2,176 research outputs found

    Balancing the dilution and oddity effects: Decisions depend on body size

    Get PDF
    Background Grouping behaviour, common across the animal kingdom, is known to reduce an individual's risk of predation; particularly through dilution of individual risk and predator confusion (predator inability to single out an individual for attack). Theory predicts greater risk of predation to individuals more conspicuous to predators by difference in appearance from the group (the ‘oddity’ effect). Thus, animals should choose group mates close in appearance to themselves (eg. similar size), whilst also choosing a large group. Methodology and Principal Findings We used the Trinidadian guppy (Poecilia reticulata), a well known model species of group-living freshwater fish, in a series of binary choice trials investigating the outcome of conflict between preferences for large and phenotypically matched groups along a predation risk gradient. We found body-size dependent differences in the resultant social decisions. Large fish preferred shoaling with size-matched individuals, while small fish demonstrated no preference. There was a trend towards reduced preferences for the matched shoal under increased predation risk. Small fish were more active than large fish, moving between shoals more frequently. Activity levels increased as predation risk decreased. We found no effect of unmatched shoal size on preferences or activity. Conclusions and Significance Our results suggest that predation risk and individual body size act together to influence shoaling decisions. Oddity was more important for large than small fish, reducing in importance at higher predation risks. Dilution was potentially of limited importance at these shoal sizes. Activity levels may relate to how much sampling of each shoal was needed by the test fish during decision making. Predation pressure may select for better decision makers to survive to larger size, or that older, larger fish have learned to make shoaling decisions more efficiently, and this, combined with their size relative to shoal-mates, and attractiveness as prey items influences shoaling decisions

    Sex-Specific Differences in Shoaling Affect Parasite Transmission in Guppies

    Get PDF
    Background: Individuals have to trade-off the costs and benefits of group membership during shoaling behaviour. Shoaling can increase the risk of parasite transmission, but this cost has rarely been quantified experimentally. Guppies (Poecilia reticulata) are a model system for behavioural studies, and they are commonly infected by gyrodactylid parasites, notorious fish pathogens that are directly transmitted between guppy hosts. Methodology/Principal Findings:Parasite transmission in single sex shoals of male and female guppies were observed using an experimental infection of Gyrodactylus turnbulli. Parasite transmission was affected by sex-specific differences in host behaviour, and significantly more parasites were transmitted when fish had more frequent and more prolonged contact with each other. Females shoaled significantly more than males and had a four times higher risk to contract an infection. Conclusions/Significance: Intersexual differences in host behaviours such as shoaling are driven by differences in natural and sexual selection experienced by both sexes. Here we show that the potential benefits of an increased shoaling tendency are traded off against increased risks of contracting an infectious parasite in a group-living species

    Getting into hot water:sick guppies frequent warmer thermal conditions

    Get PDF
    Ectotherms depend on the environmental temperature for thermoregulation and exploit thermal regimes that optimise physiological functioning. They may also frequent warmer conditions to up-regulate their immune response against parasite infection and/or impede parasite development. This adaptive response, known as ‘behavioural fever’, has been documented in various taxa including insects, reptiles and fish, but only in response to endoparasite infections. Here, a choice chamber experiment was used to investigate the thermal preferences of a tropical freshwater fish, the Trinidadian guppy (Poecilia reticulata), when infected with a common helminth ectoparasite Gyrodactylus turnbulli, in female-only and mixed-sex shoals. The temperature tolerance of G. turnbulli was also investigated by monitoring parasite population trajectories on guppies maintained at a continuous 18, 24 or 32 °C. Regardless of shoal composition, infected fish frequented the 32 °C choice chamber more often than when uninfected, significantly increasing their mean temperature preference. Parasites maintained continuously at 32 °C decreased to extinction within 3 days, whereas mean parasite abundance increased on hosts incubated at 18 and 24 °C. We show for the first time that gyrodactylid-infected fish have a preference for warmer waters and speculate that sick fish exploit the upper thermal tolerances of their parasites to self medicate

    Sociability between invasive guppies and native topminnows

    Get PDF
    This investigation was funded by the European Research Council though a grant (project BioTIME 250189) awarded to AEM and the Concejo Estatal de Ciencia y Tecnología del Estado de Michoacán through a grant awarded to MCC.The role of interspecific social interactions during species invasions may be more decisive than previously thought. Research has revealed that invasive fish improve their foraging success by shoaling with native Mexican species, and potentially increase the chances of invasion success. However, do native individuals tend to associate with invaders as well? We tested the hypothesis that the twoline skiffia (Neotoca bilineata) and the Lerma livebearer (Poeciliopsis infans), both native endemic Mexican topminnows, will associate with guppies, a notorious invasive species present in Mexico. Our investigation shows that guppies, twoline skiffias and Lerma livebearers have a mutual tendency to associate with each other. Although there is a marked tendency to shoal with heterospecifics in this system, shoaling partners do not necessarily benefit equally from the association. Further research on invasive-native social interactions is needed to promote our understanding of potential facilitation by natives.Publisher PDFPeer reviewe

    The effects of familiarity on escape responses in the Trinidadian guppy (Poecilia reticulata)

    Get PDF
    This study was funded by a Postdoctoral fellowship to Miguel Barbosa (SFRH/BPD/82259/2011). The raw data supporting this publication can be accessed at http://dx.doi.org/10.17630/92831d81-38f0-4573-b2e5-e1d11adf9322.Predation is the main cause of mortality during early life stages. The ability to avoid and evade potential threats is, therefore, favoured to evolve during the early stages of life. It is also during these early stages that the process of familiarization occurs. It has long been recognized that associating with familiar individuals confers antipredator benefits. Yet gaps in our knowledge remain about how predator evasion is affected by social experience during early stages. In this study, we test the hypothesis that familiarization acquired during early life stages improves escape responses. Using the guppy Poecilia reticulata, we examine the effect of different recent social conditions in the three main components of predator evasion. Using high-speed motion analysis, we compared the number of individuals in each test group that responded to a visual stimulus, their reactive distance and magnitude of their response (maximum speed, maximum acceleration and distance) in groups composed either of familiar or non-familiar individuals. Contrary to the prediction, groups composed of familiar individuals were less responsive than groups of unfamiliar individuals. Reactive distance and magnitude of response were more dependent on individual size rather than on familiarity. Larger individuals reached higher maximum speeds and total distances in their escape response. Our result indicates that familiarity is likely to affect behaviour earlier in a predator-prey interaction, which then affects the behavioural component of the response. Taken together, our study contributes to previous ones by distinguishing which components of an escape response are modulated by familiarity.Publisher PDFPeer reviewe

    Tit for Tat: sticklebacks (Gasterosteus aculeatus) ‘trusting' a cooperating partner

    Get PDF
    Individual three-spined sticklebacks (Gasterosteus aculeatus) moved closer to a predatory trout when a ‘cooperator' stickleback, which the test fish could see through a one-way mirror, swam up to the predator than when a ‘defector' stickleback appeared to swim only half as close to the predator. After four training runs with both types of partners, the former cooperator also defected. The test fish continued to move closer to the predator in the presence of the former cooperator even though both the former cooperator and the defector now appeared to stop in their approach to the predator at the same distance. This shows that probable partners build up trus

    Recent increases in assemblage rarity are linked to increasing local immigration

    Get PDF
    F.A.M.J.'s PhD was financed by the School of Biology, University of St Andrews. M.D. and A.E.M. acknowledge funding by the Leverhulme Trust. A.E.M. acknowledges funding from the European Research Council (ERC AdG BioTIME 250189 and ERC PoC BioCHANGE 727440).As pressures on biodiversity increase, a better understanding of how assemblages are responding is needed. Because rare species, defined here as those that have locally low abundances, make up a high proportion of assemblage species lists, understanding how the number of rare species within assemblages is changing will help elucidate patterns of recent biodiversity change. Here, we show that the number of rare species within assemblages is increasing, on average, across systems. This increase could arise in two ways: species already present in the assemblage decreasing in abundance but with no increase in extinctions, or additional species entering the assemblage in low numbers associated with an increase in immigration. The positive relationship between change in rarity and change in species richness provides evidence for the second explanation, i.e. higher net immigration than extinction among the rare species. These measurable changes in the structure of assemblages in the recent past underline the need to use multiple biodiversity metrics to understand biodiversity change.Publisher PDFPeer reviewe

    Both Geography and Ecology Contribute to Mating Isolation in Guppies

    Get PDF
    Local adaptation to different environments can promote mating isolation – either as an incidental by-product of trait divergence, or as a result of selection to avoid maladaptive mating. Numerous recent empirical examples point to the common influence of divergent natural selection on speciation based largely on evidence of strong pre-mating isolation between populations from different habitat types. Accumulating evidence for natural selection's influence on speciation is therefore no longer a challenge. The difficulty, rather, is in determining the mechanisms involved in the progress of adaptive divergence to speciation once barriers to gene flow are already present. Here, we present results of both laboratory and field experiments with Trinidadian guppies (Poecilia reticulata) from different environments, who do not show complete reproductive isolation despite adaptive divergence. We investigate patterns of mating isolation between populations that do and do not exchange migrants and show evidence for both by-product and reinforcement mechanisms depending on female ecology. Specifically, low-predation females discriminate against all high-predation males thus implying a by-product mechanism, whereas high-predation females only discriminate against low-predation males from further upstream in the same river, implying selection to avoid maladaptive mating. Our study thus confirms that mechanisms of adaptive speciation are not necessarily mutually exclusive and uncovers the complex ecology-geography interactions that underlie the evolution of mating isolation in nature

    Robust estimation of microbial diversity in theory and in practice

    Get PDF
    Quantifying diversity is of central importance for the study of structure, function and evolution of microbial communities. The estimation of microbial diversity has received renewed attention with the advent of large-scale metagenomic studies. Here, we consider what the diversity observed in a sample tells us about the diversity of the community being sampled. First, we argue that one cannot reliably estimate the absolute and relative number of microbial species present in a community without making unsupported assumptions about species abundance distributions. The reason for this is that sample data do not contain information about the number of rare species in the tail of species abundance distributions. We illustrate the difficulty in comparing species richness estimates by applying Chao's estimator of species richness to a set of in silico communities: they are ranked incorrectly in the presence of large numbers of rare species. Next, we extend our analysis to a general family of diversity metrics ("Hill diversities"), and construct lower and upper estimates of diversity values consistent with the sample data. The theory generalizes Chao's estimator, which we retrieve as the lower estimate of species richness. We show that Shannon and Simpson diversity can be robustly estimated for the in silico communities. We analyze nine metagenomic data sets from a wide range of environments, and show that our findings are relevant for empirically-sampled communities. Hence, we recommend the use of Shannon and Simpson diversity rather than species richness in efforts to quantify and compare microbial diversity.Comment: To be published in The ISME Journal. Main text: 16 pages, 5 figures. Supplement: 16 pages, 4 figure
    • …
    corecore