle shape on drag and weight of a supersonic cruising aircraft

    Get PDF
    The quantitive relationship of cruise drag and nacelle shape was investigated for a representative advanced supersonic transport configuration. Nacelle shape parameters were systematically varied, and the effects of these variations on wave and friction drag were determined. The effects of changes in vehicle drag, propulsion weight, and specific fuel consumption on vehicle takeoff gross weight were computed. Generally, it was found that nacelle shapes such that the maximum cross-sectional area occurred at or near the nozzle exit resulted in the lowest wave drag. In fact, nacelle shapes were found that produce favorable interference effects (drag reduction) of such magnitude as to nearly offset the friction drag of the nacelle

    Methods for comparative evaluation of propulsion system designs for supersonic aircraft

    Get PDF
    The propulsion system comparative evaluation study was conducted to define a rapid, approximate method for evaluating the effects of propulsion system changes for an advanced supersonic cruise airplane, and to verify the approximate method by comparing its mission performance results with those from a more detailed analysis. A table look up computer program was developed to determine nacelle drag increments for a range of parametric nacelle shapes and sizes. Aircraft sensitivities to propulsion parameters were defined. Nacelle shapes, installed weights, and installed performance was determined for four study engines selected from the NASA supersonic cruise aircraft research (SCAR) engine studies program. Both rapid evaluation method (using sensitivities) and traditional preliminary design methods were then used to assess the four engines. The method was found to compare well with the more detailed analyses

    Influence of propulsion system size, shape, and location on supersonic aircraft design

    Get PDF
    The effects of various propulsion system parameters on the characteristics of a supersonic transport were investigated. The effects of arbitrarily scaling engine size on wave drag, friction drag, drag-due-to-lift, wing sizing, airplane balance, and airplane weight were studied. These evaluations were made for two families of nacelle shapes, resulting from typical turbojet and turbofan installations. Also examined were effects of nacelle location, and the wing camber plane deformations required to cancel the nacelle interference pressure field at cruise Mach number (2.7 M) were determined. The most drag-sensitive parameter is found to be nacelle shape. Similarly, wing deformation requirements are found to be primarily affected by nacelle shape. Effects of engine size variations are noted primarily in airplane gross weight

    The JCMT Gould Belt Survey: A First Look at the Auriga–California Molecular Cloud with SCUBA-2

    Get PDF
    We present 850 and 450 μm observations of the dense regions within the Auriga–California molecular cloud using SCUBA-2 as part of the JCMT Gould Belt Legacy Survey to identify candidate protostellar objects, measure the masses of their circumstellar material (disk and envelope), and compare the star formation to that in the Orion A molecular cloud. We identify 59 candidate protostars based on the presence of compact submillimeter emission, complementing these observations with existing Herschel/SPIRE maps. Of our candidate protostars, 24 are associated with young stellar objects (YSOs) in the Spitzer and Herschel/PACS catalogs of 166 and 60 YSOs, respectively (177 unique), confirming their protostellar nature. The remaining 35 candidate protostars are in regions, particularly around LkHα 101, where the background cloud emission is too bright to verify or rule out the presence of the compact 70 μm emission that is expected for a protostellar source. We keep these candidate protostars in our sample but note that they may indeed be prestellar in nature. Our observations are sensitive to the high end of the mass distribution in Auriga–Cal. We find that the disparity between the richness of infrared star-forming objects in Orion A and the sparsity in Auriga–Cal extends to the submillimeter, suggesting that the relative star formation rates have not varied over the Class II lifetime and that Auriga–Cal will maintain a lower star formation efficiency

    The JCMT Transient Survey: Four-year Summary of Monitoring the Submillimeter Variability of Protostars

    Get PDF
    We present the four-year survey results of monthly submillimeter monitoring of eight nearby (<500 pc) star-forming regions by the JCMT Transient Survey. We apply the Lomb–Scargle Periodogram technique to search for and characterize variability on 295 submillimeter peaks brighter than 0.14 Jy beam−1, including 22 disk sources (Class II), 83 protostars (Class 0/I), and 190 starless sources. We uncover 18 secular variables, all of them protostars. No single-epoch burst or drop events and no inherently stochastic sources are observed. We classify the secular variables by their timescales into three groups: Periodic, Curved, and Linear. For the Curved and Periodic cases, the detectable fractional amplitude, with respect to mean peak brightness, is ∼4% for sources brighter than ∼0.5 Jy beam−1. Limiting our sample to only these bright sources, the observed variable fraction is 37% (16 out of 43). Considering source evolution, we find a similar fraction of bright variables for both Class 0 and Class I. Using an empirically motivated conversion from submillimeter variability to variation in mass accretion rate, six sources (7% of our full sample) are predicted to have years-long accretion events during which the excess mass accreted reaches more than 40% above the total quiescently accreted mass: two previously known eruptive Class I sources, V1647 Ori and EC 53 (V371 Ser), and four Class 0 sources, HOPS 356, HOPS 373, HOPS 383, and West 40. Considering the full protostellar ensemble, the importance of episodic accretion on few years timescale is negligible—only a few percent of the assembled mass. However, given that this accretion is dominated by events on the order of the observing time window, it remains uncertain as to whether the importance of episodic events will continue to rise with decades-long monitoring

    The JCMT BISTRO Survey: Magnetic Fields Associated with a Network of Filaments in NGC 1333

    Get PDF
    We present new observations of the active star formation region NGC 1333 in the Perseus molecular cloud complex from the James Clerk Maxwell Telescope B-Fields In Star-forming Region Observations (BISTRO) survey with the POL-2 instrument. The BISTRO data cover the entire NGC 1333 complex (~1.5 pc × 2 pc) at 0.02 pc resolution and spatially resolve the polarized emission from individual filamentary structures for the first time. The inferred magnetic field structure is complex as a whole, with each individual filament aligned at different position angles relative to the local field orientation. We combine the BISTRO data with low- and high- resolution data derived from Planck and interferometers to study the multiscale magnetic field structure in this region. The magnetic field morphology drastically changes below a scale of ~1 pc and remains continuous from the scales of filaments (~0.1 pc) to that of protostellar envelopes (~0.005 pc or ~1000 au). Finally, we construct simple models in which we assume that the magnetic field is always perpendicular to the long axis of the filaments. We demonstrate that the observed variation of the relative orientation between the filament axes and the magnetic field angles are well reproduced by this model, taking into account the projection effects of the magnetic field and filaments relative to the plane of the sky. These projection effects may explain the apparent complexity of the magnetic field structure observed at the resolution of BISTRO data toward the filament network

    The HASHTAG Project: The First Submillimeter Images of the Andromeda Galaxy from the Ground

    Get PDF
    Observing nearby galaxies with submillimeter telescopes on the ground has two major challenges. First, the brightness is significantly reduced at long submillimeter wavelengths compared to the brightness at the peak of the dust emission. Second, it is necessary to use a high-pass spatial filter to remove atmospheric noise on large angular scales, which has the unwelcome side effect of also removing the galaxy's large-scale structure. We have developed a technique for producing high-resolution submillimeter images of galaxies of large angular size by using the telescope on the ground to determine the small-scale structure (the large Fourier components) and a space telescope (Herschel or Planck) to determine the large-scale structure (the small Fourier components). Using this technique, we are carrying out the HARP and SCUBA-2 High Resolution Terahertz Andromeda Galaxy Survey (HASHTAG), an international Large Program on the James Clerk Maxwell Telescope, with one aim being to produce the first high-fidelity high-resolution submillimeter images of Andromeda. In this paper, we describe the survey, the method we have developed for combining the space-based and ground-based data, and we present the first HASHTAG images of Andromeda at 450 and 850 μm. We also have created a method to predict the CO(J = 3–2) line flux across M31, which contaminates the 850 μm band. We find that while normally the contamination is below our sensitivity limit, it can be significant (up to 28%) in a few of the brightest regions of the 10 kpc ring. We therefore also provide images with the predicted line emission removed

    Observations of Magnetic Fields Surrounding LkH alpha 101 Taken by the BISTRO Survey with JCMT-POL-2

    Get PDF
    We report the first high spatial resolution measurement of magnetic fields surrounding LkHα 101, part of the Auriga–California molecular cloud. The observations were taken with the POL-2 polarimeter on the James Clerk Maxwell Telescope within the framework of the B-fields In Star-forming Region Observations (BISTRO) survey. Observed polarization of thermal dust emission at 850 μm is found to be mostly associated with the redshifted gas component of the cloud. The magnetic field displays a relatively complex morphology. Two variants of the Davis–Chandrasekhar–Fermi method, unsharp masking and structure function, are used to calculate the strength of magnetic fields in the plane of the sky, yielding a similar result of BPOS ~ 115 μG. The mass-to-magnetic-flux ratio in critical value units, λ ~ 0.3, is the smallest among the values obtained for other regions surveyed by POL-2. This implies that the LkHα 101 region is subcritical, and the magnetic field is strong enough to prevent gravitational collapse. The inferred δB/B0 ~ 0.3 implies that the large-scale component of the magnetic field dominates the turbulent one. The variation of the polarization fraction with total emission intensity can be fitted by a power law with an index of α = 0.82 ± 0.03, which lies in the range previously reported for molecular clouds. We find that the polarization fraction decreases rapidly with proximity to the only early B star (LkHα 101) in the region. Magnetic field tangling and the joint effect of grain alignment and rotational disruption by radiative torques can potentially explain such a decreasing trend

    The JCMT BISTRO Survey: The Magnetic Field of the Barnard 1 Star-Forming Region

    Get PDF
    This is the final version. Available from American Astronomical Society / IOP Publishing via the DOI in this record.We present the POL-2 850 um linear polarization map of the Barnard 1 clump in the Perseus molecular cloud complex from the B-fields In STar-forming Region Observations (BISTRO) survey at the James Clerk Maxwell Telescope. We find a trend of decreasing polarization fraction as a function of total intensity, which we link to depolarization effects towards higher density regions of the cloud. We then use the polarization data at 850 um to infer the plane-of-sky orientation of the large-scale magnetic field in Barnard 1. This magnetic field runs North-South across most of the cloud, with the exception of B1-c where it turns more East-West. From the dispersion of polarization angles, we calculate a turbulence correlation length of 5.0 +/- 2.5 arcsec (1500 au), and a turbulent-to-total magnetic energy ratio of 0.5 +/- 0.3 inside the cloud. We combine this turbulent-to-total magnetic energy ratio with observations of NH3 molecular lines from the Green Bank Ammonia Survey (GAS) to estimate the strength of the plane-of-sky component of the magnetic field through the Davis-Chandrasekhar-Fermi method. With a plane-of-sky amplitude of 120 +/- 60 uG and a criticality criterion lambda_c = 3.0 +/- 1.5, we find that Barnard 1 is a supercritical molecular cloud with a magnetic field nearly dominated by its turbulent component.National Research Foundation of Korea (NRF)National Key R&D Program of ChinaNational Natural Science Foundation of China (NSFC

    Revealing the diverse magnetic field morphologies in Taurus dense cores with sensitive sub-millimeter polarimetry

    Get PDF
    We have obtained sensitive dust continuum polarization observations at 850 μm in the B213 region of Taurus using POL-2 on SCUBA-2 at the James Clerk Maxwell Telescope (JCMT), as part of the BISTRO (B-fields in STar-forming Region Observations) survey. These observations allow us to probe magnetic field (B-field) at high spatial resolution (∼2000 au or ∼0.01 pc at 140 pc) in two protostellar cores (K04166 and K04169) and one prestellar core (Miz-8b) that lie within the B213 filament. Using the Davis-Chandrasekhar-Fermi method, we estimate the B-field strengths in K04166, K04169, and Miz-8b to be 38±14 μG, 44±16 μG, and 12±5 μG, respectively. These cores show distinct mean B-field orientations. B-field in K04166 is well ordered and aligned parallel to the orientations of the core minor axis, outflows, core rotation axis, and large-scale uniform B-field, in accordance with magnetically regulated star formation via ambipolar diffusion taking place in K04166. B-field in K04169 is found to be ordered but oriented nearly perpendicular to the core minor axis and large-scale B-field, and not well-correlated with other axes. In contrast, Miz-8b exhibits disordered B-field which show no preferred alignment with the core minor axis or large-scale field. We found that only one core, K04166, retains a memory of the large-scale uniform B-field. The other two cores, K04169 and Miz-8b, are decoupled from the large-scale field. Such a complex B-field configuration could be caused by gas inflow onto the filament, even in the presence of a substantial magnetic flux
    • …
    corecore