27 research outputs found

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers

    From town to national park: Understanding the long-term effects of hunting and logging on tree communities in Central Africa

    No full text
    Anthropogenic disturbances are changing the structure and composition of tropical forests worldwide. Multiple disturbances often occur simultaneously in forests: for example, hunting and logging are within-forest disturbances that impact vast areas of seemingly intact rainforests. Despite recent work on the individual effects of these disturbances, our understanding of how they interact to influence tree communities is still limited. In northern Republic of Congo, we explored the effects of hunting and logging on tree communities. Over an 8-year period, we monitored 12,552 tree stems (≥ 10 cm diameter-at-breast height) spread over 30 1-ha plots along a gradient of human disturbance to compare the tree diversity between hunted and logged forest, once-logged forest, and protected forest free of both disturbances. Tree density, species richness, and community composition were affected by both hunting and logging. Forest close to human settlements was richer, more heterogenous, and more dynamic in species composition across censuses. In hunted and logged forest, fast-growing secondary species with low shade tolerance replaced old growth species. Comparatively, the once-logged forest had the greatest stem density and intermediate species richness with a density increase of shade-bearing species over time. Both tree species spatial turnover and tree recruitment were greatly affected by proximity to human settlements. A shift towards abiotically dispersed trees and increasing seed predation by rodents near villages can partly explain the differences in tree recruitment across the forest types. The combination of hunting and logging seems to have a greater impact on tree communities than either single disturbance, especially with nearness to villages.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    A virtual “Werkstatt” for digitization in the sciences

    No full text
    Data is central in almost all scientific disciplines nowadays. Furthermore, intelligent systems have developed rapidly in recent years, so that in many disciplines the expectation is emerging that with the help of intelligent systems, significant challenges can be overcome and science can be done in completely new ways. In order for this to succeed, however, first, fundamental research in computer science is still required, and, second, generic tools must be developed on which specialized solutions can be built. In this paper, we introduce a recently started collaborative project funded by the Carl Zeiss Foundation, a virtual manufactory for digitization in the sciences, the "Werkstatt", which is being established at the Michael Stifel Center Jena (MSCJ) for data-driven and simulation science to address fundamental questions in computer science and applications. The Werkstatt focuses on three key areas, which include generic tools for machine learning, knowledge generation using machine learning processes, and semantic methods for the data life cycle, as well as the application of these topics in different disciplines. Core and pilot projects address the key aspects of the topics and form the basis for sustainable work in the Werkstatt

    Telomeres in ICF syndrome cells are vulnerable to DNA damage due to elevated DNA:RNA hybrids

    Get PDF
    DNA:RNA hybrids, nucleic acid structures with diverse physiological functions, can disrupt genome integrity when dysregulated. Human telomeres were shown to form hybrids with the lncRNA TERRA, yet the formation and distribution of these hybrids among telomeres, their regulation and their cellular effects remain elusive. Here we predict and confirm in several human cell types that DNA:RNA hybrids form at many subtelomeric and telomeric regions. We demonstrate that ICF syndrome cells, which exhibit short telomeres and elevated TERRA levels, are enriched for hybrids at telomeric regions throughout the cell cycle. Telomeric hybrids are associated with high levels of DNA damage at chromosome ends in ICF cells, which are significantly reduced with overexpression of RNase H1. Our findings suggest that abnormally high TERRA levels in ICF syndrome lead to accumulation of telomeric hybrids that, in turn, can result in telomeric dysfunction
    corecore