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Abstract

A first principles formulation for the calorically imperfect behaviour of gases

is here proposed within a Boltzmann-type discretisation of the Navier-Stokes

equations. The formulation is intended to enhance the consistency of gas ki-

netic schemes (GKS) with the physics of supersonic and hypersonic regimes

where vibrational and electronic energy modes are activated before any thermal

nonequilibrium or chemical activity takes place. The so-called node-pair BGK

scheme, an edge-based implementation of the GKS, is considered in the present

work for the implementation of a thermodynamic model where the calorically

imperfect behavior is obtained from a modification of the way the different mo-

ments of the particle distribution function are computed and eventually used to

determine the fluxes of conserved quantities across the boundary of each control

volume. The method is validated on a series of canonical test cases for super-
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sonic and hypersonic flows.

Keywords: Calorically imperfect gas, GKS formulation, supersonic flow

physics.

1. Introduction

The development of numerical schemes explicitly incorporating elements of

the kinetic theory of gases is driven by the interest in formulating models directly

from first principles such that assumptions on the behavior of the gas could be

kept to a minimum. Methods derived from the fundamental Boltzmann equa-5

tion are of particular relevance to the CFD community and applications thanks

to their superior modeling capabilities. Different approaches of this kind have

been proposed to address flows in both incompressible and compressible regimes

and flows in conditions where the classical Navier-Stokes Fourier (NSF) model

might loose validity. This landscape includes particle-based methods [1, 2] and10

extended or generalized hydrodynamics methods [3, 4, 5, 6, 7, 8]. The majority

of these methods was developed with the scope of addressing specific regimes

and/or problems, like for example to study rarefied regimes and/or resolving

accurately Knudsen layers, and might not be suitable to address in a cohesive

and unified manner a wide range of flow conditions due either to their excessive15

computational cost (e.g. DSMC in continuum and near-continuum regimes) or

loss of consistency with the laws of thermodynamics (e.g. Burnett models or

Lattice-Boltzmann for high-Mach regimes) [9, 10, 6].

Among the methods aiming instead for a unified formulation capable to ad-20

dress a wide range of regimes (from nearly incompressible to compressible, from

continuum up to continuum transitional and even rarefied regimes) while retain-

ing a favourable computational cost, the gas kinetic scheme (GKS) originally
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proposed by Xu and collaborators a few decades ago [11] is a notable example.

The GKS scheme is obtained by adopting a simplified model of the Boltzmann’s25

collision term proposed by Bathnagar, Gross and Krook [12] such that the so-

lution of the Riemann problem at the cell interface, needed to compute the

fluxes of the conserved quantities, can be computed in an analytical manner

[13]. Through the years, quite a lot of efforts have been put forward to enhance

the modeling ability of the GKS scheme to address both continuum [14] and30

rarefied regimes [15], high-temperature effects in the form of multiple tempera-

tures [16, 17] and multi-species flows [18], rarefaction effects [19, 20]. From the

numerical point of view, advances have been proposed to address genuinely the

two and three space dimensions in a hybrid FE-FV approach [21] and in terms

of higher-order discretisations based either on Finite Volumes or Discontinuous35

Galerkin methods [22, 23, 24].

The modeling framework provided by the GKS scheme is particularly favor-

able for the simulation of supersonic and hypersonic regimes and for those cases

where methods adopting phenomenological approaches might not always pro-40

vide sufficient accuracy. This includes for example the study of the viscous shock

wave structure or the analysis of shock layers and the consequent insight that can

be obtained by studying numerically potentially complex shock interaction pat-

terns including the interference with boundary layers. From a numerical point

of view, the method is quite compact since no distinct discretisation for convec-45

tive and viscous terms are needed, and properties like positivity preservation,

intrinsic upwinding and the absence of any carbuncle effect are natively incor-

porated in the GKS scheme [13, 25]. The adoption of an edge-based approach

bears a series of advantages, the most relevant being: the unified treatment and

data structure valid for any typology of mesh in any spatial dimension and,50
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in the case of the adopted node-pair formulation, the ability to have a unified

treatment of both Finite Volume and Finite Element discretisation approaches

[26].

From the physical modeling point of view, an aspect that, to the best of the55

authors’ knowledge, has not been extensively addressed in the literature is the

ability to reproduce from first principles the behavior of a thermally perfect but

calorically imperfect gas. This behaviour emerges well before the onset of any

high-temperature effects and consists in the storage of energy (also referred to

as activation) over the various internal modes of the gas molecules/atoms like60

electronic, translational, rotational, vibrational (the last two existing only in the

case of polyatomic gases) [27]. The macroscopic evidence of such a behaviour

is that the specific heats, and their ratio γ, are no longer constant, but depend

on the temperature of the gas. From an aerothermodynamics point of view this

circumstance affects the overall shock wave pattern and interference process and65

its evolution and interaction with solid walls. In the specific case of air, the ac-

tivation of the internal modes of energy occur as soon as temperature exceeds

450 K and modeling such a mechanism is quite important to avoid erroneous

predictions of aerodynamic and thermal loads.

70

A common practice adopted to address thermally perfect, but calorically im-

perfect, gases in the continuum regime and before any high-temperature effects

is established is to rely on available polynomial curve fits that can capture the

variation of specific heats with temperature [28]. Some recent interesting works

considering this thermodynamic behaviour are those of Li and collaborators [29]75

and Jiang and collaborators [30]. Notably, in the first case, a GKS scheme was

considered for the discretisation of the conservation equations but the formula-
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tion was presented only for the Euler equations.

The present work aims at introducing the calorically imperfect behaviour80

natively by means of first principles and not relying on existing curve fits in

the context of a recently proposed GKS scheme [21], referred to as node-pair

GKS (NPGKS). The goal is to extend the modeling capability and physical

consistency of the NPGKS in addressing flows of polyatomic gases where, as a

consequence of the activation of vibrational and electronic degrees of freedom,85

the specific heats (both at constant pressure and volume) are no longer constant

but depend on the temperature. The present method is formulated under the

assumption of frozen chemistry and thermal equilibrium. The former is a condi-

tion where no chemical reaction takes place but still the electrons in the atoms’

orbits and in the chemical bonds can move over the different quantized levels90

when energy is exchanged with other molecules during the collision process. The

thermal equilibrium assumption instead is to be intended as a condition where

any macroscopic change of energy leads to an instantaneous redistribution of en-

ergy internally to the molecules among the different modes according to the new

amount of energy in a certain location of the domain at a certain instant of time.95

The manuscript is arranged as follows: in Section 2 the base node-pair GKS is

briefly presented. Section 3 introduces the kinetic formulation for the calorically

imperfect gas. Eventually, Section 4 reports a series of numerical experiments

for supersonic flows characterizing the shock interference pattern in the case of100

canonical geometries like a double wedge, a double cone and in the case of an

oblique shock impinging on a cylinder.
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2. An edge-based GKS scheme

The present section will briefly outline the adopted edge-based GKS scheme.

A more detailed derivation and explanation of the method, including for example105

the treatment of fluids with Prandtl different than one, can be found in the

literature [13, 21]. Let us consider the classical Finite Volume integral form

for the conservation of mass, momentum, and total energy per unit volume

w = {ρ, ρ~u, ρe}
d

dt

∫
Ci
w +

∫
∂Ci
j · n = 0 ∀ Ci ⊆ Ω (1)

For each dual control volume Ci in Ω, the fluxes integral can be rewritten in110

terms of the contribution to the fluxes coming from each node k connected to

the central node i. The fluxes across the boundary of Ci can therefore be recast

in terms of each i− k node-pair contribution, see Figure 1

∫
∂Ci
j · n =

∑
k∈Ki, 6=

∫
∂Cik
j · ni +

∫
∂C∂i

j · ni (2)

The two terms appearing at the right hand side in equation (3) represent re-

spectively a domain and a boundary contribution. Each term can now be ap-115

proximated by means of a suitable numerical flux function, i.e. respectively Jik

and J̄
e
i ∫

∂Ci
j · n '

∑
k∈Ki, 6=

Jik · ηik +
∑
e∈E∂i

J̄
e
i · ν

∂,e
i (3)

where j represents the fluxes of conserved quantities, Ki,6= is the set of nodes

adjacent to the node i and Jik = J(wi,wk) is an integrated numerical flux func-

tion at the k−th interface between nodes i and k. J̄
e
i is a suitable numerical120

flux function at the boundary, E∂i is the set of elements of the boundary grid

(in Rd−1) defined as the intersection of the interface with the boundary of the

domain ∂Ω. ηik and ν∂,ei are the integrated normal vectors at the interface be-
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Figure 1: Node pair structure for domain nodes in red and for boundary nodes in blue (left).
Boundary treatment (center and right).

tween nodes i and k, Figure 1. A local reference frame having the x axis aligned

with the integrated normal ηik is introduced to explicitly identify the compo-125

nent of the vector of the fluxes along the direction of the integrated normal.

The k-th domain term can then be written as follows

Jik · ηik = R−1ik

(
JRik · ηRik

)
(4)

being Rik the rotation matrix, JRik the hypervector of the fluxes in the local

frame and ηRik the integrated normal in the rotated frame. It is then possible to

rewrite the right hand side of equation (4)130

R−1ik

(
JRik · ηRik

)
= R−1ik

(
JRik · î

R

x |ηik|
)

= R−1ik JRx,ik |ηik| (5)

being JRx,ik = JRik · î
R

x the desired component of the interface fluxes aligned with

the normal ηik. For ease of notation the shortcut notation Jx will be used to

express the k−th flux JRx,ik. Similarly to the domain term, the component of the

boundary fluxes aligned with the integrated normal ν∂,ei can be made explicit

from each e−th term J̄
e
i · ν

∂,e
i by introducing a local frame with the x axis135
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Figure 2: Extended node-pairs for the second for the gradient computation in the MUSCL
approach.

aligned with the integrated normal ν∂,ei

J̄
e
i · ν

∂,e
i = R−1e J

R

x,e |ν
∂,e
i | (6)

where Re is the boundary rotation matrix at node i. Eventually, the semidiscrete

form of the conservation equations is obtained by cell-averaging over each cell

Ci and by using (5) and (6) for the integrated fluxes

|Ci |
dwi
dt

= −
∑

k∈Ki, 6=

R−1ik JRx,ik |ηik| −
∑
e∈E∂i

R−1e J̄Rx,e |ν
∂,e
i | (7)

Equation (7) is valid whatever the topology of the grid and any information140

about the type of the elements of the geometric discretisation is enclosed in

the two vectors ηik and ν∂,ei , that are referred to as metric coefficients [31,

32]. Eventually, in the case of the proposed scheme, second order accuracy

in space is achieved by adopting a standard MUSCL approach with Van Leer

limiter. Gradients are computed by means of a Finite Difference approach based145

on an extended stencil associated to each single node-pair i − k considering

the extended nodes that are most aligned with the direction of the integrated

normals, i.e. ηik for the domain term and ν∂,ei for the boundary term [21], see

Figure 2.
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2.1. A GKS formulation of the integrated fluxes150

The node-pair GKS scheme is obtained by resorting to the kinetic theory of

gases for the explicit computation of fluxes. The gas-kinetic scheme at the basis

of the present formulation is the one presented in [21]. Given the fundamental

particle distribution function f = f(x, t,u, ξ), we get

∫
(u · n) ψf du dξ (8)

being u and ξ respectively the molecular velocities and the internal degrees of155

freedom of the molecules of the gas. ψ is a vector of functions of u and ξ that are

conserved during the collisions [33] and are usually referred to as the collisional

invariants. n is the unit vector indicating the direction along which the fluxes

are required. The distribution function f is obtained by solving the Riemann

problem of the BGK model of the Boltzmann equation at each interface between160

nodes i and k



∂f

∂t
+ u ·∇f =

1

τ
(f0 − f)

f(x, 0,u, ξ) =


fL(x,u, ξ) x < 0

fR(x,u, ξ) x > 0

(9)

being x the direction of the integrated normal ηik in the case of the domain

integral and the direction of ν∂,ei in the case of the boundary term. In equation

(9), f0 represents the Maxwellian equilibrium function to which the gas tends

as a result of molecules collisions and τ indicates the characteristic time of such165

relaxation process. The Maxwellian state is defined as

f0 = ρ

(
ϑ

π

)K+3
2

ε−ϑ[(u−U)·(u−U)+ ξ·ξ] (10)
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where ρ and U are the macroscopic density and velocity, ϑ is a function of

temperature, molecule mass and Boltzmann constant κ, and K is the dimen-

sion of the vector ξ, that is the number of thermal degrees of freedom of the

molecules. By means of this definition, it is possible to connect the macroscopic170

conserved quantities and their gradients to the particle distribution function and

its derivatives. This correspondence is exploited for the actual computation of

the numerical fluxes in the MUSCL approach [20]. The functions fL and fR

that define the initial condition of the Riemann problem represent the particle

functions at the two nodes of the pair. These are computed by resorting to the175

Chapman and Enskog expansion truncated at the first order in τ computed in

terms of the reconstructed macroscopic states at the two sides of the interface

[34, 13, 35]. The full analytical integral solution for this problem is adopted the

compute the interface fluxes [13, 25]

f(0, t,u, ξ) =
1

τ

∫ t

0

f0(x
′, t′,u, ξ) e−(t−t

′)/τdt′ + e−t/τf(−ut, 0,u, ξ) (11)

being x′ = −u(t− t′) the trajectories of the particles. In order to fully evaluate180

the solution in (11), a formula for τ and a suitable macroscopic intermediate

state are eventually needed [13, 25]. These are obtained by considering τ = µ/P

and by applying the so-called compatibility condition to (11) in the limit of t→ 0

∫
1

τ
ψ(f0 − f) = 0 (12)

where ψ is the vector of the collisional invariants, i.e. {1,u, 0.5(u ·u+ξ ·ξ)}[33].185

For a viscous flow, the fluxes of conserved quantities locally depend on both

the conserved variables and on their gradient. The Navier-Stokes equations are

obtained from the BGK model by means of the Chapman-Enskog expansion
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up to first order terms in the mean collision time [36]. The Maxwellian at the190

interface state reads

f0 = f I
0

[
1 + K(x)āLx+ H(x)āRx+ b̄y +At

]
(13)

where āL, āR and b̄ are the first order derivatives of the Maxwellian at the

interface state and the coefficient Ā represents the coefficient associated to the

first order time derivative of the Maxwellian and H(x) and K(x) are Heaviside

functions at the left and right sides of the interface. The distribution functions195

for the initial state account for the first nonequlibrium term in the Chapman-

Enskog expansion and can be written as follows

fL = fL0 [1 + aLx+ bLy − τ (aLu+ bLv +AL)]

fR = fR0 [1 + aRx+ bRy − τ (aRu+ bRv +AR)]

(14)

being aL, bL, and aR, bR the first order spatial derivatives of the Maxwellian

distribution function, respectively at the left and right side of the interface

and AL and AR the coefficients for the time derivatives of the Maxwellian [13].200

Substituting the two above definitions in the general form for the solution of

the Riemann problem (9), the interface distribution function giving the Navier-
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Stokes fluxes reads

fik(t) =
(
1− e−t/τ

)
f I
0

+
(
te−t/τ − τ

(
1− e−t/τ

)) [
H(u)āLu+ K(u)āRu+ b̄v

]
f I
0

+ τ
(
t/τ − 1 + e−t/τ

)
Af I

0

+ e−t/τ
[
(1− utaL − vtbL)H(u)fL0 + (1− utaR − vtbR)K(u)fR0

]
− τe−t/τ

[
(uaL + vbL)H(u)fL0 + (uaR + vbR)K(u)fR0

]
− τe−t/τ

[
ALH(u)fL0 +ARK(u)fR0

]

(15)

The quasi-equilibrium assumption states that the gas requires a small amount

of time to relax to equilibrium. Following Chapman and Enskog [34] the mean205

collision time can be computed on the basis of the relation τ = µ/P , being µ

the dynamic viscosity of the gas and P the pressure.

2.2. Gas kinetic boundary conditions for the NPGKS scheme

The numerical flux at the boundary J̄Rx,e in equation (7) is the gateway to210

the imposition of the boundary conditions in a weak form. The boundary flux

can be obtained as

J̄Rx,e =

∫
uψf∂ du dξ (16)

where u is the component of the molecular velocity normal to the boundary. f∂

is the distribution function at the boundary and it is computed on the basis of

the macroscopic state, w∂,ei , and its relative gradient, ∇w∂,ei determined by the215

type of boundary condition to be imposed. For the numerical tests presented

in Section 4, three different types of boundary conditions have been considered:

supersonic inflow, outflow and isothermal wall [21].
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The definition of w∂,ei and ∇w∂,ei in the case of supersonic inflow and outflow220

conditions is obtained by resorting to the classical characteristics approach. The

condition along the wall is obtained by considering the following definition for

f∂

f∂ =


finc(u;x, t) u · nwall > 0

fref(u
′ → u;x, t) u · nwall < 0

(17)

where finc is the distribution function of the molecules incident to the wall

and can be computed from the state of the gas at node i, while fref, the so-225

called scattering kernel, represent the molecules reflected by the wall and can

be expressed in terms of the Maxwellian fwall
0 and finc as follows [33]

fref(u
′ → u;x, t) = ζf wall

0 + (1− ζ) · finc(u;x, t) (18)

The coefficient ζ describes the tendency of the gas to accommodate to the state

of the wall. Assuming that all the molecules of the gas are diffusely reflected

from the wall, ζ can be recast as [37]230

ζ =
ρiEi − ρrefEref

ρiEi − ρwallEwall
(19)

where ρiEi is the total energy per unit volume of the molecules at the bound-

ary node, ρrefEref is the total energy associated to the reflected particles and

ρwallEwall is the total energy of a virtual fluid associated to the wall. In the

case of isothermal wall, ζ = 1 [33] and therefore fref coincides with fwall
0 which

in turn can be obtained by knowing the values imposed at the wall for the235

temperature and enforcing the conservation of mass at the wall [21].
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3. Vibrational and electronic energy modes

The behavior of the gas in terms of its caloric equation of state, emerges as

part of the the assumptions made for the internal structure of the molecules of

the gas, i.e. its internal degrees of freedom [13] and from an implementation240

point of view, impacts the process of computing the moments of the particle

distribution function as per equations (8) and (12). It is at the level of the

Maxwellian appearing in equation (11) that the thermodynamic behavior of the

gas, and specifically the possibility to address a calorically imperfect gas, can be

introduced. Assuming that no chemical reaction or other nonequilibrium effects245

are taking place, a calorically perfect gas model is valid only for monoatomic

gases or for polyatomic gases at sufficiently low temperatures, see Figure 3 for

the case of air. In these conditions, only the translational and rotational energy

modes of the molecule are excited. As temperature increases, vibrational and

electronic modes will be excited [36].250

In classical physics, the specific heat of gases is explained by means of the

equipartition principle, according to which the thermal energy of a molecule is

equally shared between its degrees of freedom by means of the following:

CV = (K + 3)
1

2
R

CP = R+ CV

(20)

where R is the gas constant and K is the number of internal degrees of freedom.255

Classical physics can still be used if the vibrational and/or electronic degrees

of freedom are assumed not fully excited, under the provision that K in (20) is

not an integer number but varies as a result of the energy redistribution over

the available energy levels.

260
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A widely-used approach to address this mechanism is to address the variation

of specific heat with temperature by means of polynomial fit of experimental

data [28]. This approach can also be applied in the case of the GKS scheme

described above, by using a non integer K in (10) [29]. However, it is evident

that the definition of K given in (10) as the dimension of the vector ξ becomes265

less rigorous from a mathematical point of view. Despite this observation, it

can be easily proved that the internal energy obtained integrating (10) with

non integer K is still consistent with (20). This consideration does not apply

for the other moments of the Maxwellian with respect to the internal degrees

of freedom of the gas (the internal energy is the moment of order 2), which are270

required during the calculation of the BGK fluxes, i.e.

〈ξ2n〉 =
∫∞
−∞(ξ · ξ)nf0(ξ)dξ =

∫∞
−∞(ξ · ξ)nρ

(
ϑ

π

)K+3
2

ε−ϑ[(u−U)·(u−U)+ ξ·ξ]dξ

(21)

When the Maxwellian is the same for every degree of freedom, the aforemen-

tioned moments can be calculated analytically to obtain [13, 20]

〈ξ0〉 = 1

〈ξ2〉 =
K

2ϑ

〈ξ2n〉 = 〈ξ2(n−1)〉K + 2(n− 1)

2ϑ

(22)

.

Li and collaborators [29] use a non-integer K in order to model a non ther-275

mally perfect gas. As anticipated above, this is consistent for n = 2 in equation

(22), since it leads back to equation (20). However it is not rigorously cor-

rect to calculate all the moments of the Maxwellian needed to compute the

high-resolution numerical fluxes [38, 39]. A more rigorous methodology is here
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proposed to calculate the moments for thermally perfect gases where the hy-280

pothesis of calorically perfect gas is lost. The methodology is based on the

reconstruction of the specific heat by means of established models for the vibra-

tional and electronic excitation contributions. This approach has the advantage

of keeping the physical consistence of the kinetic flux model avoiding the need

for the non-integer number of degrees of freedom approximation.285

In order to calculate the moments in a general fashion, it is convenient to re-

write (21) developing the power (ξ ·ξ)n, in terms of products of its components:

〈ξ4〉 =

K∑
i=1

〈ξ4i 〉+ 2

K∑
i=1

〈ξ2i 〉
K∑

j=i+1

〈ξ2j 〉

〈ξ6〉 =

K∑
l=1

〈ξ6l 〉+ 3

K∑
l=1

K∑
i=l+1

(
〈ξ2l 〉〈ξ4i 〉b+ 〈ξ4l 〉〈ξ2i 〉

)
+ 6

K∑
l=1

K∑
i=l+1

K∑
j=i+1

〈ξ2l 〉〈ξ2i 〉〈ξ2j 〉

with 〈ξni 〉 =

∫ ∞
−∞

ξni fi(ξi)dξi

(23)

In the equation above, the moment of a single degree of freedom 〈ξni 〉 can be290

calculated with the classical approximation for rotational and translational de-

grees of freedom (i.e. equation 22 with K = 1) while it needs to be calculated

with a different approach for vibrational and electronic degrees of freedom, for

which the classical approximation cannot be performed.

3.1. Kinetic formulation for the vibrational energy modes295

The effects of the vibrational degree of freedom have here been modeled

using the harmonic oscillator theory, according to which, the internal vibrational
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energy per unit mass, uv, can be written as [36]

uv =
R
Zv

∞∑
j=0

jΘve
− jΘvT

where Zv =

All states∑
j=0

e−
jΘv
T =

1

1− e−ΘvT

(24)

where Θv is the characteristic temperature of the harmonic oscillator, T is the

macroscopic temperature and Zv is the partition function for the quantized300

vibrational levels. Equation (24) is derived from the probability that a molecule

has to vibrate with the j-th harmonics

fv0 (j) =
1

Zv
e−

jΘv
T (25)

Equation (25) represents the Maxwellian distribution of a quantized degree of

freedom, that as opposed to the classical limit case, is not a probability density,

but a finite probability. The moment with respect to the vibrational degree of305

freedom, as defined in (23), is then

〈ξ2nv 〉 =
RnΘnv
Zv

All states∑
j=0

jne−
jΘv
T (26)

Each term in the sum of equation (26) becomes smaller and smaller as j in-

creases since jΘv becomes bigger and bigger. Therefore, for a given T , the

progressive inclusion of more terms will result in smaller and smaller changes

in the value of the moment. In practice, a threshold can be defined to be used310

as a means to stop the calculation of more terms in the summation over all

vibrational states.

In Figure 3 the specific heat calculated by means of the harmonic oscillator
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Figure 3: Specific heat as function of temperature. Comparison between experimental data
and harmonic oscillator theory [28, 36]

.

theory is compared with a polynomial data fit [28] for Nitrogen and Oxygen. As315

can be observed, the harmonic oscillator theory provides values for the CP that

progressively depart from the polynomial fit. At about 3,000 K the difference

between the harmonic oscillator approximation and the polynomial fit is about

2.6% for CP and about 3.1% for CV in the case of air, see Figure 3 right and

Table 1. As the temperature increases, other effects need to be taken into320

account in order to ensure consistency with the physics. Namely, after 1,000

K the electronic excitation becomes not negligible for the Oxygen, while for

the Nitrogen, only small departures are observed, see Figure 4. Such difference

between Oxygen and Nitrogen in this case, is due to the different distributions

of quantized levels, i.e. the distance between two subsequent quantized levels325

and the energy associated to each one of these, for the two molecules that, for

the same level of temperature, allows more energy to be stored in the molecules

of Oxygen.

18



1 Polynomial fit Harmonic oscillator

CP /R 4.527 4.409
CV /R 3.527 3.409

Table 1: Specific heat values from polynomial fit and harmonic oscillator theory at 3000 K.

3.2. Kinetic formulation for the electronic energy modes

A similar approach can be used to take into account the contribution of elec-330

tronic excitation. Thermal energy can be stored by the electrons of a molecules,

that can move away from their ground state, while staying in the molecule (i.e.

no dissociation) [36]. Given the structure of the molecule a set of electronic

states is defined by means of their characteristic temperatures Θie. As a con-

sequence the probability of electrons staying into a certain state is given by:335

fe0 (j) =
1

Ze
gje
−Θ

j
e
T

where Ze =

∞∑
j=0

gje
−Θ

j
e
T

(27)

where gj is the degeneracy factor, that is the number of states with characteristic

temperature Θje. For electrons several states can degenerate and have the same

energy. Similarly to the vibration, the moment with respect to the electronic

degree of freedom, as defined in 23, is then given by340

〈ξ2ne 〉 =
Rn

Ze

Ne∑
j=0

(Θje)
ne−

Θ
j
e
T (28)

where Ne is the total number of electronic states. In Figure 4 electronic con-

tribution to CP as calculated here is added and compared against polynomial

data. With reference to the case of air, the electronic contribution has a big

impact for the Oxygen, while it has a negligible impact on Nitrogen.

345
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Figure 4: Specific heat as function of temperature. Comparison between experimental data
and harmonic oscillator theory and electronic excitation [28, 36]

.

A residual difference between the polynomial dataset and modeling presented

above remains. This can be explained by second order effects such as the cou-

pling of the vibrational and the rotational degrees of freedom and the fact that

the molecule is not a perfect harmonic oscillator [36].

4. Numerical test cases350

The changes in the way energy can be stored in the molecules of the gas has

an impact on the overall flow field and on the aerodynamic and thermal loads

acting on a body interacting with a supersonic airflow and in the following a

series of canonical test cases will be considered to exemplify such a condition.

355

The proposed NPGKS formulation has been implemented within the open-

source solver SU2 [40] and modifications have been applied to the thermochem-

istry library Mutation++ [41] in order to compute the appropriate moments as

per equations (26) and (28). The former is a CFD solver that is rapidly estab-

lishing within the open-source community as a prominent software for aerospace360
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Mach 7.11
Unit Reynolds 55,880
Static temperature [K] 191
Static pressure [Pa] 390.935
Wall temperature [K] 300
Test time [µs] 327

Table 2: Conditions for the double wedge configuration at 30 - 55 deg.

design, the latter is a well established library of thermochemical/physical prop-

erties for various gas species.

4.1. Air flow over a double wedge 30o-55o

The first test case considered is the flow around a double wedge configura-365

tion with the first wedge having an angle of 30o and the second an angle of 55o,

both with respect to the horizontal axis. This test case is a configuration that

allows to understand the shock interaction mechanism and the consequent heat

and pressure loads on the geometry that is representative of what could hap-

pen in proximity of a deflected control surface of a vehicle flying at supersonic370

speeds. This configuration has been studied extensively both numerically and

experimentally [42].

The case considered here is the Mach 7.11 flow of air under the conditions

presented in Table 2. It has been observed that when trying to address this

problem by assuming thermal equilibrium and a frozen flow, the flow exhibits375

an unsteady behaviour characterized by flow separation induced by the im-

pingement of shock waves on the wall. The mesh adopted is a hybrid mesh

with 457,121 elements and 261,120 nodes and the spacing of the mesh has been

guided by existing literature addressing the same test case [43]. The simulation

was run with a dual time-stepping approach with a uniform time step in the380

true time equal to 1×10−8 s. The CFL adopted in the pseudo-time was 0.1
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Figure 5: Double wedge configuration at 30 - 55 deg. Temperature field at 150µs. Calorically
perfect model (left) and thermally perfect model (right).

and an explicit Euler integration scheme was used. Wall time of the simula-

tion was about 10 days on 120 cores. A detailed experimental study has been

proposed by Swantek and collaborators [44] and their work is taken here as a

reference case to validate the proposed approach. Following the recent work of385

Durna and collaborators [43], Figures 5 and 6 illustrate the flow field at 150 µs

in proximity of the region where the change of slope is located. A comparison

is made between the flow field obtained with a calorically perfect model and a

thermally perfect one. Figure 5 presents contours of temperature while Figure

6 illustrates the density gradient fields. It can be shown that assuming a calor-390

ically perfect model induces a more prominent shock-induced separation region

and an anticipated location of the separation oblique shock. The shear region

behind developing nearby the triple point is more complex in the case of the

calorically perfect gas as a consequence of the series of shock waves generated by

the recirculation region behind the separation. In both cases, the shear region395

develops a Kelvin-Helmholtz instability.

A visual comparison of the present thermally perfect solution with the solution

presented in [43] at the same instant of time (not reproduced here but available
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Figure 6: Double wedge configuration at 30 - 55 deg. Density gradient at 150µs. Calorically
perfect model (left) and thermally perfect model (right).

in the literature) shows quite a similar flow pattern. Note anyway that the re-

sults presented in [43] refer to a flow of Nitrogen with a thermally perfect model400

based on the JANAF tables. A quantitative comparison is presented instead in

Figure 7 where the time-averaged profiles of normalized pressure and heat flux

are presented. In the case of heat flux the experimental results of Swantek and

collaborations [44] are also presented. The time averaging was realized between

150 µs and 310 µs as done in [43]. The agreement between the thermally per-405

fect model and the experiments is fair and improvement with respect the case

of calorically perfect gas is visible in terms of position of the heat flux peak and

its magnitude. When observing the range of temperature obtained in this case,

it has to be noted that a maximum value of approx. 2,100 K is obtained in the

case of calorically perfect gas. This would result in the initiation of molecular410

Oxygen dissociation and a more sophisticated numerical model. In the case of a

thermally perfect gas instead the temperature approaches 2,000 K and a model

with no chemistry still remains acceptable.
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Figure 7: Double wedge configuration at 30 - 55 deg. Time-averaged normalized pressure
(left) and heat flux (right).

4.2. Air flow over a double cone 25o-50o

The second test case is the Mach 8 viscous flow over a double cone configu-415

ration with the fore angle of 25o and the aft angle 50o. The Reynolds number

based on the model base diameter of 0.038 m is 270,000, the freestream tem-

perature is 57 K and the wall is assumed isothermal at 590 K [45]. This is once

again a canonical test case considered to test the ability of numerical schemes

to predict the complex flow pattern established around the cone. Table 3 sum-420

marizes the flow conditions for this test case. The flow is assumed to be laminar

despite the value of the Reynolds number might indicate a turbulent flow. Fol-

lowing the work of Wright and collaborators [45] it is shown that for this test

case a marginal difference is observed between a laminar and turbulent flow. A

2D fully structured mesh has been used in this case consisting of 426,478 quadri-425

lateral elements and 428,050 nodes with 350 points in the normal direction to

the surface of the cone. The problem converged to a steady-state solution using

a CFL equal to 0.3 with an Euler explicit integration scheme. The problem was

solved using axisymmetric conditions and the wall time required to get conver-

gence was about 7 days on 120 cores.430
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Mach 8
Unit Reynolds 270,000
Static temperature [K] 57
Static Pressure [Pa] 359.868
Wall temperature [K] 590

Table 3: Conditions for the double cone configuration at 25 - 50 deg.

Figure 8 illustrates the system of shock waves that is established that follows

the classical taxonomy provided by Edney [46]. The system is characterized by

a significant interaction between the shock waves and the boundary layer along

the wall that induces a visible recirculation region in proximity of the region

where the angle increases from 25o to 50o and a shear layer originating from the435

point where multiple shocks are converging. A sequence of reflecting shocks is

generated between the shear layer, i.e. the contact discontinuity, and the wall

at 50o. Figure 9 reports the contours of the density gradient and illustrates the

establishment of a classic Edney type IV interaction in proximity of the change

of slope of the cone. A reattachment compression train is observed evolving440

towards a reattachment shock. A clear shear layer is observed interacting with

a series of reflected shocks.

A quantitative comparison is presented in Figure 10 showing a comparison

between the computed pressure and heat fluxes profiles along the wall and avail-

able experimental data from Magruder [47] (only for pressure) also reported in445

[45]. It can be observed that the adoption of a thermally perfect gas model

shows good agreement with the experimental data with visible differences with

respect to the calorically perfect model. The right plot presents the normalized

heat fluxes along the wall and it can be observed the difference between the two

models in terms of peak values of heat and also distribution. In order to better450

assess the difference between the two models, an integral measure of the overall

heat transferred to the wall in both cases is presented in Table 4.2. A difference
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Figure 8: Double cone configuration at 25 - 50 deg. Contours of temperature [K] (left).
Pressure [Pa] (right).

Figure 9: Double cone configuration at 25 - 50 deg. Density gradient. Calorically perfect gas
(left), thermally perfect gas (right).
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Figure 10: Double cone configuration at 25 - 50 deg. Normalized pressure profile (left),
normalized heat flux (right).

1 Calorically perfect Thermally perfect

Heat flux [W/m] 700.886 640.717

Table 4: Heat flux per unit depth transferred from the flow to the wall [W/m].

of about 8.6% is observed.

In this case, the temperature at the wall is assumed to be constant at 590 K

and a moderate difference is expected in thermal properties of the fluid with455

the major differences between a calorically perfect and an imperfect one are

expected inside the flow field where the angles and evolution of the shock waves

pattern established in the region above the wall will be more affected given that

temperature reaches a maximum of ' 770 K in the post-shock region.

460

4.3. Edney IV interference pattern over a cylinder

Eventually, the last test case presented here is the two-dimensional super-

sonic flow of air over a cylinder in presence of an impinging oblique shock. This

type of interaction has been subject of the study of Edney [46] who classified up

to six different shock interference patterns depending on the vertical position of465
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the impinging oblique shock. Among these, the type IV has been recognized as

the most severe case with respect to the pressure and heat peak amplification

over the case with no impinging shock. Type IV interaction has been studied

extensively numerically [48] and experimentally [49] in the literature due to its

representation of the most severe conditions what could occur in proximity of470

an engine cowling with an oblique shock generated somewhere else ahead along

the vehicle. The type IV interaction is characterized by a reflected shock and

a shear layer region with a supersonic jet that develops into a bow shock wave

in proximity of the cylinder surface. It is the presence of this bow shock that

determines the highest amplification of pressure and heat loads among the other475

types of interaction. Also in this case, the literature reports unsteadiness of the

flow once the complete structure of the flow is established. This unsteadiness

is revealed in the present work also and consists of a vertical oscillation of the

supersonic jet that is connected to a series of disturbances propagating upwards

and downwards from the bow shock location.480

The conditions of the simulation were taken from [48] and are summarized

in Tables 5 and 6. Note that a study of this test case was also performed by

means of a BGK kinetic scheme by Xu and collaborators [50] but adopting a

flow of Nitrogen instead of air and assuming a calorically perfect gas. A more485

recent work studying numerically the same type of shock-shock interaction in

the case of air have been presented by Xu and collaborators [17]. In this case, a

freestream Mach 10 flow of air has been considered with a GKS model account-

ing for thermal nonequilibrium conditions, i.e. multi-temperature models. In

this case a steady-state condition is also established. It is worth noting that the490

inclusion of nonequilibiurm effects usually acts in the direction of promoting the

establishment of a stationary field. Another relevant feature of this work was
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Unit Reynolds 6.75×106

Wall temperature [K] 294.44
Cylinder radius [m] 0.0381
Impinging shock angle [deg] 18.1114

Table 5: Conditions for the type IV pattern over a cylinder.

Freestream Behind oblique shock
Mach 8.03 5.25
Temperature [K] 111.56 238.04
Pressure [Pa] 985.01 6,996.7
Flow direction [deg] 0 12.5

Table 6: Conditions for the type IV pattern over a cylinder. Shock relations.

the explicit inclusion of a shock generator in the form of a wedge positioned in

front of the cylinder to replicate the experimental settings. A hybrid unstruc-

tured mesh was used consisting of 224,155 elements and 136,415 nodes. A dual495

time-stepping second order approach was used for the unsteady simulation with

a time step of 1×10−6 s and a CFL in the pseudo-time of 0.1. Euler explicit

integration scheme was considered. The total simulation time was 6×10−4 s and

the wall time for the simulation was about 4 days on 80 cores. Figures 11 and

12 illustrate the results obtained with a thermally perfect model only. Due to500

the unsteadiness of the flow, Figure 11 shows the contours of temperature and

pressure at 550 µs while Figure 12 shows the density contours for two instants

of time, one at the beginning of the averaging period, i.e. 500µs and one at

the end of it at 600 µs illustrating the structure of shock interference pattern

of type IV. Eventually, Figure 13 provides a quantitative comparison of the re-505

sults obtained with the present node-pair GKS scheme with thermally perfect

thermodynamics and experimental results available in the literature [49]. The

comparison is made with the time averaged results between 500 µs and 600 µs

and in the plot the average values are shown together with the standard devi-

ation of pressure and heat fluxes to have a representation of the boundaries of510
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the variation of the profiles.

The agreement with the reference profiles is fair with respect to the loca-

tion of the peak of heat flux and pressure on the surface of the cylinder and

with respect to the values of the peak normalized with respect to the relative515

stagnation values in the case with no oblique shock [49]. The undisturbed stag-

nation values for pressure and heat flux have been taken following the approach

proposed by Zhong [48], i.e. Q0 = 470,501.391 W/m2 and P0 = 83.85 P∞. Fig-

ure 13 reveals a visible underprediction of heat flux in the region immediately

below the bow shock, and the corresponding peak on the surface. A similar un-520

derprediction is also observed, even if less intense in the instantaneous profiles

presented by Zhong [48] and also in the results presented by Xu [50] (even if Xu

considered Nitrogen and not air as in the present and Zhong’s work). A possible

explanation of such a discrepancy could be referred to the high sensitivity of

the wall quantities from the position of the shock and the pre- and post-shock525

states. In this work, in fact, no explicit shock generator has been included in the

simulation and the pre- and post-shock conditions were taken from the existing

literature [48]. As a consequence it is possible that any discrepancy between

an imposed and generated oblique shock conditions could result in a sensible

difference in the shock interference patterns and in turn the pressure and heat530

flux profiles along the surface of the cylinder.

5. Final remarks

The proposed node-pair GKS scheme incorporating a first principles formu-

lation for a thermally perfect gas has shown a fair agreement with available

reference data for a series of canonical test cases where the effect of vibrational535

and electronic energy modes becomes sensible. The comparison of the proposed
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Figure 11: Edney IV pattern over a cylinder. Contours of temperature [K] (left). Pressure
[Pa] (right). Thermally perfect gas model.

Figure 12: Edney IV pattern over a cylinder. Density gradient at two different instants of
time. Beginning of the average period, t = 500µs (left). End of average period, t = 600µs
(right). Thermally perfect gas model.
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Figure 13: Edney IV pattern over a cylinder. Time averaged Normalized pressure profile
(left), time averaged normalized heat flux (right). Thermally perfect gas model.

approach with methods based on polynomial curve fits is presented explicitly in

terms of the CP and CV variation with the temperature only and not in terms

of field variables. Some discrepancies are observed as the temperature increases

due to effects that cannot be properly modeled by means of an harmonic oscil-540

lator and other coupling effects between vibration and rotation. Nevertheless,

for temperatures below 3,000 K the proposed model provides results that in the

case of air are in agreement with the results that would be obtained with the

polynomial fit approach. Despite being presented in the case of the node-pair

GKS scheme, the formulation is general to be adopted by any Boltzmann-BGK545

method.

One major recognized limiting factor of any GKS scheme is its computational

demand resulting form the necessity to compute for each node-pair the moments

of the particle distributions function for each conserved quantity. A marginal550

increase in computational cost was observed in the case of thermally perfect gas

due to the necessity of computing the additional moments for the vibrational

and electronic modes. In the context of gas-kinetic schemes, the adoption of the
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present approach will bring no advantages in terms of computational cost when

compared to polynomial fits, but the increase in computational cost would in555

any case be moderate. High CPU demand is a known issue of all Boltzmann-

type methods and such an aspect is the topic of ongoing research on parallel

architectures and GPU processing.
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