38 research outputs found
Heat conduction tuning using the wave nature of phonons
The world communicates to our senses of vision, hearing and touch in the
language of waves, as the light, sound, and even heat essentially consist of
microscopic vibrations of different media. The wave nature of light and sound
has been extensively investigated over the past century and is now widely used
in modern technology. But the wave nature of heat has been the subject of
mostly theoretical studies, as its experimental demonstration, let alone
practical use, remains challenging due to the extremely short wavelengths of
these waves. Here we show a possibility to use the wave nature of heat for
thermal conductivity tuning via spatial short-range order in phononic crystal
nanostructures. Our experimental and theoretical results suggest that
interference of thermal phonons occurs in strictly periodic nanostructures and
slows the propagation of heat. This finding broadens the methodology of heat
transfer engineering by expanding its territory to the wave nature of heat
Review of coherent phonon and heat transport control in one-dimensional phononic crystals at nanoscale
Phononic crystals are the acoustic analogs of photonic crystals and aim at manipulating phonon transport using phonon interference in periodic structures. While such periodic structures are typically two-dimensional, many applications require one-dimensional (1D) wire-like or bulk structures instead. In this Research Update, we summarize the past decade of theoretical and experimental studies of coherent control of phonon and heat transport in one-dimensional phononic crystals. At the hypersonic frequencies, phononic crystals successfully found applications in optomechanical devices at the microscale. However, at higher terahertz frequencies, experimentalists struggle to demonstrate that coherent thermal transport at room temperature is possible at length scales of hundreds of nanometers. Although many theoretical works predict a reduction in the thermal conductivity in 1D phononic crystals due to coherent effects, most observations conclude about the incoherent nature of heat conduction at least at room temperature. Nevertheless, experiments on superlattices and carbon nanotubes have demonstrated evidence of coherent heat conduction even at room temperature in structures with the periodicity of a few nanometers. Thus, further miniaturization and improving fabrication quality are currently the main challenges faced by 1D phononic nanostructures
Thermoreflectance techniques and Raman thermometry for thermal property characterization of nanostructures
This AIP article is published under license by AIP: https://publishing.aip.org/wp-content/uploads/2019/10/AIPP-Author-License.pdfPublishing.https://pubs.acs.org/page/policy/authorchoice_termsofuse.htmlAltres ajuts: ICN2 is supported by the CERCA Programme/Generalitat de Catalunya.The widespread use of nanostructures and nanomaterials has opened up a whole new realm of challenges in thermal management, but also leads to possibilities for energy conversion, storage, and generation, in addition to numerous other technological applications. At the microscale and below, standard thermal measurement techniques reach their limits, and several novel methods have been developed to overcome these limitations. Among the most recent, contactless photothermal methods have been widely used and have proved their advantages in terms of versatility, temporal and spatial resolution, and even sensitivity in some situations. Among them, thermoreflectance and Raman thermometry have been used to measure the thermal properties from bulk materials to thin films, multilayers, suspended structures, and nanomaterials. This Tutorial presents the principles of these two techniques and some of their most common implementations. It expands to more advanced systems for spatial mapping and for probing of non-Fourier thermal transport. Finally, this paper concludes with discussing the limitations and perspectives of these techniques and future directions in nanoscale thermometry
Mid-infrared spectroscopic thermotransmittance measurements in dielectric materials for thermal imaging
Thermal considerations affect the performance of most microsystems. Although surface techniques can give information on the thermal properties within the material or about buried heat sources and defects, mapping temperature and thermal properties in three dimension (3D) is critical and has not been addressed yet. Infrared thermography, commonly used for opaque materials, is not adapted to semi-transparent samples such as microfluidic chips or semiconductor materials in the infrared range. This work aims at answering these needs by using the variations of transmittance with temperature to obtain information on the temperature within the thickness of the sample. We use a tunable mid-infrared light source combined with an infrared camera to measure these variations of transmittance in a glass wafer. We couple this technique with a thermal model to extract the thermotransmittance coefficient—the coefficient of temperature variation of the transmittance. We then introduce a semiempirical model based on Lorentz oscillators to estimate the temperature-dependent optical properties of our sample in the mid-IR spectral range. Combined with the measurement, this paper reports the spectroscopic behavior of the thermotransmittance coefficient in the mid-IR range and a way to predict it
Contactless characterization of the elastic properties of glass microspheres
Glass microspheres are of great interest for numerous industrial, biomedical, or standalone applications, but it remains challenging to evaluate their elastic and optical properties in a non-destructive way. In this work, we address this issue by using two complementary contactless techniques to obtain elastic and optical constants of glass microspheres with diameters ranging from 10 to 60 µm. The first technique we employ is Brillouin Light Scattering, which yields scattering with longitudinal acoustic phonons, the frequency of which is found to be 5% lower than that measured in the bulk material. The second technique involves exciting the optical whispering gallery modes of the microspheres, which allows us to transduce some of their vibrational modes. The combined data allow for extracting the refractive index and the elastic constants of the material. Our findings indicate that the values of those properties are reduced with respect to their bulk material counterpart due to an effective decrease of the density, resulting from the fabrication process. We propose the use of this combined method to extract elastic and optical parameters of glass materials in microsphere geometries and compare them with the values of the pristine material from which they are formed
Injection locking in an optomechanical coherent phonon source
[EN] Spontaneous locking of the phase of a coherent phonon source to an external reference is demonstrated in a deeply sideband-unresolved optomechanical system. The high-amplitude mechanical oscillations are driven by the anharmonic modulation of the radiation pressure force that result from an absorption-mediated free-carrier/temperature limit cycle, i.e., self-pulsing. Synchronization is observed when the pump laser driving the mechanical oscillator to a self-sustained state is modulated by a radiofrequency tone. We employ a pump-probe phonon detection scheme based on an independent optical cavity to observe only the mechanical oscillator dynamics. The lock range of the oscillation frequency, i.e., the Arnold tongue, is experimentally determined over a range of external reference strengths, evidencing the possibility to tune the oscillator frequency for a range up to 350 kHz. The stability of the coherent phonon source is evaluated via its phase noise, with a maximum achieved suppression of 44 dBc/Hz at 1 kHz offset for a 100 MHz mechanical resonator. Introducing a weak modulation in the excitation laser reveals as a further knob to trigger, control and stabilize the dynamical solutions of self-pulsing based optomechanical oscillators, thus enhancing their potential as acoustic wave sources in a single-layer silicon platform.This research was funded by EU FET Open project PHENOMEN (GA: 713450). ICN2 is supported by the Severo Ochoa program from the Spanish Research Agency (AEI, grant no. SEV-2017-0706) and by the CERCA Programme/Generalitat de Catalunya. G. A. and C. M. S.-T. acknowledge the support from the Spanish MICINN project SIP (PGC2018-101743-B-I00). D. N. U., G. A. and M. F. C. gratefully acknowledge the support of a Ramon y Cajal postdoctoral fellowship (RYC-2014-15392), a BIST studentship, and a Severo Ochoa studentship, respectively. D. N. U. acknowledges the funding through the Ministry of Science, Innovation and Universities (PGC2018-094490-B-C22).Arregui, G.; Colombano, MF.; Maire, J.; Pitanti, A.; Capuj, NE.; Griol Barres, A.; Martínez, A.... (2021). Injection locking in an optomechanical coherent phonon source. Nanophotonics. 10(4):1319-1327. https://doi.org/10.1515/nanoph-2020-05921319132710
Materials Today Physics
Thermal transport at the nanoscale level is attracting attention not only because of its physically interesting features such as the peculiar behavior of phonons due to their pronounced ballistic and wave-like properties but also because of its potential applications in alleviating heat dissipation problems in electronic and optical devices and thermoelectric energy harvesting. In the last quarter-century, researchers have elucidated the thermal transport properties of various nanostructured materials, including phononic crystals (PnCs): artificial periodic structures for phonons. PnCs are excellent platforms for investigating thermal transport owing to their well-defined structural parameters. In addition, it is interesting to control thermal transport by interference, as demonstrated in the low-frequency regime with elastic waves and sounds. In this article, we focus on high-frequency phonons and review the thermal transport in semiconductor PnCs. This comprehensive review provides an understanding of recent studies and trends, organized as theoretical and experimental, in terms of the quasiparticle and wave aspects
Multiscale aspects of the response of a temperature field to a pulsed laser or a periodic laser spot: some applications for IR thermography for non destructive evaluation, terahertz tomography, super-resolution, and microscale heat transfer
The study of the response of a temperature field (recorded from IR cameras) to a laser spot heating is increasingly used for NDE (Non Destructive Evaluation) applications. The most classical type of application is to use the flying spot in order to detect vertical cracks and/or to measure the in plane thermal diffusivity in relation to the observation plane of opaque materials. But several other ways of applications are presented here related to tomography and also super resolution. Instead of opaque materials applications, the tomography is using the principles of the flying spot. It consists in an indirect detection on an intermediate layer (the thermoconverter) that can convert a wide range of radiation from the spot. The objective of super-resolution can also be implemented with flying spot in order to circumvent the low spatial resolution of IR imaging systems. Such methods consider spots whose diameter is small compared to the size of the pixel. Some applications of our team will be shown with multiscale considerations
Synchronization of Optomechanical Nanobeams by Mechanical Interaction
The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic examples, but synchronizing their nanoscaled versions is challenging. We report synchronization of the mechanical dynamics of a pair of optomechanical crystal cavities that, in contrast to previous works performed in similar objects, are intercoupled with a mechanical link and support independent optical modes. In this regime they oscillate in antiphase, which is in agreement with the predictions of our numerical model that considers reactive coupling. We also show how to temporarily disable synchronization of the coupled system by actuating one of the cavities with a heating laser, so that both cavities oscillate independently. Our results can be upscaled to more than two cavities and pave the way towards realizing integrated networks of synchronized mechanical oscillators
Synchronization of Optomechanical Nanobeams by Mechanical Interaction
The synchronization of coupled oscillators is a phenomenon found throughout nature. Mechanical oscillators are paradigmatic examples, but synchronizing their nanoscaled versions is challenging. We report synchronization of the mechanical dynamics of a pair of optomechanical crystal cavities that, in contrast to previous works performed in similar objects, are intercoupled with a mechanical link and support independent optical modes. In this regime they oscillate in antiphase, which is in agreement with the predictions of our numerical model that considers reactive coupling. We also show how to temporarily disable synchronization of the coupled system by actuating one of the cavities with a heating laser, so that both cavities oscillate independently. Our results can be upscaled to more than two cavities and pave the way towards realizing integrated networks of synchronized mechanical oscillators