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Abstract

Forecasts of noise pollution from a highway line segment noise source

are obtained from a sound propagation model utilizing effective sound speed

profiles derived from a Numerical Weather Prediction (NWP) limited area

forecast with 1 km horizontal resolution and near-ground vertical resolution

finer than 20 m. Methods for temporal along with horizontal and vertical

spatial nesting are demonstrated within the NWP model for maintaining

forecast feasibility. It is shown that vertical nesting can improve the pre-

diction of finer structures in near-ground temperature and velocity profiles,

such as morning temperature inversions and low level jet-like features. Ac-

curate representation of these features is shown to be important for model-

ing sound refraction phenomena and for enabling accurate noise assessment.
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Comparisons are made using the parabolic equation model for predictions

with profiles derived from NWP simulations and from field experiment ob-

servations during mornings on November 7 and 8, 2006 in Phoenix, Arizona.

The challenges faced in simulating accurate meteorological profiles at high

resolution for sound propagation applications are highlighted and areas for

possible improvement are discussed.
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1. Introduction

Since early work of Reynolds [1, 2], the importance of atmospheric struc-

ture on sound propagation is well recognised[3, 4]. In a previous study[5],

hereafter OSF09, the effects of measured near-ground profiles of temperature

and wind speed on sound propagation from a highway noise source were quan-

tified and a high sensitivity to temperature and wind profiles was found. For

this reason it is desirable to accurately replicate temperature and wind veloc-

ity profiles in sound propagation models using either careful measurements

or detailed simulations. Simulations are applicable for future situations as

a forecast (derived from observations of an initial state at the current time

or a future state based on models of global change), or for previous situa-

tions using either hind-casting (derived from observations of an initial state

at a previous time) or reanalysis (hind-casting combined with periodic as-

similation of in-situ data). Obviously, in combining the meteorological model

with an acoustic model, the mode of forecasting requires additional model-

ing/forecasting of the acoustic sources which is not considered here.

2



OSF09 used surface measurements coupled to Monin-Obukhov Similarity

Theory (MOST) to derive near-surface meteorological profiles[6]. MOST is

a technique commonly used for obtaining profiles from near-ground observa-

tions [7]. However, the appropriateness of such approaches for settings with

varying terrain and land-cover must be viewed with caution because the the-

ory is only suitable for flat horizontally homogeneous terrain and land-cover.

Furthermore, stable conditions can lead to decoupling of the surface layer

from dynamics aloft which can host rich complexity including intrusions,

low level jets or katabatic/adabatic valley flows typical of cities set within

mountainous terrain[8, 9]. The inadequacy of Monin-Obukhov scaling in the

presence of a katabatic jet has been discussed previously for sloped terrain[10]

as well as for flat terrain stable flows[11].

A second criticism of assuming MOST for sound propagation is that it

is applicable only for mean profiles and hence will not capture transient at-

mospheric events that may influence sound propagation even from steady

sources leading to strong fluctuations in sound levels at far field locations.

Such transient atmospheric events have been reported in cities such as Salt

Lake City, Utah[12] and Phoenix, Arizona[8], where morning[13, 14] and

evening[15] transitions occur during frequent high pressure/weak synoptic

forcing. Similarly, coastal cities, especially with adjoining mountains such as

in California, have added influences of marine intrusions in the local dirunal

circulation patterns[16, 17]. However, even with homogeneous yet gently

sloping terrain in the Great Plains, transient events limit effectively predict-

ing acoustic propagation with only a single sound speed profile[18].

There have been scarce previous studies where real regional-scale mete-
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orological conditions are simulated for use in near-ground acoustic models

for noise pollution. Most notably, Hole and Hauge[19] predicted the influ-

ence on transmission loss of a 100 Hz source due to a temperature inversion

breakup during low wind conditions. They derived vertical profiles using the

Fifth-generation Mesoscale Model (MM5)[20], where their highest resolution

domain had a 500 m horizontal grid spacing with 31 vertical levels, 6 of

which being below 100 m Above Ground Level (AGL). In the same paper,

the authors explored special considerations for the influence of topographic

shading on the surface energy budget and concluded that doing so improved

prediction of temperature profiles in comparison with balloon-tethersonde

observations. Such an improvement potentially makes such model applica-

tions for sound predictions more reliable. Other efforts focus on large-eddy

resolving scales (horizontal length scales less than 500 m) and are beyond

the scope of the present manuscript[21].

In this paper, we employ the Weather Research and Forecasting (WRF)

model and software framework [22, 23], which is a successor to the MM5

model mentioned above. Like MM5, WRF makes use of horizontal nesting,

which is a method of grid refinement wherein a child domain with increased

horizontal resolution derives initial and lateral boundary conditions from a

parent domain, thus making it possible to study detailed phenomena within

a limited area without the computational expense of running all nests at the

higher resolution[24]. However, unlike MM5, WRF has the added capabil-

ity of refining the vertical grid resolution within a child domain. Doing so

has demonstrated the ability to resolve dynamics not present in the coarser

simulations, thus more closely predicting observations for phenomena within
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the atmosphere [25, 26, 27, 28].

We apply the same acoustic propagation model described in our previous

paper[5] for effective sound speed derived from vertical profiles of temperature

and velocity using a baseline configuration of the WRF model. We examine

the degree to which the refractive effects of actual measured wind and tem-

perature profiles can be represented by utilizing vertical nesting within WRF,

in contrast to unrefined simulations, for deriving profiles below 400 m AGL.

Such an investigation then enables us to judge how useful such NWP models

might be in assessing environmental noise impact from near-ground sources.

Field experiment data and subsequent results from the original paper are

then used to evaluate the simulation improvements. We perform a reanalysis

of the meteorological conditions for the November 2006 Arizona Department

of Transportation (ADOT) field experiment using a 1 km horizontal grid as

the finest domain. Diffraction and reflection effects from buildings are not

incorporated into our models since they are not present in the meteorological

code nor in the vicinity of the highway section of field experiments.

2. Acoustic model

The same acoustic model is used in this paper as that presented in our

previous work[5], but using sound speed profiles derived from WRF simula-

tions rather than observations. A brief description of the model is provided

here. The two-dimensional vertical plane transverse to the highway is di-

vided into two sub-domains: a near-field domain where refractive effects are

ignored, and a far-field domain beyond. The traffic noise is represented by

17 monofrequency coherent line sources, with each frequency representing a
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standard one-third octave band. Within the near-field domain where a ho-

mogeneous atmosphere is assumed, a Green’s function solution adapted from

the work of Chandler-Wilde and Hothersall[29] for a line source above a hor-

izontal plane of spatially varying acoustic impedance is used. The Green’s

function solution is solved to obtain a vertical profile of the acoustic pressure

field at the edge of the roadway. The same virtual line source strengths and

positions as derived in our previous paper[5] were applied for each case.

The acoustic pressure profile is then used as the starting field for a wide-

angle parabolic equation (PE) model that incorporates a varying vertical

effective sound speed profile[30, 31]. This sound speed profile used in the

PE model is derived from profiles of the wind component in the direction

of propagation, U‖(z), and the potential temperature T (z) in Kelvin. The

effective-sound-speed profile is then given by,

Ceff(z) =
√
γRT (z) + U‖(z), (1)

where γ is the ratio of specific heats, and R is the gas constant. The first

term in Equation 1 is the adiabatic sound speed, Cad, and the second term

accounts for motion of the medium in the direction of propagation. A key

assumption within the PE model is that the medium is stationary, which

this form of Ceff enables. Within the PE model, a Crank-Nicholson scheme is

used to march the starting acoustic field horizontally out to the far-field and

an exponentially attenuating layer at the top third of the domain, combined

with the Sommerfeld radiation condition[31, 32, 33], is applied to prevent

artificial numerically reflected waves.
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For consistency of comparison with our previous work, the ground bound-

ary condition is represented by the Delany and Bazley impedance model[34]

with flow resistivities representative of asphalt (σ = 3 × 107 Pa s m2) for

the near-field ray domain, and hard sandy soil (σ = 4 × 105 Pa s m2) for

the PE domain. The PE model is run for each single one-third octave band.

Stability and accuracy of the PE model requires 10 points per wavelength,

so high frequencies become costly to compute. However, only 17 bands are

needed since each frequency’s contribution to the sound pressure level is

A-weighted[5]. Acoustic model output for each frequency band is then in-

terpolated onto a uniform 0.25 m by 0.25 m grid and summed in the usual

fashion (given below) to obtain an overall A-weighted sound pressure level.

3. WRF numerical experiment

3.1. Study Domain of Coupled Acoustic Model

The vertical profiles derived from the WRF simulation were evaluated

against those taken during the previous field experiments on freeway noise

propagation during morning transition[5] conducted during the morning hours

of November 7 and 8, 2006 along the Phoenix Loop 202 highway in Mesa,

Arizona near coordinates 33.48240◦N, 111.76338◦W; the exact location is

highlighted in Figure 2 (discussed in §3.3). Instruments deployed included

microphones, SOund Detection And Ranging (SODAR) with Radio Acoustic

Sounding System (RASS), and sonic anemometers positioned on one mete-

orological tower and two tripods. Three cases in the observational dataset

were selected in the previous paper because they exemplified varying levels

of shear and stratification and these cases are specified in Table 1. The mea-
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Observational Periods
Case Date Local Time (MST) Remarks on

Profiles
A 7 Nov 2006 1040 to 1100 Shear aloft,

little stratifi-
cation

B 7 Nov 2006 0740 to 0800 Shear , strati-
fied

C 8 Nov 2006 0740 to 0800 Shear and
cross-wind jet,
stratified

Table 1: Specific cases used from OSF09. Note: MST=UTC-7 and the
sunrise/set times for these dates was 0653/1730 MST. See timeline in Figure
1c.

sured wind and temperature profiles obtained in these cases are compared

here to profiles computed using WRF in terms of their impact on long-range

noise propagation.

3.2. WRF Model Configuration

As noted previously, for applications such as highway acoustics studies,

we seek to produce vertical profiles of temperature and horizontal velocity in

the lowest 400 m above ground with resolution sufficient to contain salient

features necessary for deriving representative acoustic fields. Towards this

goal, we use nested simulations with final resolutions finer than what is typ-

ically employed for real-time forecasting. The benefit of using a new method

of vertical refinement of a child domain, described below, is investigated here.

Such refinement is adopted as opposed to increasing near-surface resolution,

which would have added extra model levels to all domains. Four telescoping
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(c)

Figure 1: (Color online) Schematic of WRF Model Domain: (a) Map of
terrain height in km above mean sea level showing outer perimeter of 4
telescoping nests centered on Phoenix, Arizona. (b) Schematic of nesting
by staggered horizontal grid index with nest label d0X, X=1-4, and hori-
zontal grid spacing in km. (c) Schematic of nesting feedback, parent data
source, method of nesting and refinement of vertical levels, with correspond-
ing timeline schematic for each nest depicting lateral boundary update and
nest initialization times along with observational periods (shaded).
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nested domains, shown in Figure 1a and Figure 1b, centered near Phoenix

Arizona, at coordinates 33.45 ◦N, 112.074 ◦W, with horizontal grid resolu-

tions of 27, 9, 3 and 1 km were used. The model top is set to 50 mbar (≈20

km above mean sea level).

The vertical coordinate used in WRF is based on terrain-following hydro-

static pressure and levels are non-uniformly distributed, being more closely

spaced near the model bottom and top. We test refinement of vertical reso-

lution applied for the fourth nest which has 1 km horizontal resolution, from

a modest 27 initial vertical levels within the parent domains (d01 to d03),

to a domain with 81 vertical levels (d04R). One-way vertical refinement is

achieved with the WRF program ndown.exe for a vertical refinement fac-

tor of 3, which subdivides each initial vertical level spacing while satisfying

smoothness of pressure[25]. An unrefined 1 km nested domain (d04) was used

as a control, being initialized in a similar fashion except it had the vertical

refinement factor set to 1. The schematic in Figure 1c illustrates how d04

and d04R derive lateral boundary conditions from 1 hr output of d03. A 12

h time-interval was used between the start time of the first three domains

(d01 to d03) and the initialization of the finest nest (d04 or d04R). This time

interval is needed for spin-up of the parent domains [35], and also reduces

computational overhead.

The simulations are for a 66 h period, initialized using the 1° 6 h Final

(FNL) global analysis data [36] beginning at 06:00 UTC on November 6th

2006, as shown in the timeline schematic in Figure 1c. This allows a 20 h

spin-up time before the first observational period of the field experiment for

the refined nest, which is nested in time by 12 h from the model initialization
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of the outer three domains. Two-way feedback was used between the first

three nests, which were run in concurrent mode. Hourly output was recorded

for the entire period, with 5 min output for the 3 km and 1 km domains.

The first domain used a 135 s timestep and a parent-to-child timestep ratio

of 1:3 was used for all except the 1 km domain, where increased resolution

necessitated a 4 s timestep due to Courant number stability constraints [24].

The 4 s timestep was also used in the control domain.

All of the model parameterizations were held fixed to the following set-

tings. Physical processes involving moisture were modeled using the WRF

single-moment microphysics 3-class scheme [37]. Standard radiation schemes

of (RRTM) long-wave [38] and Dudhia short-wave [39] were called every 9,

3, 1 and 1 min for domains d01 through d04, respectively. The Kain-Fritsch

cumulus parameterization for unresolved convective processes [40] was used

only for the outer domain, being called every 5 min. We use 5th (3rd) or-

der horizontal (vertical) advection methods. The split-step scheme uses 4

acoustic timesteps per model timestep for each domain[41, 42]. The base

temperature was set to 300 K and the non-hydrostatic option was used with

no vertical damping imposed.

The geographic land-use classifications and terrain elevations were ob-

tained from the U.S. Geological Survey 24-category 30� resolution data. The

legacy MM5 5-layer thermal diffusion land surface model[20] was employed

to represent ground temperature response to solar forcing. The coupling

between the ground and the atmosphere was parameterized by the MM5

surface layer similarity scheme, which is a form of MOST applied to the first

model level, and is connected to the Yonsei University planetary boundary
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Figure 2: (Color online) Google Earth image (circa 6/2006) near approximate
site location (diamond) and ensemble of WRF Arakawa-C grid cell center
locations used in analysis for 3 km (d03, circle), and 1 km (d04, squares;
d04R, triangles) horizontal resolution domains.

layer scheme[43]. The Yonsei University scheme is a non-local method of

turbulence closure and handles the vertical mixing due to unresolved eddies.

Horizontally, a 2nd-order diffusion parametrization for turbulence and mix-

ing and a horizontal Smagorinsky 1st order closure scheme are implemented

to account for subgrid processes.

3.3. WRF profile selection and coupling with acoustic model

The WRF model uses an Arakawa-C grid where scalar variables are at

grid cell centers, and vector variable components are on a staggered grid at

cell faces. Scalars (e.g. temperature), and horizontal vector components,

are at the half-mass level (hereafter level), one-half of the full-mass level

(around 60 m for 27 vertical levels). Values at grid centers are interpreted as
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Figure 3: Ensemble of derived WRF profiles of temperature (left column),
velocity component parallel to propagation direction (middle column), and
effective sound speed (right column), for OSF09 case A (top row), case B
(middle row), and case C (bottom row). Shown are curves for domains d03
(red), d04 (cyan), and d04R (blue), at the beginning of the respective ob-
servational period at closest site location, and mean (white dashed) with ±1
standard deviation (shaded) for the ensemble over all 5 min output times
at locations shown in Figure 2 during each case. The green circles and tri-
angles are SODAR-RASS and sonic anemometer observations, respectively,
with the black curves being the respective OSF09 theoretical profiles derived
from observations. 13



representative of the cell volume average. Thus, unstaggered velocities at the

grid centers are obtained by a simple arithmetic average between adjacent

cell faces.

Shown in Figure 2 are the WRF computational domain non-staggered

Arakawa-C grid (cell center) coordinates for the 3 and 1 km domains in the

neighborhood of the observational site location used in our analysis. These

coordinates are overlaid on a historical Google Earth image to illustrate the

land use for the study area near the date of the study. Based upon these

grid locations and with the highway running primarily East-West, profiles

of potential temperature and the V velocity component (positive to north)

are extracted to generate the input Ceff(z) profiles used in the PE model for

propagation transverse to the highway. As the field experiment in our pre-

vious paper[5] typically measured crosswinds from the North and examined

downwind impacts, we will look here also at propagation downwind only.

In constructing profiles for the acoustic model, we examine each location

in latitude-longitude and time separately. Doing so enables us to check for

phase offsets in the timing or localization of phenomena such as low-level

jet-like features. In order to directly compare the profiles derived from WRF

with the 20 min time-averaged profiles from experimental observations[5], an

ensemble of representative profiles from the model domain near the observa-

tional site was built by using model output at 5 min intervals during the 20

min observational period on the de-staggered 1 km grid points close to the

site, as shown in Figure 2. This is intended to capture both the mean profile

shape and to estimate variance in the derived profiles.
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Profiles are derived using the geopotential height, given by,

z =
φ

g
− h, (2)

where the height above ground level, z, is related to the surface elevation

h, gravitational acceleration g = 9.81 m s−2, and the geopotential, φ. The

model-level temperature values were obtained by,

T = θ

(
P

P0

)R/cp
, (3)

where θ = θ′ + θ̄ is potential temperature with base value θ̄ = 300 K, and

prognostic perturbation value θ′. P is total atmospheric pressure, P0 = 105

Pa is a reference pressure, and R/cp is the ratio of the gas constant, R =

8.3144 J mol−1 K−1, to the specific heat at constant pressure for dry air,

cp = 29.07 J mol−1 K−1.

The WRF model considers the surface layer as a constant-flux layer link-

ing the land-surface and the first model level, employing similarity theory

to obtain diagnostic quantities based upon surface fluxes[42]. However, to

allow a fair comparison with the previous method to derive profiles between

measurements near-surface and aloft[5], we likewise combine the WRF diag-

nostic 2 m temperature, T2, and diagnostic 10 m northward wind velocity

component, V10, with model level values. The near-ground theoretical wind

and temperature profiles, along with prognostic model-level values, are then

interpolated for input into the acoustic model using a monotonic cubic spline

to a 0.25 m resolution below 10 m and a 2 m resolution above. The acoustic

model then subsequently interpolates further for each frequency band to the
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requisite grid spacing of ten-points per wavelength.

The temperature profile is constructed by holding the value below 2 m

constant at T2, and a linear fit is used to interpolate from 2 m to the lowest

model level, z1. A near-ground logarithmic wind profile was constructed [6]

of the form,

V (z) = sgn(V0)
u∗

κ
log

(
z

z0

)
+ V0, (4)

with V0 based on either V (z1), or V10, depending on the position of the first

level z1 in the simulation via the following rule:

if z1 < 15 [m] V0 = V (z1) , z0 = z1

else V0 = V10 , z0 = 10 [m].

Here, κ = 0.4 is the Von Karman constant, u∗ the friction velocity, z0 rep-

resents the surface model roughness length, and sgn(V0) = V0/|V0| ensures

that the profile is in the correct direction. Since log(z/z0) diverges as z → 0,

we restrict derived velocity profiles from reversing direction near the ground.

This restriction is achieved by setting V (z) = 0 for 0 ≤ z ≤ z010−|V0|κ/u∗ .
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4. Methods of analysis of acoustic model predictions

The spectral components for each one-third octave frequency band fn,

are defined by,

LA,fn(x, z) = 10 log10(.5|p(x, z)|2) + 20 log10 S0,fn , (5)

for acoustic pressure p(x, z) with a virtual source strength given by S0,fn .

Since the observed values used within the optimization procedure described

in our previous work[5] were A-weighted, so will be the source strengths and

resultant spectral components. The LA,fn results for all frequency bands are

then interpolated onto a uniform grid (which here has a spacing of .25 m)

and combined to obtain the A-weighted Sound Pressure Level (SPL) given

by,

Leq = 10 log10

17∑
n=1

10LA,fn/10, (6)

for the 17 standard one-third octave bands between 63 Hz and 2500 Hz,

inclusive.

For a quantative analysis of the influence of different effective sound speed

profiles Ceff,j, we examine the relative SPL with respect to the point x0 = 50

m range at z = 1 m AGL, defined for an ensemble of profiles indexed by j

as,

∆Lj(x, z = 1) = Leq,j(x, z = 1)− Leq,j(x = x0, z = 1). (7)

Furthermore, PE results for equivalent stationary homogeneous (non-refracting)

atmosphere cases, wherein the vertical profiles of crosswind velocity and tem-

perature are set to zero and the ground value, respectively, are used to cor-
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rect for each ensemble member having different baseline sound speeds. For

non-refracting cases the Leq value decays due to geometrical spreading pro-

portional to inverse distance, Leq ∝ x−1, for a line source. The equivalent

relative SPL in the non-refracting atmospheric case (superscript N) can be

written as,

∆LN = a(x−1 − x−1
0 ). (8)

The coefficient, a, will only depend upon the ground-level sound speed (or

reference Helmholtz number) for each non-refracting case, which is explicitly

denoted by a = a(C0,j). Thus, the non-refracting case relative SPL between

an ensemble member (subscript j) with respect to an arbitrary reference

ensemble member (subscript r), are related by,

∆LNr
∆LNj

=
a(C0,r)

a(C0,j)
. (9)

This non-refracting case relationship enables a fair direct comparison of the

relative SPL for an ensemble member, subscript j, with respect to an arbi-

trary reference member, r, viz,

∆Lj,r =
∆LNr
∆LNj

∆Lj, (10)

arising from PE model predictions using different input Ceff,j profiles.
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5. Results

5.1. Influence of horizontal and vertical nest resolution on simulated meteo-

rological profile features

Firstly we present the vertical profiles of temperature (T ), wind com-

ponent parallel with propagation direction (U‖ = −V ), and effective sound

speed (Ceff), derived from WRF and used for input into the acoustic model.

These profiles are shown in Figure 3 for OSF09 cases A, B and C, with main

features distinguishing observed profile cases summarized in Table 1. The

instantaneous profile at the first time of WRF output during the 20 min

interval at the nearest horizontal grid location (see Figure 2), which will be

employed in later examples of acoustic model output, is also shown for each

of the domains d03, d04 and d04R.

Additionally, the ensemble spreads (±1 standard deviation) are shown in

Figure 3 as shaded regions for each domain, where the ensemble consists of

all 5 min output of instantaneous realizations at profile locations indicated

in Figure 2 during the 20 min interval. Each ensemble represents the same

spatial and temporal footprint between the different resolution simulation

domains, and enables evaluation of spatial and temporal phase errors for a

given ensemble member with respect to a representative mean profile within

the site neighborhood during the observation period. For comparison, 20 min

averaged SODAR-RASS and sonic anemometer observed data obtained from

the original experiments[5] are also plotted, along with the OSF09 theoretical

curves.

Root-Mean Square Errors (RMSE)[44] were derived between each ensem-
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OSF T U V |UH | Ceff ∆L
case d0X ◦C m s−2 m s−2 m s−2 m s−2 dB(A)
A 3 2.4 6.7 2.3 5.8 3.6 -
A 4 3.3 4.2 1.9 4.0 1.0 4.6
A 4R 3.9 3.0 2.8 2.6 1.1 5.5
B 3 4.1 6.4 1.8 4.9 2.6 -
B 4 3.5 4.6 1.6 3.3 2.9 9.9
B 4R 2.7 1.9 1.5 0.9 2.7 7.9
C 3 3.6 2.5 3.9 2.5 2.3 -
C 4 3.1 3.0 5.0 2.4 3.7 10.7
C 4R 3.4 3.5 3.1 4.2 1.8 4.6

Table 2: RMSE values of profiles for T , V (= −U‖), and Ceff, shown in Fig-
ure 3, using interpolated profiles at 10 m AGL and between 40 m and 190 m
AGL at 10 m increments (valid SODAR-RASS levels for all cases), between
observations and ensemble mean for each domain, grouped by OSF09 me-
teorological case. Also for Eastward velocity component (U) and horizontal
wind magnitude (|UH |). For relative SPL (∆L) using the ensemble mean of
curves shown in Figure 10 over the entire 600 m range.
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ble mean profile and the corresponding OSF09 profile, by interpolating to 10

m height and 10 m increments from 40 m height to 190 m height (limit of

SODAR observations), which are summarized in Table 2. Also given in Table

2 are the RMSE values at these same heights for the U velocity component

(positive to east) and horizontal wind magnitude |Uh| = (U2 + V 2)1/2. Note

that U is perpendicular to the PE model propagation direction and so was

not used in deriving the Ceff profile. These additional terms enable assessing

for wind direction errors within the entire profile, when RMSE for |Uh| is

smaller than for each component.

Case A in Figure 3 (top), at 1040 MST (≈ 4 h after sunrise), observations

show that an unstable layer has formed in the lowest 300 m, with wind

shear only present above 150 m. An underprediction bias for all domains is

present in predicted temperature, with a 2.4 ◦C RMSE at 3 km, and larger

for the 1 km domains. The V-component winds were underpredicted in the

3 km simulation but overpredicted at 1 km resolution up to the observed

shear layer at 150 m, with no corresponding increase in predicted wind speed

above 150 m. Meanwhile, horizontal wind magnitude error was reduced at 1

km compared to 3 km resolution, and further reduced by vertical refinement.

Also, d04R wind component RMSE values indicate a direction bias. The bias

error in constituent terms of Ceff partially cancel when constructing profiles,

which show reduced RMSE for both 1 km domains compared to 3 km.

For case B in Figure 3 (middle), at 0740 MST (≈ 1 h after sunrise),

observations indicate a temperature inversion, warming by nearly 7 ◦C from

60 m to 160 m AGL, also with a warm surface creating an unstable layer up

to ≈ 100 m AGL. Wind shear is also present in the same height range, with
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U‖ rising to 6 m s−1 at 100 m AGL. The diagnostic 2 m values are all within

2 ◦C of observations, and better represented at 1 km than at 3 km. However,

the lowest prognostic values all have considerable error below 100 m AGL,

failing to capture the observed temperature inversion.

For all domains, the observed temperature variations for the lowest RASS

range gates are not well reproduced, with overprediction bias of ≈ 4.5 ◦C at

50 m AGL for d04R, and increasing bias for coarser resolution domains.

Furthermore, the presence of any near-ground temperature inversion in the

derived profiles for the unrefined domains is due to the fit between T2 and

T (z1), which could change with bias in either component. The vertically

refined profiles, however, indicate an inversion but not at the same height or

magnitude as in observations, and only with the lowest few model levels.

Agreement for U‖ between WRF and observed profiles is not encouraging.

The d04R U‖ profile has closest agreement with observations, showing a

gradual shear, whereas U‖ derived from d04 has a kink where the profile

interpolated from the 10 m value meets the first model level. The U‖ RMSE

values are comparable for all domains, being between 1.5-1.8 m s−1. The

RMSE values also indicate directional errors, where d04R performed best in

terms of both reduced errors for wind components and wind speed. However,

these profiles combine to produce an incorrect Ceff profile below 100 m AGL

for all domains.

Case C in Figure 3 (bottom), at 0740 MST (≈ 1 h after sunrise), seems

to yield the worst reproduced simulated profiles. The temperature in case

C seems quite well reproduced only between 150-210 m AGL for both the

unrefined 1 km and 3 km domains. Yet, observations indicate a nearly 6
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◦C temperature change within the 30 m just below this height, which is

not captured at all by the model. The modeled 2 m values are within 1

◦C, but then the model exhibits a low inversion of 4 ◦C over 50 m, then

a more gradual inversion of 2-3 ◦C over the next 150 m, rather than being

unstable for the first 140 m followed the aforementioned strong inversion.

The observations of U‖ indicate a 4.5 m s−1 jet with local maxima near a

height of 50 m. However, all domains indicate flow in the opposite direction

for this velocity component, with a weak -1 m s−1 local maxima in d04R near

this height, whereas d04 indicates a local maxima nearly -3 m s−1 at 200 m

AGL. Furthermore, the observations indicate a reversing of direction above

200 m, coincident with the temperature inversion height range, with speeds

approaching -4 m s−1 at the limit of the SODAR profile.

5.2. Influence of increasing vertical resolution of meteorological simulation

on predicted freeway noise propagation

While the analysis of simulating meteorological profiles considered model

grid cells in the observational site neighborhood for a stencil with side of

3 km, at each 5 min output during the 20 min period, we now restrict to

just the model grid cell containing the site location for each output time.

One ensemble member of each meteorological case is shown for the LA,fn

and Leq plots, and the entire ensemble is shown for the ∆L plots. The

acoustic model results presented here use the same acoustic source heights

and strengths and same propagation model as for the respective cases in

OSF09, but the vertical effective sound speed, Ceff, is now obtained from

the WRF derived profiles for the unrefined and refined 4th WRF domain

discussed above (Figure 3). Comparisons are made with the propagation
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results obtained using experimentally observed profiles[5]. No atmospheric

absorption has been applied to these results.

Individual spectral contributions to SPL at 1 m above the ground versus

range, LA,fn(x, z = 1m), following Equation 5, are shown in Figure 4 to

Figure 6. With the the total SPL against range and vertical height up to 50

m AGL, Leq(x, z), following Equation 6, shown in Figure 7 to Figure 9. The

relative SPL, ∆L, following Equation 10, is shown in Figure 10 for each case

A-C. RMSE results for ∆L are also given in Table 2 for the entire 600 m

range between observations and ensemble mean of 1 km domain predictions

without and with vertical refinement.

5.2.1. Case A

In case A, since the temperature profile gradients for the 4th domains

are similar, the main differences in outcome will be produced by variations

between the velocity profiles. The refined domain’s wind profile is somewhat

stronger with more shear near the ground. This aspect in the Ceff profile

leads to ducting close to the ground, most apparent at 500 Hz and above,

with multiple loud and quiet interference extrema at the 1 m analysis height.

The Leq in this case fits the experimental observations more closely, and

remains above 67 dBA close to the ground up to a range of approximately

300 m, similar to case A in our previous work[5]. It is unclear if the upward

refracting behavior above 150 m in Ceff, which is not as pronounced as in

the unrefined domain, leads to the reduction in Leq beyond 300 m. Whereas

the weaker shear, yet still slightly downward refracting Ceff for the unrefined

domain, leads to sound focussing around 500 m range. Here, levels exceed
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67 dBA, mostly due to contributions from the octave bands between 100-250

Hz, and above 1 kHz.

The aforementioned role of refinement is also manifested within the ∆L.

The unrefined domain’s values decay with range to a minimum around 300

m range at 12 dBA below 50 m range, before returning to just 5 dBA loss

at 600 m range. However, the refined domain displays an irregular and more

gradual decay, yet still at a faster rate than for the observed profile. Yet, the

RMSE statistic indicates that overall, the unrefined domain performed with

nearly 1 dBA reduced error over the refined domain.

5.2.2. Case B

For case B, the near-ground shear and inversion were both seen to con-

tribute to downward refraction within the Ceff profiles for each domain below

100 m AGL. Based upon standard deviations of ensemble means, there is

little difference between Ceff profiles for these domains. However, We in-

terpret the resultant near-ground acoustic field differences as being due to

the inter-domain Ceff variations below 100 m AGL between specific ensemble

members. In particular, the fit to the lowest model level in d04R (at ≈ 10

m AGL), provides a stronger low-level wind shear than within d04, and cre-

ates stronger near-ground ducting of sound, with 500-1000 Hz bands again

remaining dominant to larger ranges as in Case A. There is then a more

gradual increase in the d04R Ceff profile up to ≈ 100 m AGL. Whereas, the

Ceff for d04 peaks near the first model level (≈30 m), with a similar gradient,

but more elevated and sustained than in d04R.

These Ceff features lead to a near-ground quiet zone centered just after
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300 m range before the SPL rises to well above 67 dBA. While this larger

scale ducting continues to 600 m range, a smaller scale ducting closer to the

ground is apparent in frequencies above 500 Hz after the first near-ground

maxima. The decreasing proximity of maxima for higher frequencies sup-

ports an interference effect from the ducting by the Ceff gradient. Mean-

while, frequency-dependent ground impedance would tend to differentially

attenuate the reflected wave amplitude by frequency band, emphasizing the

importance of the ground impedance model.

The ∆L for d04 shows that the locations of near-ground maxima are sen-

sitive to the ensemble-member variability, while the higher frequency ducting

beyond 300 m range is responsible for the spread in ∆L between ensemble

members. Indeed, the unrefined sound field has two near ground construc-

tive maxima in SPL in the first 600 m from the source whereas the original

results based on experimental observations only produces one focusing just

before 600 m. The less severe shear and lack of any strong inversion in d04R

produces down range ∆L similar to that observed in case A, with 2 dBA

better overall RMSE compared to d04.

5.2.3. Case C

For case C, all of the WRF-derived T profiles indicate downward refrac-

tion below 70 m AGL, whereas U‖ would cause upward refraction, aside from

d04R from 70-130 m AGL. These aspects combine within Ceff indicating that

below 30 m AGL, both d04 and d04R refract downwards, with d04R having

a much stronger gradient in Ceff in the lowest 10 m AGL. Suggesting that

the method to interpolate between near-ground and first model level values,

along with any bias in either value, plays a significant role. From 30 m AGL
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to around 100 m AGL, Ceff profiles indicate that d04 will refract upward

whilst d04R refracts downward. The observed profiles, however, show that

the wind speed should be causing substantial downward refraction below 50

m, whereas, the unstable temperature profile below 130 m AGL would cause

upward refraction below 50 m AGL and otherwise be non-refracting. This

scenario is reversed aloft with a second ducting region apparent in Ceff be-

tween 50-150 m AGL. Here, the strong temperature inversion causes down-

ward refraction from above, and the upper half of a low-level jet causes

upward refraction from below.

The spectra and ∆L both indicate near-ground ducting, but with much

more gradual refraction than previous cases, having large spacing between

near-ground maxima. Ducting within d04R maintains the near-ground SPL

above 73 dBA out to 550 m from the source. Whereas d04 exhibits a quiet

zone at all frequencies above 250 Hz, with the Leq spatial map indicating a

likely second near-ground maxima will occur beyond the PE model’s range.

All frequencies contribute to the increased SPL within d04R, with bands

above 630 Hz exhibiting two near-ground focusing maxima with just under

300 m spacing at 1 m AGL. The Leq plot indicates that spacing of maxima

will shift as LA,fn is evaluated at different heights, up to 10 m AGL. Lower

frequencies begin to exhibit a single quiet zone after 400 m range in d04R, and

300 m in d04, suggesting lower sensitivity than the higher frequencies to the

first 10 m of the Ceff profile. Lower frequency bands exhibit a near-ground

ducting interference pattern similar to that noted for the high frequency

bands in case B. The near-ground ∆L suggest that using the vertically-refined

Ceff profile of domains d04R more closely matched the experimentally derived
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profiles, with RMSE of 4.6 dBA versus 10.7 dBA, despite the noted issues

with Ceff.
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Figure 4: Spectra of A-weighted one-third octave band center frequencies
(LA,fn) following Equation 5, versus range at 1 m AGL for d04 (top), d04R
(middle) and OSF09 (bottom). The Ceff profiles are for the first of five 5 min
output during the 20 min observational interval for case A.
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Figure 5: Same as for Figure 4 but for Case B.
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Figure 6: Same as for Figure 4 but for Case C.
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Figure 7: Vertical cross-section of total SPL (Leq) following Equation 6, up
to 50 m AGL for LA,fn interpolated onto a 0.25 m grid for d04 (top), d04R
(middle), and onto a 1 m grid for OSF09 (bottom). The Ceff profiles are for
the first of five 5 min output during the 20 min interval for Case A. The 67
dBA noise abatement threshold criteria is denoted by transition from green
to yellow. 32



Figure 8: Same as for Figure 7 but for Case B.
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Figure 9: Same as for Figure 7 but for Case C.
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Figure 10: (Color online) Relative SPL (∆L) with neutral case reference
wavenumber correction following Equation 10, with respect to 50 m versus
range at 1 m AGL for OSF09 case A (top) case B (middle) and case C (bot-
tom) for OSF09 value (bold solid) non-refracting (dotted) and profiles derived
from WRF domains d04 (bold dashed), d04R (bold dash-dot) at closest grid
locations shown in Figure 2 for the output times corresponding to the 20 min
observational periods given in Table 1. No atmospheric attenuation has been
included. 35



6. Discussion

We have demonstrated a method for simulating meteorological profiles

and assessed their suitability for use as input to an acoustic propagation

model for freeway noise by examining three case studies in comparison with

profiles derived from field measurements. We presented the method of verti-

cal refinement for increasing meteorological simulation child domain vertical

resolution, and discussed the influence of increasing the vertical resolution

of our meteorological simulation on the predicted freeway noise propagation.

We have provided a physically-motivated interpretation of emergent phenom-

enalogical qualities of spectra, total sound field, and relative SPL, resulting

from features within simulated meteorological profiles. We discussed the in-

fluence of horizontal and vertical nest resolution on simulated meteorological

profile features.

We found that bias within Cad and U‖ become entangled when construct-

ing Ceff, and may mask assessing the true capability and limitations of mete-

orological forecasting for acoustic application. We recommend investigating

forecast skill requirements imposed by the sensitivity of acoustic model pre-

dictions of LA,fn and Leq to variations within Ceff, especially below 100 m

AGL. Overall RMSE of profiles suggest capability of simulating temperature

profiles within around 3 ◦C, wind speed profiles within around 2 m s−1, and

Ceff profiles around 2 m s−1 in the lowest 190 m AGL.

In the introduction we discussed that a null hypothesis of Ceff profiles

derived by MOST will fail to capture features of real profiles such as jets,

variable shear, and temperature inversions, as often is present within valley

cities such as Phoenix. We found that NWP with vertical refinement provides
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instances of improvement in representation of Ceff below 190 m AGL. Though

some simulation skill was improved with modification of meteorological model

resolutions for 1 km over 3 km, and vertically refined 1 km over standard

1 km, this study provided a very limited sampling (three 20 min periods)

of the entire simulation (several days) and more evaluation is recommended.

In particular, detailed observations of profiles below 100 m AGL are key to

meteorological model evaluation for this application.

Methods of evaluation established herein may provide means to move

forward in assessing profiles for applicability to investigating highway noise

pollution. In particular, profiles of sound speed in conjunction with plots of

spectra versus range at various heights are useful for interpreting impacts on

the spatial plots of total SPL. Examining relative SPL as total sound pressure

level with respect to a fixed range location is useful for comparing an ensem-

ble of predicted field results from derived and observed profiles. Improved

agreement was seen between vertically refined profiles and observations as op-

posed to unrefined profiles. However, the RMSE of ∆L is biased by choice of

range of evaluation and reference distance. Far-field acoustic obervations are

needed to properly assess the validity of these methods. Locations for micro-

phone placement can be considered through identifying range windows with

large disagreement between the different methods for several meteorologi-

cal cases. The experimental setup, however, may be limited by site-specific

restrictions or proximity to background sources.

For this NWP model configuration some specific details of the wind

and temperature gradients are reproduced quite poorly, in comparison with

OSF09 observations, yet other aspects were quite well reproduced. More
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work needs to be done to assess possible phase errors and effects of localiza-

tion of phenomena. Further studies are doubtlessly necessary to ascertain

what physical processes are either being approximated poorly for this appli-

cation (model parameterization), what aspects of the observations are just

not resolved (influences of terrain resolution, sampling space-time volume,

etc), and the added role of urbanization (not included here) on surface me-

teorology.

The method of producing surface layer profiles, joining near-ground values

to the lowest model level, seems to have a strong influence on the sound field.

Even though surface values and first model level values cause a gradient

to exist, this changes character with increasing resolution, implying that

there were unresolved dynamics in the coarser domain. More analysis needs

to be performed with detailed flow observations to assess the hypothesis of

unresolved dynamics. What we can glean from the current results is that

shear is present in both d04 and d04R, and so the sound model is going to

be influenced in both cases. However, the vertically refined results allow for

dynamics not present in the coarser simulation, enabling a closer agreement

with observations in some instances.

In cases A and C, the input effective sound speed profile from the ini-

tial unrefined 4th domain NWP simulation, though different from the non-

refracting case, is still not as significantly sheared as for the vertically refined

simulation. Moreover, although neither refined nor unrefined Ceff applied to

acoustic simulations reproduce all details in the observations, where near-

ground sound levels remain strong for quite some distance due to ducting

of sound, they do produce similar results on the sound field intensity. The
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attenuation versus range results in Figure 10 indicate that near-ground pre-

dictions using vertical refinement appear to match more closely the meteoro-

logical profiles derived from observations (in comparison to profiles derived

from the unrefined domain).

In case B, near-ground upward refraction is eventually overcome further

away from the source due to stronger elevated downward refracting condi-

tions. In this case, the shear is well captured. However, the method employed

to interpolate between the lowest model level value and the near-ground

value, along with bias in either term, can cause strong gradients in Ceff, to

which the acoustic field appears quite sensitive. The sensitivity and relative

contribution of the interpolation method towards the total refracted field, in

comparison with the profile features higher above ground level, needs to be

explored for various ranges of propagation.

7. Conclusions

In summary, our work shows that conditions of morning temperature

inversion and low-level jet or wind shear can be simulated by NWP to a

certain degree, but that their magnitudes at a given location and time of

comparison may disagree with field observations. As observed in case C,

the velocity and temperature components within the effective sound speed

can counteract each other and make an otherwise poor representation of the

medium yield a Ceff profile which produces a sound field not too unlike what

might be observed. Some of these effects measured in the field could be due

to smaller-scale ground boundary conditions not realized in the 1 km x 1 km

grid used in the WRF model. For instance, details of the flow modification
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due to terrain and land-use and land-cover may not be present, which, if

accounted for, may lead to a closer representation of the actual measured

profiles. Furthermore, sub-grid influence of the roadway and terrain[45],

and traffic produced turbulence[46], in the local meteorology on acoustic

propagation was also not explored in our study.

We recommend further work to consider sensitivities in the models, both

of the acoustic propagation model to differing levels of sound speed gradient,

and also of NWP to various parameterizations of physical processes, such as

land surface, urbanization and potential feedback on circulation and dynam-

ics, representation of subgrid turbulence and surface layer profiles. Assessing

the skill of these models for a variety of configurations would provide valu-

able insight into model prediction capability for acoustics applications. Fur-

thermore, sensitivity of meteorological model to physical parameterization,

understanding unresolved subgrid aspects and their importance on acoustic

field predictions, and possible areas for improvement of meteorological mod-

els, are all topics which could be motivated by demands within applications

such as acoustics. In particular, nocturnal inversion and morning transition

are notoriously difficult to accurately simulate[47, 48]. These are key periods

that exhibit downward refraction and wind shear, which are ubiquitously

neglected or misrepresented in many acoustic assessments.
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