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preference. Parasites maintained continuously at 32  °C 
decreased to extinction within 3 days, whereas mean par-
asite abundance increased on hosts incubated at 18 and 
24 °C. We show for the first time that gyrodactylid-infected 
fish have a preference for warmer waters and speculate that 
sick fish exploit the upper thermal tolerances of their para-
sites to self medicate.

Keywords  Behavioural fever · Climate change · Thermal 
gradients · Trinidadian guppy · Gyrodactylus

Introduction

Temperature is perhaps the most important environmental 
determinant of the activity and performance of ectothermic 
vertebrates, and is particularly critical for fishes that, unlike 
amphibians and reptiles, are inefficient thermoregulators 
(Atkinson 1994). Fish behaviourally regulate their body 
temperature by selecting habitats with thermal regimes that 
optimise physiological performance (Reynolds et al. 1976; 
Ward et al. 2010). The metabolism, feeding rate and activ-
ity levels of ectotherms generally increase with tempera-
ture until conditions become stressful. Thermal stress can 
have long-lasting effects on fish behaviour with respect to 
migration (Jonsson and Jonsson 2009), reproductive suc-
cess (Pankhurst and Munday 2011), predatory avoidance 
(Marine and Cech 2004), and shoaling (Weetman et  al. 
1998, 1999). For temperate fish, this results in marked sea-
sonal and diel behaviours, but even tropical species are sub-
jected to distinct temperature heterogeneities (Webb et  al. 
2008).

In addition to optimizing physiological performance, 
ectotherms exploit thermal regimes to hinder parasite 
transmission and development. A change in a host’s 

Abstract  Ectotherms depend on the environmental tem-
perature for thermoregulation and exploit thermal regimes 
that optimise physiological functioning. They may also 
frequent warmer conditions to up-regulate their immune 
response against parasite infection and/or impede parasite 
development. This adaptive response, known as ‘behav-
ioural fever’, has been documented in various taxa includ-
ing insects, reptiles and fish, but only in response to endo-
parasite infections. Here, a choice chamber experiment 
was used to investigate the thermal preferences of a tropi-
cal freshwater fish, the Trinidadian guppy (Poecilia retic-
ulata), when infected with a common helminth ectopara-
site Gyrodactylus turnbulli, in female-only and mixed-sex 
shoals. The temperature tolerance of G. turnbulli was 
also investigated by monitoring parasite population tra-
jectories on guppies maintained at a continuous 18, 24 or 
32 °C. Regardless of shoal composition, infected fish fre-
quented the 32  °C choice chamber more often than when 
uninfected, significantly increasing their mean temperature 
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thermal preference driven by pathogenic infection, other-
wise known as ‘behavioural fever’, has been documented 
in several taxa including bumblebees (Müller and Schmid-
Hempel 1993), locusts (Elliot et al. 2002), lizards (Vaughn 
et  al. 1974) and fish. The first evidence of behavioural 
fever in fish was observed in largemouth bass (Micropterus 
salmoides) and bluegill sunfish (Lepomis macrochirus); 
both species displayed a significant increase (+2.7 °C) in 
mean temperature preference when inoculated with bac-
teria (Reynolds et al. 1976). This response was associated 
with bacterial pyrogens (fever-inducing chemicals) acting 
directly on the host’s hypothalamic thermoregulatory cen-
tre (Reynolds et  al. 1976). A subsequent study speculated 
that an increase in thermal preference by the fish host up-
regulates the immune response against parasite infection 
(Covert and Reynolds 1977). Using zebrafish (Danio rerio) 
infected with viraemia of carp virus it was confirmed that 
host behavioural fever induces a major up-regulation of the 
innate immune response, in this case expression of anti-
viral genes, which subsequently cleared viral infections 
within infected fish (Boltaña et al. 2013).

Acute thermal changes can be detrimental to the 
immune functions of fish (reviewed in Martin et al. 2010). 
However, some immune responses including elevations in 
lysozyme and immunoglobulin M levels are positively cor-
related with temperature until thermal limits are exceeded 
(Bowden et al. 2007; Marcos-Lopez et al. 2010). Thermal 
stress can reduce host immunocompetence thereby increas-
ing disease susceptibility in ectotherms (Rohr and Raffel 
2010). Interactions between these factors ultimately deter-
mine whether infections lead to severe pathology and even 
mortality, or host recovery. Parasites also respond directly 
to thermal variation, as elevated temperatures typically 
reduce development time. For example Schistocephalus 
solidus pleroceroid larvae, infecting three-spined stickle-
backs, have faster growth rates and become infectious to 
their definitive host sooner at 20  °C compared to 15  °C 
(Macnab and Barber 2011).

For directly transmitted ectoparasites, including mono-
genean gyrodactylids, the rate of reproduction is positively 
correlated within a temperature range from 17 to 28 °C in 
tropical gyrodactylids, and 2.5–19.5  °C in temperate spe-
cies (Scott and Nokes 1984; Jansen and Bakke 1991). 
Gyrodactylids are ubiquitous on teleosts, feeding on the 
skin and fin tissues of a host (Kearn 1996; Harris et  al. 
2004). Their life history traits, transmission and population 
dynamics have been extensively studied using the Trinidad-
ian guppy-Gyrodactylus system (reviewed by Cable 2011). 
Gyrodactylus turnbulli, a common guppy ectoparasite, 
exhibits a viviparous reproductive strategy (Cable and Har-
ris 2002), often resulting in explosive population growth, 
which can significantly impede host survival (e.g. Cable 
and van Oosterhout 2007a). As gyrodactylid embryonic 

development is temperature dependent (reviewed by Bakke 
et  al. 2007), natural variations in water temperature can 
determine parasite population growth.

Whilst guppies exhibit broad temperature tolerance 
(Reeve et al. 2014), small changes in water temperature can 
dramatically modify gyrodactylid life history traits (Bakke 
et  al. 2007), and temperatures exceeding 30  °C impede 
G. turnbulli survival (Scott and Nokes 1984). The present 
study investigates the thermal preferences of guppies in 
female-only and mixed-sex shoals, when uninfected and 
infected with the ectoparasite G. turnbulli. We also exam-
ine the temperature tolerance of these parasites by moni-
toring population trajectories on fish maintained at constant 
temperatures of 18, 24 or 32 °C. We hypothesize that gup-
pies infected with G. turnbulli will frequent warmer water, 
in comparison to when they are uninfected, and exposure 
to extreme thermal conditions has benefits in terms of self-
medication against parasites.

Materials and methods

Host and parasite origin

Guppies from the Lower Aripo River, Trinidad, were col-
lected in 2010 and stock populations were housed in breed-
ing tanks at 24 ±  0.5  °C at Exeter University. Fish were 
transferred to Cardiff University in April 2012 where they 
were maintained in 120-L aquaria at 24 ± 0.5 °C and fed 
daily on Aquarian® tropical fish flakes and occasionally 
frozen bloodworm.

The Gt3 strain of the parasite G. turnbulli was isolated 
from ornamental pet shop guppies in 1997, and was main-
tained on small numbers of fish (four to six individuals) 
in laboratory cultures at 24  °C under a 12-h light:12-h 
dark lighting regime. To prevent parasite extinction, each 
culture pot was subsidized with naïve fish twice weekly. 
Each pot contained a minimum of four culture fish col-
lectively infected with approximately 40 gyrodactylid 
worms. To quantify mean parasite abundance (the total 
number of worms/the number of hosts including zero 
counts), guppies were anaesthetized with buffered 0.02 % 
tricaine methanesulfonate (MS222) and screened using a 
dissecting microscope with fibre optic illumination. For 
experimental infections, a heavily infected donor fish from 
the parasite culture was sacrificed and two to six worms 
transferred through direct contact onto the caudal fin of an 
anaesthetized recipient fish, as observed using a dissect-
ing microscope. To remove parasites, fish were chemically 
treated using 0.1  % dilution of Levamisole (Norbrook, 
UK), and subsequently screened weekly over 3 consecu-
tive weeks to ensure that the infection had been eliminated 
(see Schelkle et al. 2009).
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Experimental set‑up

The experimental arena consisted of three plastic aquaria 
(30  ×  20  ×  20  cm) connected by two plastic tunnels 
(10 cm length × 4 cm DIA; Fig. 1). All tanks were filled 
with dechlorinated water to a depth of 15  cm. The appa-
ratus was covered by black paper on five sides to reduce 
disturbance by external stimuli, with one side left open to 
allow observations. The experiment was conducted in a 
temperature-controlled room (15 ±  0.5  °C), under a 14-h 
light:10-h dark lighting regime. Across the arena, a tem-
perature gradient was established using heating mats under 
the central chamber (chamber B), and an aquarium heater 
in one side chamber (chamber C). Chambers A and B also 
contained small aquarium heaters that were not switched 
on to ensure uniform conditions within each chamber. 
Chamber A was maintained at 18 ± 0.5 °C, chamber B at 
24 ± 1 °C and chamber C at 32 ± 0.5 °C. Each chamber 
was uniformly aerated to prevent a thermocline developing 
within the tank.

Experimental procedure

Female-only (five females) or mixed-sex (three females, 
two males) shoals (n = 14 per shoal type) were placed in a 
30 × 15 × 15-cm aquarium to familiarise for 7 days prior 
to an experimental trial (according to Richards et al. 2010). 
Females typically form small shoals in the wild, between 
which males move in search of mating opportunities (Grif-
fiths and Magurran 1998), hence the rationale for using 
female-only and mixed-sex shoals with natural sex ratios in 
the current study. Using a crossover experimental design, 
shoals (six female only and six mixed sex) were infected 
at the start of the trial and monitored for 2  days. On day 
3, these fish were artificially cleared of parasites and 

observed for a further 2 days. The remaining shoals (eight 
female only and eight mixed sex) started trials with unin-
fected individuals and were subsequently infected on day 
3. Thus, each shoal served as its own infected/uninfected 
control, whilst the crossover design controlled for the 
potential effect of time by alternating the infection point. 
Experimental infections were conducted by housing each 
shoal with a heavily infected donor fish (>200 Gt3 worms) 
for 2  days in an infection tank (20 ×  10 ×  10  cm). Fish 
were then anaesthetized, and their gyrodactylid intensities 
recorded. To achieve a moderate infection (mean gyro-
dactylid intensity 22.5; range 13–34) per fish, additional 
worms were manually transferred to the caudal fin of some 
hosts from an infected donor fish (as previously described). 
Control fish were sham infected, whereby they endured the 
same handling and period of anaesthetisation, but were not 
exposed to parasites.

During a trial, either a female-only or mixed-sex shoal 
was introduced into chamber B of the arena. Profiles were 
created for each fish within a shoal documenting unique 
body colouration and markings enabling individuals to be 
distinguished. Over two consecutive days, each individ-
ual was observed five times per day with 2-h intervals in 
between. During a focal follow, fish in each chamber (A, 
B or C) were recorded every 10  s for 1  min, accumulat-
ing 10 min of observational data per fish. Individuals were 
then removed from the arena by scooping them up in a 
plastic 10 × 10-cm container to prevent parasite dislodge-
ment, anaesthetised using 0.02 % MS222 and screened for 
G. turnbulli using a dissection microscope with fibre optic 
illumination. Fish were then either experimentally infected, 
or their parasites chemically removed, thereby reversing 
their infection status. Following chemical treatment, indi-
viduals were screened to ensure no parasites remained 
on the host. At the end of a trial, these fish were screened 
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Fig. 1   The experimental arena consisted of three aquaria intercon-
nected by two plastic tubes (10  cm length × 4  cm diameter). The 
side walls of the arena were covered with black paper to reduce dis-
turbance to the fish, with one side left open for observations. Tanks 
were filled with dechlorinated water to a depth of 15 cm. Placing air 
stones, aquarium heaters and heating mats in and under each chamber 

established a thermal gradient across the arena, and a consistent tem-
perature within each tank. a Chamber A was maintained at 18 °C, b 
chamber B at 24 °C, and c chamber C at 32 °C, each ±0.5 °C. b Fish 
were always introduced and returned to chamber B during an experi-
mental trial
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twice more to ensure they were not infected, to confirm that 
they were parasite-free during the final days of observation. 
Uninfected fish were also exposed to levamisole and anaes-
thetic to account for their potentially confounding effects 
on fish behaviour. Fish monitoring was then resumed for 
a further 2 consecutive days. For these trials, fish were 
again introduced into chamber B of the experimental arena 
and allowed to habituate for 2  h. This design allowed us 
to compare fish behaviour when the host was infected vs. 
uninfected, whilst also testing whether prior infection sta-
tus influenced temperature preference.

G. turnbulli temperature tolerance

Parasite-naïve sexually mature experimental fish 
(>3 months old) were acclimated and maintained at water 
temperatures of 18, 24 or 32 °C (n = 20, 37 and 16, respec-
tively). This entailed increasing or decreasing daily water 
temperature by 1 °C for 8 or 6 days to reach 32 or 18 °C, 
respectively. These fish were then maintained for a further 
14 days under these conditions before being experimentally 
infected with two Gt3 worms on their caudal fin (accord-
ing to the above protocol). Fish were individually housed 
in 1-L containers and screened daily over a 7-day period to 
record Gyrodactylus infection trajectories.

Statistical analysis

Analyses were conducted using R statistical software 
(version 3.1.3, R Development Core Team 2009). Statisti-
cal models were refined by deleting non-significant terms 
from the starting model, based on ANOVA (Crawley 2007). 

Model robustness was assessed using residual plots (after 
Pinheiro and Bates 2000).

Using a generalised linear mixed model (GLMM), we 
investigated whether the mean temperature preference of 
fish was significantly different before and after infection. 
Temperature preference was the dependant term in the 
model and fixed effects included infection status (infected 
or uninfected), shoal type (female only or mixed sex), 
infection regime (fish infected at the beginning or second 
half of a trial) and standard length (millimetres). Fish iden-
tity was nested within shoal number and included as a ran-
dom factor within the model. A negative binomial GLMM 
(glmmADMB statistical package) was used to investigate 
the effects of temperature, host standard length (millime-
tres), the day of infection (i.e. how many days a fish had 
been infected prior to a particular screen day), on gyro-
dactylid trajectories over the 7-day infection period. An 
interaction between temperature and the day of infection 
was also incorporated into the model, with Fish identity 
included as a random term.

Results

Fish thermal preference

Infection status had a significant effect on the mean tem-
perature preference of fish [GLMM, likelihood ratio test 
(LRT)1, 137  =  819.97, P  <  0.0001], which was signifi-
cantly higher when fish were infected (mean = +0.97 °C) 
than when uninfected (estimate  =  −1.08, SE  =  0.10, 
P  <  0.0001; Fig.  2). Shoal type, standard length and 

Fig. 2   The mean temperature 
preference of individual fish 
when infected with Gyrodacty-
lus turnbulli, minus their mean 
temperature preference when 
uninfected (n = 138). Positive 
bars indicate individual fish that 
moved to warmer waters fol-
lowing infection, negative bars 
indicate individuals that moved 
to cooler waters when infected
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infection regime did not influence temperature preference 
(P > 0.05 for all variables).

G. turnbulli temperature tolerance

Mean parasite abundance significantly increased over the 
7-day infection period (GLMM, LRT =  638.70, df =  6, 
P  <  0.001); however, this was dependant on temperature 
(LRT  =  75.76, df  =  2, P  <  0.001). Parasite population 
increase was higher at 24  °C, compared to 18  °C (esti-
mate = −0.95, SE =  0.22, P  <  0.0001) and 32  °C (esti-
mate = −3.01, SE = 0.29, P < 0.0001) (Fig. 3).

Discussion

Here, we show for the first time that gyrodactylid-infected 
fish have a preference for warmer waters, and we specu-
late that fish exploit the upper thermal tolerances of their 
parasites to self-medicate against parasite infection. In 
addition, the guppy immune response may be up-regulated 
by the increase in temperature, which is consistent with 
the elevation of lysozyme and immunoglobulin M levels 
observed in other fish (Bowden et al. 2007). We also con-
firm the findings of Scott and Nokes (1984) that population 
growth of Gyrodactylus turnbulli is significantly impacted 
by temperature.

When exposed to a constant temperature, G. turnbulli 
infecting guppies at 32  °C declined to extinction within 
3  days. Parasite mean abundance increased on fish main-
tained at 18 and 24  °C; however, population growth was 
less pronounced in the 18  °C treatment. Despite G. turn-
bulli population growth being reduced at cooler tempera-
tures, fish residing within such conditions may compro-
mise the metabolic and immunological benefits of warmth. 

This may explain why, when given a choice of three 
temperatures (18, 24 and 32  °C), guppies frequented the 
32 °C chamber more often compared to when uninfected; 
this was indicated by a significant increase in mean tem-
perature preference. Three-spined sticklebacks infected 
with Schistocephalus solidus also exhibit a preference 
for warmer water in comparison to uninfected conspecif-
ics. However, unlike our guppy-gyrodactylid system, this 
observed thermal shift promotes parasite growth, fecundity 
and ultimately transmission (Macnab and Barber 2011). 
The mechanisms involved in this seemingly maladaptive 
behavioural response are complex and, in the stickleback 
system, could be affected by both direct and indirect host 
behavioural manipulation by the parasite (Barber et  al. 
2004; Scharsack et  al. 2007). Although gyrodactylids do 
cause behavioural changes in their hosts, these are almost 
certainly by-products of infection rather than parasitic host 
manipulation (e.g. Kolluru et al. 2009). Therefore, a signifi-
cant increase in mean temperature preference is likely an 
adaptive host response. We speculate that this behavioural 
change directly imposes thermal stress on the parasite to 
increase mortality, as observed when parasites were main-
tained at a constant 32  °C, and/or up-regulates the host’s 
immune system to counteract gyrodactylid infection.

Guppies exhibit innate and acquired resistance to Gyro-
dactylus species; however, little is known about the precise 
mechanisms involved in guppy immunocompetence (Cable 
and van Oosterhout 2007b). Although the innate immune 
response of guppies is probably activated at the onset of G. 
turnbulli infection (Scott 1985; van Oosterhout et al. 2008), 
parasite population declines are most apparent 7–11  days 
post-infection at 25 °C. This is presumably associated with 
the induction of acquired immunity. Our results show that 
G. turnbulli infection did not persist for longer than 3 days 
on any hosts at 32 °C. The failure of the parasite population 
at this temperature, particularly in such a short time, indi-
cates that thermal stress, as opposed to the host immune 
defence, may be the predominant factor compromising par-
asite survival by impeding physiological function. The par-
asites used in the current study, however, were not acclima-
tised to the lower and upper temperature treatments prior to 
the experiment. Short generation times may facilitate rapid 
evolution of a wider thermal tolerance within gyrodactyl-
ids, although there is no empirical evidence to support this. 
Due to their small sizes and faster metabolic rates, parasites 
could acclimate faster than their hosts to thermal shifts, but 
only if physiological performance is improved at the accli-
mated temperature (Paull et al. 2015).

Guppies are native to Trinidad and Tobago where they 
typically reside in warm water ranging between 18–32 °C 
(Kent and Ojanguren 2015). They have a remarkable capac-
ity for thermal adaptation with populations successfully 
establishing in environments with very different thermal 
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Fig. 3   Mean G. turnbulli abundance (±SE) on guppies experimen-
tally infected with two parasites on day 0, and maintained at three dif-
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37 and 16, respectively)
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regimes to their native habitats (Deacon et al. 2011). Water 
temperatures within freshwater streams can fluctuate  by 
~10  °C daily (Reeve et  al. 2014), and exposure to these 
temperature heterogeneities often results in marked behav-
ioural changes. Juvenile guppies, for example, increase 
their average swimming speed and depth when exposed to 
elevated temperatures (Kent and Ojanguren 2015). Female 
guppies preferentially associate with larger, more cohe-
sive shoals at high (26 °C) compared to low (22 °C) water 
temperatures, particularly in the presence of cichlid preda-
tors (Weetman et  al. 1998, 1999). Although associating 
with larger shoals may promote gyrodactylid transmission 
(Richards et al. 2010), by exploiting warmer thermal condi-
tions, fish may self-medicate against parasite infection, par-
ticularly monogenean ectoparasites as shown here.

In summary, we use the guppy-G. turnbulli model to 
highlight how elevated temperatures can significantly 
impact host-parasite interactions within freshwater environ-
ments. G. turnbulli mean abundance increased at 18 and 
28 °C, whilst thermal extremes of 32 °C caused population 
extinction. Additionally, it is shown how temperature selec-
tion by fish is influenced by parasite infection, with infected 
individuals frequenting warmer water more often than if 
uninfected. We speculate that this adaptive host behavioural 
response inhibits physiological functioning of gyrodactylid 
worms. This information helps us understand how exist-
ing natural variation in water temperature, at a local scale, 
influences disease outbreaks. In the future, we will be able 
to use such data to model how climate-driven population 
responses alter disease epidemics in wild and managed fish 
stocks within both tropical and temperate regions. Temper-
ate species in particular face additional challenges associ-
ated with elevated temperature, including oxygen depletion 
within warmer water that subsequently impedes gill res-
piratory processes. Whether or not temperate species will 
tolerate thermal conditions outside their own temperature 
optima in order to self-medicate against parasite infection 
remains unknown.
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