19 research outputs found

    Within-Network Connectivity in the Salience Network After Attention Bias Modification Training in Residual Depression: Report From a Preregistered Clinical Trial

    Get PDF
    Alterations in resting state networks (RSNs) are associated with emotional- and attentional control difficulties in depressed individuals. Attentional bias modification (ABM) training may lead to more adaptive emotional processing in depression, but little is known about the neural underpinnings associated with ABM. In the current study a sample of 134 previously depressed individuals were randomized into 14 days of computerized ABM- or a closely matched placebo training regime followed by a resting state magnetic resonance imaging (MRI) scan. Using independent component analysis (ICA) we examined within-network connectivity in three major RSN’s, the default mode network (DMN), the salience network (SN) and the central executive network (CEN) after 2 weeks of ABM training. We found a significant difference between the training groups within the SN, but no difference within the DMN or CEN. Moreover, a significant symptom improvement was observed in the ABM group after training.Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02931487

    Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine

    Get PDF
    Background: Longitudinal neuroimaging studies of major depressive disorder (MDD) have most commonly assessed the effects of antidepressants from the serotonin reuptake inhibitor class and usually reporting a single measure. Multimodal neuroimaging assessments were acquired from MDD patients during an acute depressive episode with serial measures during a 12-week treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine. Methods: Participants were medication-free MDD patients (n = 32; mean age 40.2 years) in an acute depressive episode and healthy controls matched for age, gender, and IQ (n = 25; mean age 38.8 years). MDD patients received treatment with duloxetine 60 mg daily for 12 weeks with an optional dose increase to 120 mg daily after 8 weeks. All participants had serial imaging at weeks 0, 1, 8, and 12 on a 3 Tesla magnetic resonance imaging (MRI) scanner. Neuroimaging tasks included emotional facial processing, negative attentional bias (emotional Stroop), resting state functional MRI and structural MRI. Results: A significant group by time interaction was identified in the anterior default mode network in which MDD patients showed increased connectivity with treatment, while there were no significant changes in healthy participants. In the emotional Stroop task, increased posterior cingulate activation in MDD patients normalized following treatment. No significant group by time effects were observed for happy or sad facial processing, including in amygdala responsiveness, or in regional cerebral volumes. Reduced baseline resting state connectivity within the orbitofrontal component of the default mode network was predictive of clinical response. An early increase in hippocampal volume was predictive of clinical response. Conclusions: Baseline resting state functional connectivity was predictive of subsequent clinical response. Complementary effects of treatment were observed from the functional neuroimaging correlates of affective facial expressions, negative attentional bias, and resting state. No significant effects were observed in affective facial processing, while the interaction effect in negative attentional bias and individual group effects in resting state connectivity could be related to the SNRI class of antidepressant medication. The specificity of the observed effects to SNRI pharmacological treatments requires further investigation. Trial registration: Registered at clinicaltrials.gov (NCT01051466)

    Within-Network Connectivity in the Salience Network After Attention Bias Modification Training in Residual Depression: Report From a Preregistered Clinical Trial

    No full text
    Alterations in resting state networks (RSNs) are associated with emotional- and attentional control difficulties in depressed individuals. Attentional bias modification (ABM) training may lead to more adaptive emotional processing in depression, but little is known about the neural underpinnings associated with ABM. In the current study a sample of 134 previously depressed individuals were randomized into 14 days of computerized ABM- or a closely matched placebo training regime followed by a resting state magnetic resonance imaging (MRI) scan. Using independent component analysis (ICA) we examined within-network connectivity in three major RSN’s, the default mode network (DMN), the salience network (SN) and the central executive network (CEN) after 2 weeks of ABM training. We found a significant difference between the training groups within the SN, but no difference within the DMN or CEN. Moreover, a significant symptom improvement was observed in the ABM group after training

    Multimodal functional and structural neuroimaging investigation of major depressive disorder following treatment with duloxetine

    Get PDF
    BACKGROUND: Longitudinal neuroimaging studies of major depressive disorder (MDD) have most commonly assessed the effects of antidepressants from the serotonin reuptake inhibitor class and usually reporting a single measure. Multimodal neuroimaging assessments were acquired from MDD patients during an acute depressive episode with serial measures during a 12-week treatment with the serotonin-norepinephrine reuptake inhibitor (SNRI) duloxetine. METHODS: Participants were medication-free MDD patients (n = 32; mean age 40.2 years) in an acute depressive episode and healthy controls matched for age, gender, and IQ (n = 25; mean age 38.8 years). MDD patients received treatment with duloxetine 60 mg daily for 12 weeks with an optional dose increase to 120 mg daily after 8 weeks. All participants had serial imaging at weeks 0, 1, 8, and 12 on a 3 Tesla magnetic resonance imaging (MRI) scanner. Neuroimaging tasks included emotional facial processing, negative attentional bias (emotional Stroop), resting state functional MRI and structural MRI. RESULTS: A significant group by time interaction was identified in the anterior default mode network in which MDD patients showed increased connectivity with treatment, while there were no significant changes in healthy participants. In the emotional Stroop task, increased posterior cingulate activation in MDD patients normalized following treatment. No significant group by time effects were observed for happy or sad facial processing, including in amygdala responsiveness, or in regional cerebral volumes. Reduced baseline resting state connectivity within the orbitofrontal component of the default mode network was predictive of clinical response. An early increase in hippocampal volume was predictive of clinical response. CONCLUSIONS: Baseline resting state functional connectivity was predictive of subsequent clinical response. Complementary effects of treatment were observed from the functional neuroimaging correlates of affective facial expressions, negative attentional bias, and resting state. No significant effects were observed in affective facial processing, while the interaction effect in negative attentional bias and individual group effects in resting state connectivity could be related to the SNRI class of antidepressant medication. The specificity of the observed effects to SNRI pharmacological treatments requires further investigation. TRIAL REGISTRATION: Registered at clinicaltrials.gov (NCT01051466). ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12888-015-0457-2) contains supplementary material, which is available to authorized users

    Effects of Attentional Bias Modification on residual symptoms in depression: a randomized controlled trial

    No full text
    Background Following treatment, many depressed patients have significant residual symptoms. However, large randomised controlled trials (RCT) in this population are lacking. When Attention bias modification training (ABM) leads to more positive emotional biases, associated changes in clinical symptoms have been reported. A broader and more transparent picture of the true advantage of ABM based on larger and more stringent clinical trials have been requested. The current study evaluates the early effect of two weeks ABM training on blinded clinician-rated and self-reported residual symptoms, and whether changes towards more positive attentional biases (AB) would be associated with symptom reduction. Method A total of 321 patients with a history of depression were included in a preregistered randomized controlled double-blinded trial. Patients were randomised to an emotional ABM paradigm over fourteen days or a closely matched control condition. Symptoms based on the Hamilton Rating Scale for Depression (HRSD) and Beck Depression Inventory II (BDI-II) were obtained at baseline and after ABM training. Results ABM training led to significantly greater decrease in clinician-rated symptoms of depression as compared to the control condition. No differences between ABM and placebo were found for self-reported symptoms. ABM induced a change of AB towards relatively more positive stimuli for participants that also showed greater symptom reduction. Conclusion The current study demonstrates that ABM produces early changes in blinded clinician-rated depressive symptoms and that changes in AB is linked to changes in symptoms. ABM may have practical potential in the treatment of residual depression. Trial registration ClinicalTrials.gov ID: NCT02658682 (retrospectively registered in January 2016)

    No add‐on effect of tDCS on fatigue and depression in chronic stroke patients: A randomized sham‐controlled trial combining tDCS with computerized cognitive training

    No full text
    Abstract Background Fatigue and emotional distress rank high among self‐reported unmet needs in life after stroke. Transcranial direct current stimulation (tDCS) may have the potential to alleviate these symptoms for some patients, but the acceptability and effects for chronic stroke survivors need to be explored in randomized controlled trials. Methods Using a randomized sham‐controlled parallel design, we evaluated whether six sessions of 1 mA tDCS (anodal over F3, cathodal over O2) combined with computerized cognitive training reduced self‐reported symptoms of fatigue and depression. Among the 74 chronic stroke patients enrolled at baseline, 54 patients completed the intervention. Measures of fatigue and depression were collected at five time points spanning a 2 months period. Results While symptoms of fatigue and depression were reduced during the course of the intervention, Bayesian analyses provided evidence for no added beneficial effect of tDCS. Less severe baseline symptoms were associated with higher performance improvement in select cognitive tasks, and study withdrawal was higher in patients with more fatigue and younger age. Time‐resolved symptom analyses by a network approach suggested higher centrality of fatigue items (except item 1 and 2) than depression items. Conclusion The results reveal no add‐on effect of tDCS on fatigue or depression but support the notion of fatigue as a relevant clinical symptom with possible implications for treatment adherence and response

    The genetic architecture of human brainstem structures and their involvement in common brain disorders

    Get PDF
    Brainstem regions support vital bodily functions, yet their genetic architectures and involvement in common brain disorders remain understudied. Here, using imaging-genetics data from a discovery sample of 27,034 individuals, we identify 45 brainstem-associated genetic loci, including the first linked to midbrain, pons, and medulla oblongata volumes, and map them to 305 genes. In a replication sample of 7432 participants most of the loci show the same effect direction and are significant at a nominal threshold. We detect genetic overlap between brainstem volumes and eight psychiatric and neurological disorders. In additional clinical data from 5062 individuals with common brain disorders and 11,257 healthy controls, we observe differential volume alterations in schizophrenia, bipolar disorder, multiple sclerosis, mild cognitive impairment, dementia, and Parkinson’s disease, supporting the relevance of brainstem regions and their genetic architectures in common brain disorders
    corecore