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ABSTRACT 32 

The forms and frequency of geophysical and atmospheric hazards associated with extreme 33 

environmental conditions are evolving as global and regional climates change. Compounding 34 

effects due to the global growth of megacities modulate the impacts of such hazards. Rising 35 

carbon emissions, largely produced by increasing energy demand in urban areas throughout the 36 

world, is considered to be the main cause of long-term changes to the global climate. The 37 

correspondingly greater impacts of geophysical and atmospheric hazards within urban regions, 38 

where the majority of the world’s inhabitants reside, raises concerns regarding vulnerability 39 

and response to varied pressures within the context of a changing climate. These hazards and 40 

their changing variability depend on geography, type of urbanization, and socio-economic 41 

factors. This paper is a review of current and anticipated geophysical and climatic trends 42 

associated with extreme weather events and natural hazards, their succeeding implications for 43 

urban areas, and the compounding pressures added by continued environmental modification 44 

due to urban expansion. We review how urban design, technological development, and societal 45 

behaviour can either ameliorate or worsen climate-induced hazards in urban areas. Pressures 46 

ranging from excessive rainfall leading to urban flooding, to positive and negative urban 47 

temperature extremes - which can simultaneously amplify or diminish local hazards such as 48 

locally and distantly produced high air pollution - require attention in order to understand, 49 

model, and predict changes in hazards in urban areas. 50 

Keywords: Urban, hazards, vulnerability, sustainability, modelling, regional climate change. 51 

52 
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1. Introduction and Overview  53 

From the earliest times, socio-economic factors and the ease of withstanding natural hazards 54 

in larger groups have led people to conglomerate. Throughout the world from the smallest 55 

communities to the largest cities, these gatherings have formed self-replicating patterns of 56 

organisation (Hunt 2005; Batty, 2008). However, as the Second United Nations Habitat 57 

Conference in 1996 recognised (UN, 1996), cities, “especially in developing countries”, can 58 

also be responsible for degradation of regional environments with harmful impacts for people 59 

and ecosystems, including deterioration of health and safety, increased air pollution, inadequate 60 

sewage and water management distribution systems, and modification of patterns and 61 

intensities of storms and floods (Grimm et al., 2008; Hunt, 2009a; Hondula et al., 2014). Risks 62 

from disease and pandemics coupled with increased exposure owing to population increase and 63 

climate change also have implications for future vulnerability of urban areas (Hunt et al., 2016).  64 

   65 

While cities serve as important agents that provide economic (e.g., employment), social (e.g., 66 

education), and a host of biophysical benefits (e.g., access to clean water and sanitation), their 67 

increasing size also places undue strain on infrastructure, increases energy demand, and has 68 

lead to ecological degradation (Grimm et al., 2008). As this paper further explains, the 69 

increasing size and population of cities generally lead to worsening of environmental hazards. 70 

In addition, these factors extend the distances around cities where hazards can be exacerbated. 71 

This is why cities are also becoming more vulnerable to hazards produced by other megacities 72 

located upwind and by upwind environmental dangers, such as smoke from burning and 73 

pollutants from shipping (e.g. Zhang et al., 2011; Cheng and Chan, 2012; Lin et al., 2014; Li 74 

et al., 2015). As cities and clusters of cities, or conurbations, expand, their energy use 75 

(Madlener and Sunak, 2011) and pollution emissions increase (Akimoto, 2003). Cities can also 76 

alter the adjoining rural environment, and the rivers and coasts that are so crucial to the 77 

livelihoods of small communities and natural ecosystems (Ehrenfeld, 2000; Lee et al., 2006; 78 

Shao et al., 2006; Aguilar, 2008; Georgescu et al., 2009; Salvati et al., 2012; Li et al., 2016a; 79 

Yang et al., 2016a). In particular, although recent estimates indicate cities take up less than 1% 80 

of the Earth’s landmass (Schneider et al., 2010), they are responsible for a disproportionate 81 

amount of long-lived greenhouse gas emissions (UN, 2007; Satterthwaite, 2008). 82 

 83 

This paper is firstly a review of current and projected extreme weather event trends and 84 

associated natural hazards, as well as of most recent studies in the field. Secondly, we consider 85 

the effects of these occurrences on urban hazards and their impact on urban environmental 86 

vulnerability and sustainability. The conclusions highlight how studies of hazards and 87 

vulnerability provide the basis for estimating impacts and policy development.  88 

2. Trends in climate related hazards  89 

Trends in climate related hazards will be discussed in two sub-sections focusing mainly on 90 

their relation to regional climate extremes and urban growth. 91 
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2.1. Extremes in regional climate and environment  92 

New observations and earth system models are showing how the climate has varied in the past 93 

in different characteristic ways (IPCC, 2014). Weather patterns are determined by climate, but 94 

also by orographic factors and other elements of the earth-climate system with their own 95 

intrinsic variability (Schellnhuber et al., 2004). Over millennia, familiar atmospheric 96 

circulations such as temperate westerly winds and sub-tropical trade winds have persisted, even 97 

through ice ages (Houghton, 2015). However, although hemispheric oceanic circulations such 98 

as the Gulf Stream have endured, there have been large fluctuations, affecting ocean 99 

temperatures in sub-arctic regions (Broecker, 2010). Observational evidence reveals local 100 

climatic effects associated with natural variations of atmospheric winds and ocean currents 101 

over annual and decadal periods – for example, the El Nino Southern Oscillation (ENSO) – 102 

and movements and variability of zones of forestation and desertification, such as the once in 103 

a century southward movement of the Sahel in the 1970’s. 104 

 105 

Paleo-climate models, and bio-chemical measurements, now show that humans have also 106 

played a role in influencing regional variability of climate, originally through agricultural and 107 

forestry management, and more recently through development of built environments and 108 

greenhouse gas emissions (Hunt, 2005; Lentz et al., 2014). For example, the magnitude of 109 

current melting of Arctic summer ice and glaciers across the world is larger than what has 110 

occurred naturally since the last ice ages about 10,000 years ago. The conclusion of IPCC 111 

(2014) is that this trend is likely to be a result of human effects, although high levels of internal 112 

variability can mask or interrupt the visibility of anthropogenically-induced changes (Swart et 113 

al., 2015). A schematic diagram illustrating the diversity of natural effects and hazards 114 

influenced by climate change is shown in Figure 1.  115 

 116 

IPCC (2014) concludes with high confidence that globally averaged near-surface temperatures 117 

will remain essentially constant for centuries even if anthropogenic emissions stopped 118 

completely, unless there is a considerable net removal of carbon dioxide from the atmosphere. 119 

Furthermore, continued decline of biological species associated with a changing climate is 120 

likely to endure unless the current trend in climate change begins to reverse. Recent 121 

measurements suggest that ice sheet temperatures may have already risen to the point where 122 

polar and mountain ice sheets and glaciers are beginning to fracture and slide into the ocean at 123 

a sufficient volume rate that they may continue to do so, even if the global average temperature 124 

returns to 1850 values during the forthcoming 200-300 years. This would cause significant sea 125 

level rise of several meters over the next millennium, resulting in catastrophic flooding and 126 

associated impacts on global society (IPCC, 2014). The current scientific majority view is that 127 

unless the future level of human influence on climate were to decline sometime during this 128 

century through global action (therefore, halting the current rise of carbon emissions by or prior 129 

to mid-century; see Stern, 2006), aspects of the climate system (e.g., biosphere) will begin to 130 

change irreversibly (Lenton et al., 2008). This is the assumption of much current policy-making 131 

and is the subject of this review. However, this notion is not shared by the entire scientific 132 

community (Lawson, 2008).  For example, while Solomon et al. (2009) argue that ice-cap loss, 133 

hence sea level rise, is irreversible due to the longevity of atmospheric carbon dioxide 134 
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emissions and already risen ocean temperatures, Notz (2009) defends that there is no “tipping 135 

point” for the loss of Arctic summer sea ice; therefore, sea ice is more likely to recover if 136 

climate warming is stopped by reversing carbon emissions to pre-industrialization levels (if not 137 

to prior), as supported also by Tietsche et al. (2011). Conversely, the irreversibility of the ice 138 

sheet loss covering Greenland and the West Antarctic cannot be ruled out (Notz, 2009).  139 

  140 

Recent analysis of climate prediction models and observational analysis indicate that, while 141 

short-term trends (i.e. decadal scale or less) may not necessarily reveal long-term trends, the 142 

effects of increasing carbon emissions have played an important role in global warming, 143 

generally exceeding 0.1°C/decade, since the middle of the previous century (Tollefson, 2016).  144 

Of key relevance for urban areas are effects on the variability of climate, including their impacts 145 

on the global environment and society. Atypical events include ‘extreme’ events, defined 146 

broadly as events that differ from average weather and climate, and/or that may persist over 147 

longer periods. Other atypical events are the significant changes in trends, including those 148 

owing to occurrence of extreme events (IPCC, 2012; Hov et al., 2013). There are significant 149 

similarities between the main features of climate variability and other complex systems. An 150 

important characteristic is that as fluctuations increase in frequency and magnitude, the non-151 

linear interactions between the various components of the processes under investigation 152 

become more significant. In addition, physically based reductionist models become more 153 

reliable than purely statistical extrapolations based on past events (Hunt et al., 1996; Hunt et 154 

al., 2012). 155 

 156 

An example of short-term, high magnitude events are strong convective updrafts and 157 

downdrafts, resulting from higher surface temperature, deeper troposphere and cooler 158 

stratosphere, which leads to higher rainfall intensity (now reaching 200 mm/hour and double 159 

its value 10 years ago in south-east Asia; see Hong Kong Observatory, 2016; Wong et al., 2011; 160 

Lee et al., 2010). Consequently, increased frequency of lightning has been observed (Hunt et 161 

al., 2010; ten Hoeve et al., 2012) with a wider global distribution extending to Arctic regions, 162 

as demonstrated by regular monitoring from satellites and globally from ground networks. This 163 

trend is leading to enhanced fire risk, forest degradation and destruction, more rapid run-off 164 

and consequential drought in some mountainous areas. These trends in convective storm events 165 

are associated with, especially in southeastern USA, alteration in the changing nature of 166 

tornadoes with increased maximum wind speeds and greater widening of the affected regions 167 

(Hunt and Hangan, 2013; Elsner et al., 2015). However, observational analysis for other 168 

portions of the USA indicates a decreasing or near-zero trend in tornado temporal variability 169 

since 1950 (Guo et al., 2016), highlighting the importance of regionally based impact and 170 

vulnerability analysis. 171 

 172 

Equally important types of extremes include periods of very warm or cold weather, rainy or 173 

snowy, or very windy, which occur more frequently and persist over considerably longer 174 

periods than observed historically (WMO, 2013; IPCC, 2014; Heim, 2015; Matthews et al., 175 

2016). Model simulations combined with physical arguments and exploratory analysis of 176 

recent global weather anomalies have concluded that such ‘blocking’ events will occur more 177 
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often and last longer (Cassou and Guilyardi, 2007; Li et al., 2012). Sometimes, these events 178 

occur in a region simultaneously as climatic anomalies in other regions (Cheung et al., 2012). 179 

A recent notable illustration was the extreme 2010 flooding in Pakistan, which was associated 180 

with blocking in western Russia and persistent high temperatures in Moscow. Importantly, not 181 

all global computer models have come to this conclusion (Pelly and Hoskins, 2003). 182 

 183 

Global climate modelling has progressively become more useful (i.e., since the 1970’s) as 184 

spatial resolution has improved, leading to better representation of the key regional variations 185 

of planetary climate. The incorporation of urban canopy models within earth system models 186 

enables improved understanding of the interacting components of the earth system jointly with 187 

human activities (e.g., Li et al., 2016b&c). Deficiencies in the representation of the marked 188 

trends and fluctuations in regional climate remain, such as mountainous regions (with reduced 189 

snowmelt and extremes in flooding), polar regions associated with ocean-atmosphere-190 

cryosphere interactions, and in modelling the lower tropical atmosphere, including the 191 

particular effects of urban areas at high spatial resolution (Shaffer et al., 2016).   192 

2.2. Climate change and urban growth leading to increased hazards and vulnerability 193 

Although the great cities of the world were largely founded for furthering trade, they were also 194 

designed, in part, to protect their citizens from natural and artificial hazards including those 195 

associated with extreme weather conditions (Hunt 2009b; Hunt, 2013). However, urban 196 

hazards may become greater, as human activities change and the overall size of the city 197 

(denoted by diameter L in Figure 2) grows. In Asia and Africa an additional 16% increase in 198 

the total urban population is expected for both continents by 2050 (UN, 2014; for more 199 

information on increase in urban population see 200 

http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS). This is a significantly faster rate 201 

than that at which global climatic parameters are changing, such as the annual average 202 

temperature increase relative to pre-industrial values (doubling over about 70 years) (for 203 

Chinese megacities see Chan and Yao, 2008). These changes are likely to lead to increased 204 

energy use and emissions of pollution. In addition, recent research has shown that projected 205 

impacts on near-surface temperature within urban areas are of the same order of magnitude as 206 

effects due to large-scale climate change (Georgescu et al., 2013, 2014), underscoring the 207 

significance of cities as instruments of adaptation and mitigation. 208 

 209 

Even with no change in the form of or the type of activities within a city, as the built up area 210 

(i.e., size) and energy use increase, differences in temperature and humidity between the urban 211 

and rural areas grow significantly. Atmospheric flows are changed as a result of increased 212 

convection and turbulence. In desert areas (such as central China) strong inversion layers and 213 

dust lead to trapping of air pollution. In addition, the larger the city, the larger the total 214 

emissions of air pollutants and the higher the concentration (approximately in proportion to L; 215 

Figure 2). As their size increases above the characteristic ‘meso-scale’ distance, i.e. Rossby 216 

radius LR (Hunt et al., 2004), the influence of the earth’s rotation becomes significant at mid-217 

latitudes. The physico-chemical properties of the air and water, and many aspects of the 218 

biosphere, depend on the relative sizes of green and built-up areas (Figure 2). Changes in these 219 

http://data.worldbank.org/indicator/SP.URB.TOTL.IN.ZS
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properties also depend on the buildings and planning of cities, their infrastructure, and people’s 220 

social behaviour patterns and government structures (e.g., Eakin et al., 2017), which vary 221 

between regions and countries, and among large and small cities or even rural areas. In addition, 222 

most people spend about 80% of their time indoors, where environmental factors (e.g., 223 

temperature, air circulation and quality, and humidity) are generally designed for much of the 224 

time to be markedly different from those outside (Sailor, 2014; Rupp et al., 2015). Indoor 225 

environmental control affects energy use and the actual levels of temperature and air quality 226 

experienced by occupants (Hunt and Li, 2014), but have consequential implications for outdoor 227 

environments (e.g., Taleghani et al., 2013; Salamanca et al., 2014). 228 

 229 

In ‘low-rise’ megacities, the average heights of buildings are approximately constant (e.g., in 230 

Europe, Africa, and some USA cities such as Phoenix, AZ), although most now have one or 231 

more central business districts, which have incorporated buildings of greater vertical 232 

dimension. However, in ‘high-rise’ megacities in Asia and South America the average level of 233 

buildings has continued to rise relative to the narrow spaces between buildings. In both types 234 

of megacities, as L extends over 30-100 km, it becomes comparable with the size of LR 235 

mesoscale weather patterns (Hunt et al., 2004). Over this distance, winds tend to change 236 

direction as air passes over the city and continues to affect the atmospheric boundary layer and 237 

patterns of precipitation downwind (Cheng and Chan, 2012; Li et al., 2013a). 238 

 239 

In low-rise cities whose forms, with few exceptions, are not changing significantly, the 240 

populations are increasing, approximately in proportion to the area, i.e. L2 (Hunt et al., 2011).  241 

But in high-rise cities with rising population densities, the total population is rising at a faster 242 

relative rate. Consequently, stationary energy sources such as those used in 243 

heating/cooling/servicing buildings and for supplying industries and water (of particular 244 

relevance in California; see Andrew, 2009) are increasing slightly more rapidly than L2. 245 

However, the additional energy used for transportation (except in cities with high usage of 246 

public transportation that are also more likely to integrate technological advancements – such 247 

as those mentioned by Carrington (2016)) is increasing significantly more rapidly as cities 248 

grow. Because the lengths of journeys in urban areas increase with L, and the population and 249 

incomes are increasing as L2, the heat released per unit area by transportation is increasing in 250 

proportion to L (Hunt et al., 2011). The energy for buildings, industry, and road transport is 251 

generally supplied from outside built-up areas. New low carbon energy sources will therefore 252 

be necessary to avoid the contribution of urban areas to global emissions of harmful pollution 253 

(Kammen and Sunter, 2016). 254 

 255 

The thermal environment affected by the city is determined by the heat capacity of buildings, 256 

differing properties of urban land surfaces (e.g., absorption or reflection of solar radiation), 257 

local heat emission from energy systems (e.g., air conditioning), and heat from transportation 258 

(Sailor, 2011) and other anthropogenic sources such as re-radiation from buildings and traffic. 259 

Equally important is the reduced ventilation caused by wind resistance of buildings, and in 260 

some cities the reduction of solar radiation produced by dust and particles of air pollution. 261 

These factors, which can be modified by planning, building design, and operation of urban 262 
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systems, alter the surface and temperatures inside and outside buildings (Georgescu et al., 263 

2015). During summer periods, temperatures are raised inside the urban area for longer periods 264 

compared with rural areas, whose temperature decreases at a faster rate after sunset. The 265 

average temperatures over 24 hours in urban areas can exceed rural temperatures by 5C or 266 

more, with serious implications on energy use and health, although this value has considerable 267 

geographical and seasonal dependency. Importantly, the urban heat island (UHI) phenomenon 268 

in high-density cities such as Hong Kong is rather due to anthropogenic impacts whereas in the 269 

low-rise, less compact cities temperature increase is additionally governed by the re-emission 270 

of energy absorbed by the built environment (Yang et al., 2016b). While the UHI can reduce 271 

the need for heating in cold seasons, its effect will considerably increase energy use for cooling 272 

purposes during the summer (see US Department of Energy, 2013). Compounding the 273 

aforementioned changes in the physical environment are implications of, for example, extreme 274 

heat events in cities, with broad health consequences (Hoshiko et al., 2010; O’Neill and Ebi, 275 

2009; Hajat et al., 2007&2014; Huynen et al., 2001). But, if streets are covered with trees, or 276 

roofs with vegetation, the shade and evapotranspiration lower daytime peak urban temperatures 277 

(Maggiotto et al., 2014; Middel et al., 2015; Georgescu, 2015; Li and Norford, 2016; Tan et 278 

al., 2016; Yang et al., 2016c). In large southeastern Asian cities (e.g., Li et al., 2013b), the UHI 279 

typically exceeds 2C at night. By contrast, in large cities in continental climates (with 280 

populations greater than 5 million people) during high pollution episodes in winter, the urban 281 

temperatures can be lower compared to rural areas throughout the diurnal cycle.  282 

 283 

The effect of heat release in the city also affects the variation of temperature as the air moves 284 

across the city, with maximum values where high-rise buildings are concentrated in the centre 285 

of the city and towards the downwind side. The larger the city, the greater this effect is. Over 286 

the neighbourhood scale of 1-3 km, temperatures are raised or lowered by parks, rivers, 287 

buildings and the presence of other urban forms (Declet-Barreto et al., 2013; Connors et al., 288 

2013). A distribution of smaller parks lowers the average temperature more than a few large 289 

parks (Bohnenstengel et al., 2011) and reduces the impacts of heat waves as shown in mortality 290 

statistics for New York City (Huang, 2013). Such considerations bring to light the significance 291 

of urban design and form (Zhou et al., 2011; Connors et al., 2013), which necessitate discussion 292 

within a broader urban sustainability framework than has been acknowledged to date 293 

(Georgescu et al., 2015). 294 

 295 

Example 1. Energy use in a desert urban area 296 

An example of the complexity by which urban areas can modify environmental hazards is 297 

associated with the heat emitted by air conditioning (AC) systems. Physics-based modelling 298 

simulations accounting for the variation in people’s behaviour have been confirmed by 299 

variations in observed temperatures. The results quantify the amount of electricity used on 300 

diurnal time scales during a number of extreme heat events (EHEs) in a rapidly urbanizing 301 

semi-arid metropolitan area (Phoenix, AZ), indicating that cooling from AC contributes about 302 

53% of the overall daily electricity requirements during these periods. Electricity consumption 303 

peaked during late afternoon hours (roughly 3-6pm, locally), when the demand for AC 304 

approached two-thirds of the total hourly demand (Salamanca et al., 2013).  305 
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 306 

The multilayer building energy modelling (BEM) system, dynamically coupled to an 307 

atmospheric model, was designed to predict cooling/heating energy demand (i.e., the energy 308 

demand associated with ambient meteorological conditions) and has been applied at city scale 309 

for contemporary and future conditions associated with urban expansion (Salamanca et al., 310 

2014, 2015). However, the BEM model alone is not able to predict the total energy demand 311 

because the human behaviour consumption element (i.e., the energy component that is not 312 

associated with the meteorology and therefore depends entirely on human behaviour) needs to 313 

be accounted for separately. 314 

Salamanca et al. (2013) estimated the human behaviour consumption (i.e., base load), analysing 315 

citywide observed monthly mean electric loads for a specific year. For the Phoenix 316 

metropolitan area, minimum observed electric loads occurred during March and November, 317 

coinciding with moderate environmental weather conditions. These two months were 318 

considered the baseline months with negligible heating/cooling electric consumption. In this 319 

way and based on observed data, the diurnal cycle of the human behaviour consumption was 320 

computed, coupled with the meteorological component, and used to calculate both electricity 321 

consumption and its contribution to the region’s UHI (Salamanca et al., 2013, 2014, 2015).  322 

With higher peak temperatures and longer hot periods anticipated in future summers, electrical 323 

demand by AC systems will have to be met by energy plants and the electric grid (Huang and 324 

Gurney, 2016). Reliable energy forecasting methods, such as the simulations described above, 325 

will be needed for resource planning of rapidly growing urban areas, especially in the extreme 326 

conditions of semi-arid environments. Complicating such situations is the positive impact on 327 

air quality associated with the destabilization of the planetary boundary layer (due to heat 328 

emission from ACs), which promotes night-time vertical mixing and underscore challenges of 329 

urban adaptation (Georgescu, 2015, Sharma et al., 2016). Therefore, compensating effects on 330 

thermal, air quality, and other indicators, underline the need for comprehensive markers that 331 

characterize the totality of urban-induced effects. 332 

 333 

From an energy perspective, AC use is greatest during the same periods of extremely high 334 

temperatures that cause higher transmission losses and reduced thermal efficiencies at electric 335 

generation facilities. During a 2006 heat wave, electric power transformers failed in Missouri 336 

and New York, causing interruptions of the electric power supply. In addition, more than 2,000 337 

distribution line transformers in California failed during a July 2006 heat wave, causing loss of 338 

power to approximately 1.3 million customers. Research ascertaining the potential for 339 

individual and institutional adaptive strategies to lessen impacts due to extreme heat, and in 340 

particular, impacts on human health risk caused by blackouts, is necessary to establish support 341 

tools aiding development of novel protocols for heat risk emergency response monitoring and 342 

planning (Kuras et al., 2017). Thus, increased cooling demand may increase the occurrence of 343 

peak loads coinciding with periods when generation efficiencies are lowest. Furthermore, the 344 

effects of high temperatures may be exacerbated when wind speeds are low or night-time 345 

temperatures are high, preventing transmission lines from cooling. This is a particular concern 346 
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because night-time temperatures have been increasing at a faster rate than daytime 347 

temperatures (e.g., Georgescu et al., 2013). 348 

Comparison with observational data has demonstrated that the physics-based modelling system 349 

is an effective tool for assessing (indoor) urban cooling requirements, which involves 350 

evaluating electricity consumption for different urban growth patterns and under extreme 351 

summertime weather conditions. These studies will be crucial for development of reliable 352 

projections on future cooling needs and environmental consequences of rapidly urbanizing 353 

regions under various climate scenarios (Georgescu et al., 2012, 2014; Bartos and Chester, 354 

2015) that strategically incorporate adaptation and mitigation strategies alleviating energy 355 

demand (Georgescu et al., 2014; Salamanca et al., 2016). 356 

Example 2. Asian and subtropical cities 357 

These cities have shown how, when very low regional temperatures occur, temperatures can 358 

become even lower in urban areas as result of air pollution or sand storms reducing solar 359 

radiation. The provision of heating that compensates for the cooling results in higher air 360 

pollution, subsequently exacerbating hazards associated with extreme low temperatures. The 361 

main hazards associated with pollutants in urban areas also arise from high concentrations of 362 

contaminants from industry, transport, and agriculture, as well as particulates arising from 363 

natural sources (e.g., wind-blown sand or noxious gases from lakes) (Jacobson, 2012; Li et al. 364 

2015, 2016a), and may cause serious health implications (Pope and Dockery, 2006).  365 

 366 

As winds transport pollutants into an urban area, concentrations tend to increase in the 367 

downwind direction. At high temperatures during summer months, especially in the tropics, 368 

climatic variations can induce low winds, high temperatures, which may be raised further by 369 

high emissions from static and moving sources, such as episodes in Athens in 1987 (Matzarakis 370 

and Mayer, 1991) and Moscow in 2010 (Shaposhnikov et al., 2014), and others in Beijing and 371 

Shanghai (Wang and Gong, 2010; Huang et al., 2010). Because road vehicles are the main 372 

source of polluting gases and particles in urban areas, and because journey distances (especially 373 

for low-rise cities) increase as cities expand, emissions of air pollutants per unit area also 374 

increase in proportion to the diameter L. The transport of atmospheric boundary layer 375 

pollutants leads to degradation of air quality downwind, over distances that in some 376 

meteorological conditions can extend hundreds of km (Cheng and Chan, 2012).   377 

 378 

As air pollutants are transported across the city, while some gases increase in concentration, 379 

others such as NOx undergo chemical transformation and are reduced in the centre while 380 

increasing in the outer regions. Overall, the magnitude of the pollutant concentration increases 381 

with L. With anthropogenic climate change as an additional forcing agent, the sources of 382 

pollutant and heat increase in urban areas can be compounded by, for example, widespread use 383 

of AC use in buildings and vehicles. Both hazards are worsened by lengthy periods of calm 384 

conditions, which are projected to occur with increased frequency under a future climate 385 

characterized by increased occurrence of synoptic-scale blocking (Cassou and Guilyardi, 2007; 386 

Li et al., 2012). 387 
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 388 

Example 3. Amplification of hazards in urban areas  389 

Natural hazards arising outside urban areas are changed significantly within them. In some 390 

situations, different urban hazards act in combination. In the presence of high winds, including 391 

Tropical Cyclones (TCs) and tornadoes, although the resistance of buildings reduces the mean 392 

wind speeds over the urban areas compared with outside, locally, wind speeds can exceed rural 393 

wind speeds in gaps between buildings, and turbulent gusts are amplified (Oke, 1987; Britter 394 

and Hunt, 1979). In addition, because significant numbers of high-rise buildings are being built 395 

in often highly populous coastal cities that are subject to impacts from TCs, there is concern 396 

about the growing vulnerability of their inhabitants (McGranahan et al., 2007; Pielke Jr., 2007). 397 

Although global climate change is increasing the average sea surface temperature and the 398 

average tropopause height, there is not yet any conclusive statistical evidence about the 399 

projected strength and frequency of TCs. However, there is evidence that trajectories of those 400 

major TCs that reach land are changing and reaching lower latitudes than previously (e.g., in 401 

northern Malaysia). In general, the resistance to the airflow caused by the built environment 402 

tends to deflect onshore winds parallel to the coast while amplifying peak near-surface winds 403 

(Chan and Chan, 2015; Hunt et al., 2004). As urban areas expand, this trend is likely to be 404 

amplified, which may also reduce the onshore movement of TCs. Coastal agricultural regions, 405 

either surrounding or within urban areas themselves, that rely on TC rainfall may be negatively 406 

affected if precipitation is reduced sufficiently, potentially resulting in increased irrigation 407 

demand to meet required yields. 408 

 409 

Hydrological extremes in the form of drought and flood can be amplified in urban areas. The 410 

return period of intense precipitation over short periods (100 mm/hr) in Asia has decreased 411 

(e.g., from 37 to 18 years according to Hong Kong Observatory (2016); cf. Wong et al., (2011) 412 

and Lee et al., (2010)). The peak intensity of rainfall is likely to occur in geographical areas 413 

where the surface air flow converges, which can happen in mountains, but also within 414 

megacities, which affect regional climates (Shepherd et al., 2011; Georgescu et al., 2012; Smith 415 

et al., 2013; Holst et al., 2016; Benson-Lira et al., 2016, Chow et al., 2016). The prediction of 416 

rainfall and flooding in the low lying and almost completely urbanised areas of the island of 417 

Singapore is improving as a result of detailed computational models and a dense network of 418 

real time data (Pereira et al., 2014, Chow et al., 2016). Deeper convection caused by climate 419 

change effects on the troposphere makes such events more likely in future. Important impacts 420 

are also evident below the land-surface atmosphere interface. Decreased precipitation and 421 

increased evaporation associated with longer periods of droughts and high temperature 422 

episodes are depleting underground reservoirs and natural aquifers. In India, reduced monsoon 423 

rains are lowering water levels in some lakes and rivers. Water shortages tend to be exacerbated 424 

both within and around expanding urban areas, particularly in Asia and Africa where some city 425 

aquifers are now more than 30m below ground level (Morris et al., 2003). 426 

 427 

Flooding hazards in urban areas are partly caused by more rapid run-off from distant ice and 428 

snow covered mountains caused by global warming, or by agricultural practices such as 429 

reducing tree cover, which has been found to correlate with vulnerability against flooding (see 430 
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Pauleit et al., 2005 for a UK example). The results are seen in overflowing rivers and water 431 

courses, and in unconfined areas such as streets and fields. Many secondary effects occur in 432 

urban areas such as landslides, weaker foundations, collapsing structures (e.g., the Boulder, 433 

CO, USA, floods of 2013 resulted in excess of $1 billion in property damage) and loss of land 434 

into coastal seas, depending on local geography and infrastructure. In the Philippines, these 435 

secondary effects are found to influence the overall movement of floodwaters and the extent of 436 

danger to communities (NOAH, 2012). The Tropical Cyclone Haiyan in 2013, upon reaching 437 

the southern Philippines, caused unusually large damage to buildings and trees, in large part 438 

because, over the shallow coastal waters, wind stress drove a large surge lifting rocks from the 439 

seabed, transporting them several kilometres inland. Importantly, urban design strategies that 440 

include incorporation of man-made rivers, reservoirs, and planned flood areas, have been 441 

shown to reduce local flooding hazards relative to surrounding areas, highlighting the 442 

importance of engineered infrastructure resilience as a potential adaptive mechanism. 443 

 444 

Other hydrological hazards occur with wind and earthquake induced surges and waves (or 445 

tsunamis) onto coasts (Fernando, 2008). Such hazards flood urban areas along coasts and along 446 

canals connected to the coasts (as occurred with Hurricane Ike; see Kennedy et al., 2011). 447 

Arctic coastal communities are now at risk from tsunamis generated by seismic activity that 448 

has until now been suppressed by sea-ice. Examination of the tsunami waves of 2004, 2010, 449 

and 2011 in Asia and the Pacific have illustrated how such hazards are affected by similar 450 

physical and natural changes of climate (Klettner et al., 2012). As the tsunami in March 2011 451 

reached the East coast of Japan, significant variability in the wave amplitude was observed and 452 

in the surge movement (backwards and forwards up the shore) before flooding urban areas and 453 

the industrial plant at Fukushima. 454 

3. Discussion and Conclusions 455 

This paper examines how extreme natural and artificial hazards in the atmosphere, 456 

hydrosphere, and on land, are becoming more severe and more frequent as global climate 457 

changes. The review emphasises the changing patterns and greater spatial variability of these 458 

hazards over different geographical and climatic regions. As a result, the observed trends and 459 

patterns of hazards are diverging from those of past decades and centuries. Existing models 460 

suggest that this divergence will grow in the future with more intense, longer-duration, and 461 

more frequent extreme events. The extent of the increase and variability in climate-induced 462 

hazards varies between regions and for each specific hazard (Table 1).  463 

 464 

In growing mega-cities, these factors include their surface area extent, urban population and 465 

growth rate, urban design/technology, socio-economic factors and overall societal behaviour. 466 

In considering the major physical and natural causes of hazards, this paper also describes and 467 

analyses their societal effects, and in future work, will examine impacts on policy development. 468 

The concept of societal effects extends beyond the useful, but essentially passive, concept of 469 

vulnerability. For example, communities have shown increasing capability to obtain and use 470 

information in advance of and during hazards (e.g., Hondula and Krishnamurthy, 2014), and 471 
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are increasingly adept at moderating hazard impacts (e.g., reducing the magnitudes and social 472 

impacts of floods in urban areas; see Lagmay, 2015). The recovery of communities following 473 

hazards can reduce long-term impacts. Equally significant are the interactions between urban–474 

biosphere interactions surrounding and within megacities, which have vast effects on health 475 

and the agriculture/forestry municipalities in Latin America and southeast Asia.  476 

 477 

The diagram shown in Figure 3 illustrates how the ‘dynamical-systems’ methodology (e.g. 478 

Wilson, 2000) facilitates a holistic overview (Smuts, 1926), and informs decisions about the 479 

empirical or scientifically based interactions, the various factors that influence or control some 480 

broadly connected collection of processes and organisations. Here, we are considering the links 481 

between global and regional climate change and the processes and hazards that affect urban 482 

hazards, impacts, and potential ameliorating policies (see Hunt (2009b) for complex 483 

relationships between these). The review presented here includes an appraisal of the impact on 484 

health, in particular the combination of temperature extremes and intense air pollution from 485 

traffic, heating and AC use, and particulates entering cities from rural areas. We stress the value 486 

of comprehensive policy development accounting for place-based variability (Table 1) and 487 

therefore directly address compensating effects on thermal, air quality, and other indicators that 488 

characterize the totality of urban-induced effects. Simultaneously, we acknowledge that 489 

wedge-type approaches (e.g., Pacala and Socolow, 2004) can provide insight into optimizing 490 

the efficacy of urban policies, favouring some strategies over others. 491 

 492 

We assert that involving different techniques for data analysis and system modelling is more 493 

appropriate for practical decision making than the purely reductionist approach that builds up 494 

semi-empirical models and connects them to basic data of all the various factors (e.g. Hunt et 495 

al., 2012). Utility of such methods should ensure increasingly pragmatic approaches to 496 

planning the form(s), size(s), and overall future growth of built environments, as well as 497 

development of appropriate policies for green infrastructure and societal behaviour that will 498 

lower energy use. To achieve success, however, will require action that is in concert with 499 

societally informed decision-makers, grounded on sound scientific achievements. Collectively, 500 

these actions will determine the future environment of mega-cities. 501 
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FIGURES and TABLES 903 

 904 

 905 

Figure 1: Main natural effects and hazards influenced by climate change, 906 

**,eg Atmosphere –changes in ocean-basin  scale circulations ; vertical wind , temperature 907 

and pollution profiles; Land –changes in urban ,rural, mountainous terrain ; Ocean and water-908 

changes in coupled ocean-atmosphere circulations; variable sea level rise; rivers grow or 909 

shrink; generally less ocean and land ice      910 
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 911 

Figure 2: Increased hazards (H) in urban areas in relation to urban forcing. When the size 912 

of the urban area (L) becomes equal to or greater than LR (i.e., Rossby radius), the overall 913 

climatic hazards become typically more asymmetrical with a significant skew in the 914 

downwind direction. In this diagram air motion is from left to right, and, as shown in the 915 

graph at the bottom, air pollution, mean temperatures and cumulative wind driven hazard(s) 916 

increase with the distance downwind.  917 
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Table 1: Relating environmental hazards to urbanization and climate change factors. 918 

Types of natural and artificial hazards 

arising  from extreme environmental 

variations (positive or negative denoted by 

+/-) and/or increased persistence and/or 

increased frequency in: 

(i) wind speed (+/-)  

(ii) temperature (+/-) 

(iii) natural and artificial pollutants/radiation 

in the atmosphere, land, and water (+) 

(iv) hydrological processes, e.g.  flooding, 

sea level rise/drought (+/-) 

(v) primary and secondary geophysical 

hazards leading to environmental hazards, 

e.g. earthquakes/tsunamis, volcanoes/land-

slides, floods/land-slides, storm 

surges/floods, sand storms/air pollution (+) 

(vi) Biological/Environmental, e.g. disease, 

desertification (+) 

Urbanisation and vulnerability effects 

Amplification or reduction of natural 

hazards (listed above); hazards associated 

with infrastructure and human activities in 

urban areas (dependent on size, location, 

design and economy of urban areas); 

complex hazards associated with natural and 

human influences on global, regional, and 

urban environmental.  

e.g. higher/lower  winds; higher 

temperatures, increased air pollution and 

increased/decreased water pollution; 

shortages/excesses  of water. 

Examples of significant hazards in large 

urban areas 

Coastal and/or Riverine Cities 

New Orleans (i), Houston (i), New York 

(i,v,vi), Bangkok (iv), Dhaka (i,iv), Tokyo 

(i, iii, v), Hong Kong (i, iii, iv), Jakarta (iii, 

v, vi), Manila (i, iii, iv), Paris and London 

(ii, iii, vi) 

Inland Cities 

Phoenix (ii, iii), Beijing (ii, iii, vi) 

Xian/(other cities in central-western China) 
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(ii, iii, v), Moscow (ii, iii, vi), Athens (ii, iii, 

vi) 

 919 

 920 

Figure 3: System diagram for effects of hazards, impacts, and policies associated with global 921 

climate change, growing urban areas, and societal responses (TH: period of hazards; TR: period 922 

of long-term impacts and recovery). 923 


