78 research outputs found

    Effects of rotation and sloping terrain on fronts of density current fronts

    Get PDF
    The initial stage of the adjustment of a gravity current to the effects of rotation with angular velocity f/2 is analysed using a short time analysis where Coriolis forces are initiated in an inviscid von KĂĄrmĂĄn–Benjamin gravity current front at tF=0. It is shown how, on a time-scale of order 1/f, as a result of ageostrophic dynamics, the slope and front speed UF are much reduced from their initial values, while the transverse anticyclonic velocity parallel to the front increases from zero to O(NH0), where N=gâ€Č/H0−−−−−√ is the buoyancy frequency, and gâ€Č=gΔρ/ρ0 is the reduced acceleration due to gravity. Here ρ0 is the density and Δρ and H0 are the density difference and initial height of the current. Extending the steady-state theory to account for the effect of the slope σ on the bottom boundary shows that, without rotation, UF has a maximum value for σ=\upi/6, while with rotation, UF tends to zero on any slope. For the asymptotic stage when ftF≫1, the theory of unsteady waves on the current is reviewed using nonlinear shallow-water equations and the van der Pol averaging method. Their motions naturally split into a ‘balanced’ component satisfying the Margules geostrophic relation and an equally large ‘unbalanced’ component, in which there is horizontal divergence and ageostrophic vorticity. The latter is responsible for nonlinear oscillations in the current on a time scale f−1, which have been observed in the atmosphere and field experiments. Their magnitude is mainly determined by the initial potential energy in relation to that of the current and is proportional to the ratio \it Bu−−−−−√=LR/R0, where LR=NH0/f is the Rossby deformation radius and R0 is the initial radius. The effect of slope friction also prevents the formation of a steady front. From the analysis it is concluded that a weak mean radial flow must be driven by the ageostrophic oscillations, preventing the mean front speed UF from halting sharply at ftF∌1. Depending on the initial value of LR/R0, physical arguments show that UF decreases slowly in proportion to (ftF)−1/2, i.e. UF/UF0=F(ftF,\it Bu). Thus the front only tends to the geostrophic asymptotic state of zero radial velocity very slowly (i.e. as ftF→∞) for finite values of LR/R0. However, as LR/R0→0, it reaches this state when ftF∌1. This analysis of the overall nonlinear behaviour of the gravity current is consistent with two two-dimensional non-hydrostatic (Navier–Stokes) and axisymmetric hydrostatic (shallow-water) Eulerian numerical simulations of the varying form of the rotating gravity current. When the effect of surface friction is considered, it is found that the mean movement of the front is significantly slowed. Furthermore, the oscillations with angular frequency f and the slow growth of the radius, when ftF≄1, are consistent with recent experiments

    On the transition towards slow manifold in shallow-water and 3D Euler equations in a rotating frame

    Get PDF
    The long-time, asymptotic state of rotating homogeneous shallow-water equations is investigated. Our analysis is based on long-time averaged rotating shallow-water equations describing interactions of large-scale, horizontal, two-dimensional motions with surface inertial-gravity waves field for a shallow, uniformly rotating fluid layer. These equations are obtained in two steps: first by introducing a Poincare/Kelvin linear propagator directly into classical shallow-water equations, then by averaging. The averaged equations describe interaction of wave fields with large-scale motions on time scales long compared to the time scale 1/f(sub o) introduced by rotation (f(sub o)/2-angular velocity of background rotation). The present analysis is similar to the one presented by Waleffe (1991) for 3D Euler equations in a rotating frame. However, since three-wave interactions in rotating shallow-water equations are forbidden, the final equations describing the asymptotic state are simplified considerably. Special emphasis is given to a new conservation law found in the asymptotic state and decoupling of the dynamics of the divergence free part of the velocity field. The possible rising of a decoupled dynamics in the asymptotic state is also investigated for homogeneous turbulence subjected to a background rotation. In our analysis we use long-time expansion, where the velocity field is decomposed into the 'slow manifold' part (the manifold which is unaffected by the linear 'rapid' effects of rotation or the inertial waves) and a formal 3D disturbance. We derive the physical space version of the long-time averaged equations and consider an invariant, basis-free derivation. This formulation can be used to generalize Waleffe's (1991) helical decomposition to viscous inhomogeneous flows (e.g. problems in cylindrical geometry with no-slip boundary conditions on the cylinder surface and homogeneous in the vertical direction)

    Integrability and regularity of 3D Euler and equations for uniformly rotating fluids

    Get PDF
    AbstractWe consider 3D Euler and Navier-Stokes equations describing dynamics of uniformly rotating fluids. Periodic boundary conditions are imposed, and the ratio of domain periods is assumed to be generic (nonresonant). We show that solutions of 3D Euler/Navier-Stokes equations can be decomposed as U(t, x1, x2, x3) = Ũ(t, x1, x2) + V(t, x1, x2, x3) + r where Ũ is a solution of the 2D Euler/Navier-Stokes system with vertically averaged initial data (axis of rotation is taken along the vertical 3). Here r is a remainder of order Ro12a where Roa = (H0U0(Đ©0L20) is the anisotropic Rossby number (H0—height, L0—horizontal length scale, Đ©0—angular velocity of background rotation, U0—horizontal velocity scale); Roa = (H0L0)Ro where H0L0 is the aspect ratio and Ro = U0(Đ©0L0) is a Rossby number based on the horizontal length scale L0. The vector field V(t, x1, x2, x3) which is exactly solved in terms of 2D dynamics of vertically averaged fields is phase-locked to the phases 2Đ©0t, τ1(t), and τ2(t). The last two are defined in terms of passively advected scalars by 2D turbulence. The phases τ1(t) and τ2(t) are associated with vertically averaged vertical vorticity curl Ū(t) · e3 and velocity Ū3(t); the last is weighted (in Fourier space) by a classical nonlocal wave operator. We show that 3D rotating turbulence decouples into phase turbulence for V(t, x1, x2, x3) and 2D turbulence for vertically averaged fields Ū(t, x1, x2) if the anisotropic Rossby number Roa is small. The mathematically rigorous control of the error r is used to prove existence on a long time interval T∗ of regular solutions to 3D Euler equations (T∗ → +∞, as Roa → 0); and global existence of regular solutions for 3D Navier-Stokes equations in the small anisotropic Rossby number case

    Climate change and growing megacities: hazards and vulnerability

    Get PDF
    This paper is a review of geophysical and climatic trends associated with extreme weather events and natural hazards, their implications for urban areas and the effects of continued environmental modification due to urban expansion. It discusses how urban design, technological development and societal behaviour can either ameliorate or worsen climate-induced hazards in urban areas. Pressures – ranging from excessive rainfall causing urban flooding to urban temperature extremes driving air pollution – require more attention to understand, model and predict changes in hazards in urban areas. It concludes that involving different techniques for data analysis and system modelling is more appropriate for practical decision-making than a purely reductionist approach. Successfully determining the future environment of megacities will, however, require joint action with societally informed decision makers, grounded in sound scientific achievements

    Simulating meteorological profiles to study noise propagation from freeways

    Get PDF
    Forecasts of noise pollution from a highway line segment noise source are obtained from a sound propagation model utilizing effective sound speed profiles derived from a Numerical Weather Prediction (NWP) limited area forecast with 1 km horizontal resolution and near-ground vertical resolution finer than 20 m. Methods for temporal along with horizontal and vertical spatial nesting are demonstrated within the NWP model for maintaining forecast feasibility. It is shown that vertical nesting can improve the prediction of finer structures in near-ground temperature and velocity profiles, such as morning temperature inversions and low level jet-like features. Accurate representation of these features is shown to be important for modeling sound refraction phenomena and for enabling accurate noise assessment. Comparisons are made using the parabolic equation model for predictions with profiles derived from NWP simulations and from field experiment observations during mornings on November 7 and 8, 2006 in Phoenix, Arizona. The challenges faced in simulating accurate meteorological profiles at high resolution for sound propagation applications are highlighted and areas for possible improvement are discussed

    On the Long-Term Hydroclimatic Sustainability of Perennial Bioenergy Crop Expansion over the United States

    Get PDF
    Large-scale cultivation of perennial bioenergy crops (e.g., miscanthus and switchgrass) offers unique opportunities to mitigate climate change through avoided fossil fuel use and associated greenhouse gas reduction. Although conversion of existing agriculturally intensive lands (e.g., maize and soy) to perennial bioenergy cropping systems has been shown to reduce near-surface temperatures, unintended consequences on natural water resources via depletion of soil moisture may offset these benefits. The hydroclimatic impacts associated with perennial bioenergy crop expansion over the contiguous United States are quantified using the Weather Research and Forecasting Model dynamically coupled to a land surface model (LSM). A suite of continuous (2000–09) medium-range resolution (20-km grid spacing) ensemble-based simulations is conducted using seasonally evolving biophysical representation of perennial bioenergy cropping systems within the LSM based on observational data. Deployment is carried out only over suitable abandoned and degraded farmlands to avoid competition with existing food cropping systems. Results show that near-surface cooling (locally, up to 5°C) is greatest during the growing season over portions of the central United States. For some regions, principal impacts are restricted to a reduction in near-surface temperature (e.g., eastern portions of the United States), whereas for other regions deployment leads to soil moisture reduction in excess of 0.15–0.2 m3 m−3 during the simulated 10-yr period (e.g., western Great Plains). This reduction (~25%–30% of available soil moisture) manifests as a progressively decreasing trend over time. The large-scale focus of this research demonstrates the long-term hydroclimatic sustainability of large-scale deployment of perennial bioenergy crops across the continental United States, revealing potential hot spots of suitable deployment and regions to avoid

    Rayleigh-Taylor and Richtmyer-Meshkov instabilities: A journey through scales

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordHydrodynamic instabilities such as Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities usually appear in conjunction with the Kelvin-Helmholtz (KH) instability and are found in many natural phenomenon and engineering applications. They frequently result in turbulent mixing, which has a major impact on the overall flow development and other effective material properties. This can either be a desired outcome, an unwelcome side effect, or just an unavoidable consequence, but must in all cases be characterized in any model. The RT instability occurs at an interface between different fluids, when the light fluid is accelerated into the heavy. The RM instability may be considered a special case of the RT instability, when the acceleration provided is impulsive in nature such as that resulting from a shock wave. In this pedagogical review, we provide an extensive survey of the applications and examples where such instabilities play a central role. First, fundamental aspects of the instabilities are reviewed including the underlying flow physics at different stages of development, followed by an overview of analytical models describing the linear, nonlinear and fully turbulent stages. RT and RM instabilities pose special challenges to numerical modeling, due to the requirement that the sharp interface separating the fluids be captured with fidelity. These challenges are discussed at length here, followed by a summary of the significant progress in recent years in addressing them. Examples of the pivotal roles played by the instabilities in applications are given in the context of solar prominences, ionospheric flows in space, supernovae, inertial fusion and pulsed-power experiments, pulsed detonation engines and scramjets. Progress in our understanding of special cases of RT/RM instabilities is reviewed, including the effects of material strength, chemical reactions, magnetic fields, as well as the roles the instabilities play in ejecta formation and transport, and explosively expanding flows. The article is addressed to a broad audience, but with particular attention to graduate students and researchers that are interested in the state-of-the-art in our understanding of the instabilities and the unique issues they present in the applications in which they are prominent.Science and Technology Facilities CouncilScience and Technology Facilities Counci

    The Minimum-Uncertainty Squeezed States for for Atoms and Photons in a Cavity

    Get PDF
    We describe a six-parameter family of the minimum-uncertainty squeezed states for the harmonic oscillator in nonrelativistic quantum mechanics. They are derived by the action of corresponding maximal kinematical invariance group on the standard ground state solution. We show that the product of the variances attains the required minimum value 1/4 only at the instances that one variance is a minimum and the other is a maximum, when the squeezing of one of the variances occurs. The generalized coherent states are explicitly constructed and their Wigner function is studied. The overlap coefficients between the squeezed, or generalized harmonic, and the Fock states are explicitly evaluated in terms of hypergeometric functions. The corresponding photons statistics are discussed and some applications to quantum optics, cavity quantum electrodynamics, and superfocusing in channeling scattering are mentioned. Explicit solutions of the Heisenberg equations for radiation field operators with squeezing are found.Comment: 27 pages, no figures, 174 references J. Phys. B: At. Mol. Opt. Phys., Special Issue celebrating the 20th anniversary of quantum state engineering (R. Blatt, A. Lvovsky, and G. Milburn, Guest Editors), May 201
    • 

    corecore