27 research outputs found

    Catalytic steam gasification of biomass for a sustainable hydrogen future: influence of catalyst composition

    Get PDF
    Hydrogen is regarded as a clean energy for fuelling the future. Hydrogen will be the energy carrier from other resources such as hydropower, wind, solar and biomass. Producing hydrogen from gasification of biomass wastes, particularly in the presence of steam, represents a promising route to produce this clean and CO2-neutral fuel. The steam pyrolysis-gasification ofbiomass (wood sawdust) was carried out with various nickel-based catalysts for hydrogen production in a two-stage fixed bed reaction system. The wood sawdust was pyrolysed in the first reactor and the derived products were gasified in the second reactor in the presence of the catalyst and steam. The synthesised Ni-Ca-Al and Ni-Zn-Al catalysts were preparedbyco-precipitation method with different Ni loadings of 20 mol% and various Zn/Al or Ca/Al ratios, which were characterized with scanning electron microscopy (SEM), transmission electron microscopy (TEM) and temperature-programmed oxidation (TPO). The results showed that the Ni/Zn-Al (1:9) catalyst resulted in higher hydrogenproduction(23.9 mmol H2 g-1biomass)compared with the Ni/Ca-Al (1:9) catalyst (12.7 23.9 mmol H2 g-1 biomass) and in addition, the increase of Ca or Zn content in the catalyst slightly increased the hydrogen production. The TPO results showed that the catalyst suffered negligible coke deposition from the catalytic steam pyrolysis/gasification of wood sawdust. Additionally, Na2CO3 basic solution was also found toproduce a catalyst with better performance and lower coke deposition, compared with NH4OH catalyst preparation agent, as observed by TPO, SEM and TEM analysis

    Behaviour of dolomite, olivine and alumina as primary catalysts in air-steam gasification of sewage sludge

    Get PDF
    Sewage sludge gasification assays were performed in an atmospheric fluidised bed reactor using air and air–steam mixtures as the gasifying agents. Dolomite, olivine and alumina are three well known tar removal catalysts used in biomass gasification processing. However, little information is available regarding their performance in sewage sludge gasification. The aim of the current study was to learn about the influence of these three catalysts in the product distribution and tar production during sewage sludge gasification. To this end, a set of assays was performed in which the temperature (750–850 °C), the in-bed catalyst content (0, 10 and 15 wt.%) and the steam–biomass ratio (SB) in the range of 0–1 were varied with a constant equivalence ratio (ER) of 0.3. The results were compared to the results from gasification without a catalyst. We show that dolomite has the highest activity in tar elimination, followed by alumina and olivine. In addition to improving tar removal, the presence of water vapour and the catalysts increased the content of H2 in the gases by nearly 60%
    corecore