528 research outputs found

    Development of Detailed Chemistry Models for Boundary Layer Catalytic Recombination

    Get PDF
    During the (re-)entry phase of a space vehicle, the gas flow in the shock layer can be in a state of strong thermal non-equilibrium. Under these circumstances, the population of the internal energy levels of the atoms and molecules of the gas deviates from the Boltzmann distribution. A substantial increase of the heat flux transferred from the gas to the vehicle is possible, as the thermal protection system of the vehicle acts as a catalyzer. The objective of the paper is to show how thermal non-equilibrium and catalysis can jointly influence wall heat flux predictions. In order to study thermal non-equilibrium effects a coarse-grained State-to-State model for nitrogen is used coupled with a phenomenological model for catalysis. From the numerical simulations performed, an important effect on the heat flux has been observed due to the interaction of catalysis and thermal non-equilibrium at the wall

    A kinetic BGK edge-based scheme including vibrational and electronic energy modes for high-Mach flows

    Get PDF
    A first principles formulation for the calorically imperfect behavior of gases is here proposed within a Boltzmann-type discretisation of the Navier–Stokes equations. The formulation is intended to enhance the consistency of gas kinetic schemes (GKS) with the physics of supersonic and hypersonic regimes where vibrational and electronic energy modes are activated before any thermal nonequilibrium or chemical activity takes place. The so-called node-pair BGK scheme, an edge-based implementation of the GKS, is considered in the present work for the implementation of a thermodynamic model where the calorically imperfect behavior is obtained from a modification of the way the different moments of the particle distribution function are computed and eventually used to determine the fluxes of conserved quantities across the boundary of each control volume. The method is validated on a series of canonical test cases for supersonic and hypersonic flows

    Nonequilibrium radiation measurements and modelling relevant to Titan entry

    Get PDF
    An update to a collisional-radiative model developed by Magin1 for Huygens Titan atmospheric entry is proposed. The model is designed to predict the nonequilibrium populations and the radiation emitted from cyanogen and nitrogen during the entry of the Huygens probe into the Titan atmosphere. Radiation during Titan entry is important at lower speeds (around 5 – 6 km/s) more so than other planetary entries due to the formation of cyanogen in the shock layer, which is a highly radiative species. The model has been tested against measurements obtained with the EAST shock tube of NASA Ames Research Centre.1,2 The motivation for the update is due to the large discrepancies shown in the postshock fall-off rates of the radiation when compared to the experimental EAST shock tube test results. Modifications were made to the reaction rates used to calculate the species concentrations in the flow field. The reaction that was deemed most influential for the radiation fall off rate was the dissociation of molecular nitrogen. The model with modified reaction rates showed significantly better agreement with the EAST data. This paper also includes experimental results for radiation and spectra for Titan entry. Experiments were performed on the University of Queensland's X2 expansion tube. Spectra were recorded at various positions behind the shock. This enabled the construction of radiation profiles for Titan entry, as well as wavelength plots to identify various radiating species, in this case, predominately CN violet. This paper includes radiation profiles to compare with experiments performed at NASA Ames. It is planned that further experiments will be performed to cover a larger pressure range than NASA Ames. Good qualitative agreement has so far been obtained between our data and NASA Ames, however, it should be noted at the time of printing, the experimental spectrum have not been calibrated absolutely

    Keratin 5 knockout mice reveal plasticity of keratin expression in the corneal epithelium

    Get PDF
    We have recently demonstrated that the keratin K3 gene, which is active in the suprabasal human corneal epithelium, is missing in the genome of the mouse. We show that a normal K3 gene exists in a wide variety of mammals while in rodents the gene is converted to a pseudogene with a very strong sequence drift. The availability of K5(-/-) mice provides a unique opportunity to investigate type-specific keratin function during corneal differentiation in the absence of both K5 and K3. Here, we report that the deletion of K5, which in wild-type mice forms a cytoskeleton with K12, does neither cause keratin aggregation nor cytolysis in the cornea. This is due to the induction of K4 in corneal epithelial cells, normally restricted to corneal stem stem cells residing in the limbus. Using a combination of antibodies and RT-PCR, we identified additional keratins expressed in the mouse cornea including K23 which was previously thought to be specific for pancreatic carcinomas. This reflects an unexpected complexity of keratin expression in the cornea. Our data suggest that in the absence of mechanical stress, corneal differentiation does not depend on distinct keratin pairs, supporting a concept of functional redundancy, at least for certain keratins

    Numerical investigation of three types of space and time fractional Bloch-Torrey equations in 2D

    Get PDF
    Recently, the fractional Bloch-Torrey model has been used to study anomalous diffusion in the human brain. In this paper, we consider three types of space and time fractional Bloch-Torrey equations in two dimensions: Model-1 with the Riesz fractional derivative; Model-2 with the one-dimensional fractional Laplacian operator; and Model-3 with the two-dimensional fractional Laplacian operator. Firstly, we propose a spatially second-order accurate implicit numerical method for Model-1 whereby we discretize the Riesz fractional derivative using a fractional centered difference. We consider a finite domain where the time and space derivatives are replaced by the Caputo and the sequential Riesz fractional derivatives, respectively. Secondly, we utilize the matrix transfer technique for solving Model-2 and Model-3. Finally, some numerical results are given to show the behaviours of these three models especially on varying domain sizes with zero Dirichlet boundary conditions

    Anticholinergic burden in older women: not seeing the wood for the trees?

    Get PDF
    Objectives: To identify medicines contributing to and describe predictors of anticholinergic burden among community-dwelling older Australian women. Design, setting and participants: Retrospective longitudinal analysis of data from the Australian Longitudinal Study on Women's Health linked to Pharmaceutical Benefits Scheme medicines data from 1 January 2008 to 30 December 2010; for 3694 women born in 1921–1926. Main outcome measures: Anticholinergic burden calculated from Anticholinergic Drug Scale (ADS) scores derived from ADS levels (0 to 3) for all medicines used by each woman, summed over each 6-month period (semester), medicines commonly used by women with high semester ADS scores (defined as 75th percentile of scores). Results: 1126 women (59.9%) used at least one medicine with anticholinergic properties. The median ADS score was 4 or 5 across all semesters. Most anticholinergic medicines used by women who had a high anticholinergic burden (ADS score, = 9) had a low anticholinergic potency (ADS level 1). Increasing age, cardiovascular disease, and number of other medicines used were predictive of a higher anticholinergic burden. Conclusions: A high anticholinergic medicines burden in this group was driven by the use of multiple medicines with lower anticholinergic potency rather than the use of medicines with higher potency. This is a novel and important finding for clinical practice as doctors would readily identify the risk of a high anticholinergic burden for patients using high potency medicines, but may be less likely to identify this risk for users of multiple medicines with low anticholinergic potency

    Psychiatry out-of-hours: a focus group study of GPs' experiences in Norwegian casualty clinics

    Get PDF
    Background: For Norwegian general practitioners (GPs), acute treatment of mental illness and substance abuse are among the most commonly experienced emergency situations in out-of-hours primary healthcare. The largest share of acute referrals to emergency psychiatric wards occurs out-of-hours, and out-of-hours services are responsible for a disproportionately high share of compulsory referrals. Concerns exist regarding the quality of mental healthcare provided in the out-of-hours setting. The aim of this study was to explore which challenges GPs experience when providing emergency care out-of-hours to patients presenting problems related to mental illness or substance abuse. Methods: We conducted a qualitative study based on two individual interviews and six focus groups with purposively sampled GPs (totally 45 participants). The interviews were analysed successively in an editing style, using a thematic approach based on methodological descriptions by Charmaz and Malterud. Results: Safety and uncertainty were the dominating themes in the discussions. The threat to personal safety due to unpredictable patient behaviour was a central concern, and present security precautions in the out-of-hours services were questioned. The GPs expressed high levels of uncertainty in their work with patients presenting problems related to mental illness or substance abuse. The complexity of the problems presented, shortage of time, limited access to reliable information and limited range of interventions available during out-of-hours contributed to this uncertainty. Perceived access to second opinion seemed to have a major impact on subjectively experienced work stress. Conclusions: The GPs experienced out-of-hours psychiatry as a field with high levels of uncertainty and limited support to help them meet the experienced challenges. This might influence the quality of care provided. If the current organisation of emergency mental healthcare is to be kept, we need to provide GPs with a better support framework out-of-hours

    Low field photo-CIDNP in the intramolecular electron transfer in naproxen-pyrrolidine dyads

    Full text link
    [EN] Photoinduced processes with partial (exciplex) and full charge transfer in donor-acceptor systems are of interest because they are frequently used for modeling drug-protein binding. Low field photo-CIDNP (chemically induced dynamic nuclear polarization) for these processes in dyads, including the drug, (S)-and (R)-naproxen and (S)-N-methyl pyrrolidine in solutions with strong and weak permittivity have been measured. The dramatic influence of solvent permittivity on the field dependence of the N-methyl pyrrolidine H-1 CIDNP effects has been found. The field dependences of both (R, S)-and (S, S)-dyads in a polar medium are the curves with a single extremum in the area of the S-T+ terms intersection. Moreover, the CIDNP field dependences of the same protons measured in a low polar medium present curves with several extrema. The shapes of the experimental CIDNP field dependence with two extrema have been described using the Green function approach for the calculation of the CIDNP effects in the system without electron exchange interactions. The article discusses the possible causes of the differences between the CIDNP field dependence detected in a low-permittivity solvent with the strong Coulomb interactions and in a polar solvent.This study was supported by the grant 14-03-00-192 of the Russian Foundation of Basic Research. The authors are also deeply grateful to Professor Hans-Martin Vieth for the given opportunity to conduct experiments on his unique equipment.Magin, I.; Polyakov, N.; Kruppa, AI.; Purtov, P.; Leshina, TV.; Kiryutin, AS.; Miranda Alonso, MÁ.... (2016). Low field photo-CIDNP in the intramolecular electron transfer in naproxen-pyrrolidine dyads. Physical Chemistry Chemical Physics. 18(2):901-907. https://doi.org/10.1039/C5CP04233JS901907182Reece, S. Y., & Nocera, D. G. (2009). Proton-Coupled Electron Transfer in Biology: Results from Synergistic Studies in Natural and Model Systems. Annual Review of Biochemistry, 78(1), 673-699. doi:10.1146/annurev.biochem.78.080207.092132Richert, S., Rosspeintner, A., Landgraf, S., Grampp, G., Vauthey, E., & Kattnig, D. R. (2013). Time-Resolved Magnetic Field Effects Distinguish Loose Ion Pairs from Exciplexes. Journal of the American Chemical Society, 135(40), 15144-15152. doi:10.1021/ja407052tAich, S., & Basu, S. (1998). Magnetic Field Effect: A Tool for Identification of Spin State in a Photoinduced Electron-Transfer Reaction. The Journal of Physical Chemistry A, 102(4), 722-729. doi:10.1021/jp972264mVayĂĄ, I., PĂ©rez-Ruiz, R., Lhiaubet-Vallet, V., JimĂ©nez, M. C., & Miranda, M. A. (2010). Drug–protein interactions assessed by fluorescence measurements in the real complexes and in model dyads. Chemical Physics Letters, 486(4-6), 147-153. doi:10.1016/j.cplett.2009.12.091Werner, U., & Staerk, H. (1995). Magnetic Field Effect in the Recombination Reaction of Radical Ion Pairs: Dependence on Solvent Dielectric Constant. The Journal of Physical Chemistry, 99(1), 248-254. doi:10.1021/j100001a038Kattnig, D. R., Rosspeintner, A., & Grampp, G. (2008). Fully Reversible Interconversion between Locally Excited Fluorophore, Exciplex, and Radical Ion Pair Demonstrated by a New Magnetic Field Effect. Angewandte Chemie International Edition, 47(5), 960-962. doi:10.1002/anie.200703488Kattnig, D. R., Rosspeintner, A., & Grampp, G. (2011). Magnetic field effects on exciplex-forming systems: the effect on the locally excited fluorophore and its dependence on free energy. Phys. Chem. Chem. Phys., 13(8), 3446-3460. doi:10.1039/c0cp01517bVayĂĄ, I., Lhiaubet-Vallet, V., JimĂ©nez, M. C., & Miranda, M. A. (2014). Photoactive assemblies of organic compounds and biomolecules: drug–protein supramolecular systems. Chem. Soc. Rev., 43(12), 4102-4122. doi:10.1039/c3cs60413fPolyakov, N. E., Taraban, M. B., & Leshina, T. V. (2004). Photo-CIDNP Study of the Interaction of Tyrosine with Nifedipine. An Attempt to Model the Binding Between Calcium Receptor and Calcium Antagonist Nifedipine¶. Photochemistry and Photobiology, 80(3), 565. doi:10.1562/0031-8655(2004)0802.0.co;2Cao, H., Fujiwara, Y., Haino, T., Fukazawa, Y., Tung, C.-H., & Tanimoto, Y. (1996). Magnetic Field Effects on Intramolecular Exciplex Fluorescence of Chain-Linked Phenanthrene andN,N-Dimethylaniline: Influence of Chain Length, Solvent, and Temperature. Bulletin of the Chemical Society of Japan, 69(10), 2801-2813. doi:10.1246/bcsj.69.2801Magin, I. M., Polyakov, N. E., Khramtsova, E. A., Kruppa, A. I., Tsentalovich, Y. P., Leshina, T. V., 
 Marin, M. L. (2011). Spin effects in intramolecular electron transfer in naproxen-N-methylpyrrolidine dyad. Chemical Physics Letters, 516(1-3), 51-55. doi:10.1016/j.cplett.2011.09.057Khramtsova, E. A., Plyusnin, V. F., Magin, I. M., Kruppa, A. I., Polyakov, N. E., Leshina, T. V., 
 Miranda, M. A. (2013). Time-Resolved Fluorescence Study of Exciplex Formation in Diastereomeric Naproxen–Pyrrolidine Dyads. The Journal of Physical Chemistry B, 117(50), 16206-16211. doi:10.1021/jp4083147Magin, I. M., Purtov, P. A., Kruppa, A. I., & Leshina, T. V. (2005). Peculiarities of Magnetic and Spin Effects in a Biradical/Stable Radical Complex (Three-Spin System). Theory and Comparison with Experiment. The Journal of Physical Chemistry A, 109(33), 7396-7401. doi:10.1021/jp051115ySubramanian, V., Bellubbi, B. S., & Sobhanadri, J. (1993). Dielectric studies of some binary liquid mixtures using microwave cavity techniques. Pramana, 41(1), 9-20. doi:10.1007/bf02847313Acemioğlu, B., Arık, M., Efeoğlu, H., & Onganer, Y. (2001). Solvent effect on the ground and excited state dipole moments of fluorescein. Journal of Molecular Structure: THEOCHEM, 548(1-3), 165-171. doi:10.1016/s0166-1280(01)00513-9Grosse, S., Gubaydullin, F., Scheelken, H., Vieth, H.-M., & Yurkovskaya, A. V. (1999). Field cycling by fast NMR probe transfer: Design and application in field-dependent CIDNP experiments. Applied Magnetic Resonance, 17(2-3), 211-225. doi:10.1007/bf03162162Magin, I. M., Polyakov, N. E., Khramtsova, E. A., Kruppa, A. I., Stepanov, A. A., Purtov, P. A., 
 Marin, M. L. (2011). Spin Chemistry Investigation of Peculiarities of Photoinduced Electron Transfer in Donor–Acceptor Linked System. Applied Magnetic Resonance, 41(2-4), 205-220. doi:10.1007/s00723-011-0288-3C. K. Mann and K. K.Barnes, Electrochemical Reactions in Nonaqueous Systems, M. Dekker, New York, 1970N. S. Landolt-Bornstein , Numerical Data and Functional Relationship in Science and Technology: Magnetic Properties of Free Radicals, Springer-Verlag, Berlin, 1988Grigoryants, V. M., Anisimov, O. A., & Molin, Y. N. (1982). Study of the radical-cations of triethylamine and benzene derivatives by the optical detection of the EPR spectra of radical-ion Pairs. Journal of Structural Chemistry, 23(3), 327-333. doi:10.1007/bf00753466Bargon, J. (1977). CIDNP from geminate recombination of radical-ion pairs in polar solvents. Journal of the American Chemical Society, 99(25), 8350-8351. doi:10.1021/ja00467a054Purtov, P. A., & Doktorov, A. B. (1993). The Green function method in the theory of nuclear and electron spin polarization. I. General theory, zero approximation and applications. Chemical Physics, 178(1-3), 47-65. doi:10.1016/0301-0104(93)85050-iPurtov, P. A., Doktorov, A. B., & Popov, A. V. (1994). The green function method in the theory of nuclear and electron spin polarization. II. The first approximation and its application in the CIDEP theory. Chemical Physics, 182(2-3), 149-166. doi:10.1016/0301-0104(93)e0449-6K. M. Salikhov , Yu. N.Molin, R. Z.Sagdeev and A. L.Buchachenko, in Spin Polarization and Magnetic Field Effects in Radical, ed. Yu. N. Molin, Akademiai Kiado, Budapest, 1984Polyakov, N. E., Purtov, P. A., Leshina, T. V., Taraban, M. B., Sagdeev, R. Z., & Salikhov, K. M. (1986). Application of the semiclassical description of hyperfine interaction to studies of the dependence of the CIDNP effect on an external magnetic field. Chemical Physics Letters, 129(4), 357-361. doi:10.1016/0009-2614(86)80358-xShiotani, M., Sjoeqvist, L., Lund, A., Lunell, S., Eriksson, L., & Huang, M. B. (1990). An ESR and theoretical ab initio study of the structure and dynamics of the pyrrolidine radical cation and the neutral 1-pyrrolidinyl radical. The Journal of Physical Chemistry, 94(21), 8081-8090. doi:10.1021/j100384a020De Kanter, F. J. J., den Hollander, J. A., Huizer, A. H., & Kaptein, R. (1977). Biradical CIDNP and the dynamics of polymethylene chains. Molecular Physics, 34(3), 857-874. doi:10.1080/00268977700102161De Kanter, F. J. J., Kaptein, R., & Van Santen, R. A. (1977). Magnetic field dependent biradical CIDNP as a tool for the study of conformations of polymethylene chains. Chemical Physics Letters, 45(3), 575-579. doi:10.1016/0009-2614(77)80093-6Tsentalovich, Y. P., Yurkovskaya, A. V., Sagdeev, R. Z., Obynochny, A. A., Purtov, P. A., & Shargorodsky, A. A. (1989). Kinetics of nuclear polarization in the geminate recombination of biradicals. Chemical Physics, 139(2-3), 307-315. doi:10.1016/0301-0104(89)80143-0Popov, A. V., Purtov, P. A., & Yurkovskaya, A. V. (2000). Calculation of CIDNP field dependences in biradicals in the photolysis of large-ring cycloalkanones. Chemical Physics, 252(1-2), 83-95. doi:10.1016/s0301-0104(99)00293-1Magin, I. M., Shevel’kov, V. S., Obynochny, A. A., Kruppa, A. I., & Leshina, T. V. (2002). CIDNP study of the third spin effect on the singlet–triplet evolution in radical pairs. Chemical Physics Letters, 357(5-6), 351-357. doi:10.1016/s0009-2614(02)00544-4Schulten, K., & Wolynes, P. G. (1978). Semiclassical description of electron spin motion in radicals including the effect of electron hopping. The Journal of Chemical Physics, 68(7), 3292-3297. doi:10.1063/1.436135Kalneus, E. V., Stass, D. V., & Molin, Y. N. (2005). Typical applications of MARY spectroscopy: Radical ions of substituted benzenes. Applied Magnetic Resonance, 28(3-4), 213-229. doi:10.1007/bf03166757Kruppa, A. I., Leshina, T. V., Sagdeev, R. Z., Korolenko, E. C., & Shokhirev, N. V. (1987). Low-field CIDNP study of photoinduced electron transfer reactions. Chemical Physics, 114(1), 95-101. doi:10.1016/0301-0104(87)80022-
    • 

    corecore