488 research outputs found
Monitoring the solid-state dewetting of densely packed arrays of Au nanoparticles
We report a real time, in-situ spectroscopic ellipsometry study of the temperature-induced solid-state dewetting of Au nanowires into nanoparticles. Very large spectral variations are observed at different temperatures. Analysis of the key features in the acquired spectra reveals two different regimes: up to 300 \ub0C the variation in the optical response is dominated by solid-state dewetting, while above that temperature, smaller variations not compatible with such mechanism are visible. Therefore our ellipsometry measurements allow us to determine in real time at which temperature the solid-state dewetting ceases and the morphology of our sample becomes stable. We point out that this observation is possible thanks to the higher sensitiviy of ellipsometry with respect to reflectance/transmittance measurements
Active optical modulation in hybrid transparent-conductive oxide/electro-optic multilayers
We report the room temperature, low-voltage-enabled modulation of the optical response of hybrid transparent-conductive-oxide/ferroelectric multilayers. We have fabricated an optical multilayer consisting of Al-doped ZnO (AZO) and BaTiO3 films deposited on a Nb-doped SrTiO3(110) substrate. Applying a low voltage between the AZO film and the substrate, a significant variation of the system's optical response has been detected by means of in operando spectroscopic ellipsometry. The voltage-induced variations have been ascribed to a combination of charge accumulation/depletion at the insulator/semiconductor interface and the field-induced Pockels effect in the BaTiO3 layer and successfully reproduced by an optical model including these effects. We have deduced a variation of the refractive index in AZO in the infrared range by more than 0.1 at an applied bias of 0.2 V and by more than 2 at an applied bias of just 3 V at room temperature, which can be strongly appealing for voltage-modulated active optical systems
Tamm Plasmon Resonance as Optical Fingerprint of Silver/Bacteria Interaction
The incorporation of responsive elements into photonic crystals is an effective strategy for fabricating active optical components to be used as sensors, actuators, and modulators. In particular, the combination of simple multilayered dielectric mirrors with optically responsive plasmonic materials has proven to be successful. Recently, Tamm plasmon (TP) modes have emerged as powerful tools for these purposes. These modes arise at the interface between a distributed Bragg reflector (DBR) and a plasmonic layer and can be excited at a normal incidence angle. Although the TP field is located usually at the DBR/metal interface, recent studies have demonstrated that nanoscale corrugation of the metal layer permits access to the TP mode from outside, thus opening exciting perspectives for many real-life applications. In this study, we show that the TP resonance obtained by capping a DBR with a nanostructured layer of silver is responsive to Escherichia coli. Our data indicate that the modification of the TP mode originates from the well-known capability of silver to interact with bacteria, within a process in which the release of Ag+ ions leaves an excess of negative charge in the metal lattice. Finally, we exploited this effect to devise a case study in which we optically differentiated between the presence of proliferative and nonproliferative bacteria using the TP resonance as a read-out. These findings make these devices promising all-optical probes for bacterial metabolic activity, including their response to external stressors
The Advanced Virgo+ status
The gravitational wave detector Advanced Virgo+ is currently in the commissioning phase in view of the fourth Observing Run (O4). The major upgrades with respect to the Advanced Virgo configuration are the implementation of an additional recycling cavity, the Signal Recycling cavity (SRC), at the output of the interferometer to broaden the sensitivity band and the Frequency Dependent Squeezing (FDS) to reduce quantum noise at all frequencies. The main difference of the Advanced Virgo + detector with respect to the LIGO detectors is the presence of marginally stable recycling cavities, with respect to the stable recycling cavities present in the LIGO detectors, which increases the difficulties in controlling the interferometer in presence of defects (both thermal and cold defects). This work will focus on the interferometer commissioning, highlighting the control challenges to maintain the detector in the working point which maximizes the sensitivity and the duty cycle for scientific data taking
Frequency-Dependent Squeezed Vacuum Source for the Advanced Virgo Gravitational-Wave Detector
In this Letter, we present the design and performance of the frequency-dependent squeezed vacuum source that will be used for the broadband quantum noise reduction of the Advanced Virgo Plus gravitational-wave detector in the upcoming observation run. The frequency-dependent squeezed field is generated by a phase rotation of a frequency-independent squeezed state through a 285 m long, high-finesse, near-detuned optical resonator. With about 8.5 dB of generated squeezing, up to 5.6 dB of quantum noise suppression has been measured at high frequency while close to the filter cavity resonance frequency, the intracavity losses limit this value to about 2 dB. Frequency-dependent squeezing is produced with a rotation frequency stability of about 6 Hz rms, which is maintained over the long term. The achieved results fulfill the frequency dependent squeezed vacuum source requirements for Advanced Virgo Plus. With the current squeezing source, considering also the estimated squeezing degradation induced by the interferometer, we expect a reduction of the quantum shot noise and radiation pressure noise of up to 4.5 dB and 2 dB, respectively
Advanced Virgo Plus: Future Perspectives
While completing the commissioning phase to prepare the Virgo interferometer for the next joint Observation Run (O4), the Virgo collaboration is also finalizing the design of the next upgrades to the detector to be employed in the following Observation Run (O5). The major upgrade will concern decreasing the thermal noise limit, which will imply using very large test masses and increased laser beam size. But this will not be the only upgrade to be implemented in the break between the O4 and O5 observation runs to increase the Virgo detector strain sensitivity. The paper will cover the challenges linked to this upgrade and implications on the detector's reach and observational potential, reflecting the talk given at 12th Cosmic Ray International Seminar - CRIS 2022 held in September 2022 in Napoli
Calibration of advanced Virgo and reconstruction of the detector strain h( t) during the observing run O3
The three advanced Virgo and LIGO gravitational wave detectors participated to the third observing run (O3) between 1 April 2019 15:00 UTC and 27 March 2020 17:00 UTC, leading to several gravitational wave detections per month. This paper describes the advanced Virgo detector calibration and the reconstruction of the detector strain h(t) during O3, as well as the estimation of the associated uncertainties. For the first time, the photon calibration technique as been used as reference for Virgo calibration, which allowed to cross-calibrate the strain amplitude of the Virgo and LIGO detectors. The previous reference, so-called free swinging Michelson technique, has still been used but as an independent cross-check. h(t) reconstruction and noise subtraction were processed online, with good enough quality to prevent the need for offline reprocessing, except for the two last weeks of September 2019. The uncertainties for the reconstructed h(t) strain, estimated in this paper in a 20-2000 Hz frequency band, are frequency independent: 5% in amplitude, 35 mrad in phase and 10 μs in timing, with the exception of larger uncertainties around 50 Hz
Virgo Detector Characterization and Data Quality: results from the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave (GW) signals in the past few
years, alongside the two Advanced LIGO instruments. First during the last month
of the Observation Run 2 (O2) in August 2017 (with, most notably, the compact
binary mergers GW170814 and GW170817), and then during the full Observation Run
3 (O3): an 11-months data taking period, between April 2019 and March 2020,
that led to the addition of about 80 events to the catalog of transient GW
sources maintained by LIGO, Virgo and now KAGRA. These discoveries and the
manifold exploitation of the detected waveforms require an accurate
characterization of the quality of the data, such as continuous study and
monitoring of the detector noise sources. These activities, collectively named
{\em detector characterization and data quality} or {\em DetChar}, span the
whole workflow of the Virgo data, from the instrument front-end hardware to the
final analyses. They are described in details in the following article, with a
focus on the results achieved by the Virgo DetChar group during the O3 run.
Concurrently, a companion article describes the tools that have been used by
the Virgo DetChar group to perform this work.Comment: 57 pages, 18 figures. To be submitted to Class. and Quantum Grav.
This is the "Results" part of preprint arXiv:2205.01555 [gr-qc] which has
been split into two companion articles: one about the tools and methods, the
other about the analyses of the O3 Virgo dat
Virgo Detector Characterization and Data Quality during the O3 run
The Advanced Virgo detector has contributed with its data to the rapid growth
of the number of detected gravitational-wave signals in the past few years,
alongside the two LIGO instruments. First, during the last month of the
Observation Run 2 (O2) in August 2017 (with, most notably, the compact binary
mergers GW170814 and GW170817) and then during the full Observation Run 3 (O3):
an 11 months data taking period, between April 2019 and March 2020, that led to
the addition of about 80 events to the catalog of transient gravitational-wave
sources maintained by LIGO, Virgo and KAGRA. These discoveries and the manifold
exploitation of the detected waveforms require an accurate characterization of
the quality of the data, such as continuous study and monitoring of the
detector noise. These activities, collectively named {\em detector
characterization} or {\em DetChar}, span the whole workflow of the Virgo data,
from the instrument front-end to the final analysis. They are described in
details in the following article, with a focus on the associated tools, the
results achieved by the Virgo DetChar group during the O3 run and the main
prospects for future data-taking periods with an improved detector.Comment: 86 pages, 33 figures. This paper has been divided into two articles
which supercede it and have been posted to arXiv on October 2022. Please use
these new preprints as references: arXiv:2210.15634 (tools and methods) and
arXiv:2210.15633 (results from the O3 run
- …
