Material response characterization of new-class ablators in view of numerical model calibration

6th Ablation Workshop

April 10, 2014 Urbana Champaign, Illinois

Vrije Universiteit Brussel

B. Helber^{1,2}, A. Turchi¹, T. E. Magin¹

Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Belgium Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel

TPM for Atmospheric Reentry

NASA Stardust probe, reentry: Jan. 15, 2006 (12.9 km/s) (AIAA 2008-1202)

<u>Missions</u>

Sample return, ISS serving (Dragon, ARV, ...), MPCV

- Atm. reentry speeds > 10km/s
- Ablative materials
 - > Mass loss and surface recession
 - > Prediction of material response required
 - > High margins decrease payload

New materials (1990's)

- Phenolic impregnated carbon fiber preform
- Very porous low density ablators

Complex Multiphysics - Multiscale problem Coupled phenomena

We aim at improvement of

Experimental Methods TPS Design / Material (VKI) (VUB, Astrium, ESA)

(VKI, collaborations)

Calibration (AIAA G-077-1998)

The process of adjusting numerical or physical modeling parameters in the computational model for the purpose of improving agreement with experimental data.

In the following

 Materials and Methods for Ablation Characterization
 Gas-phase ➡> BL emission & temp
 Surface ➡> Char blowing rates
 Material ➡> Pyrolysis outgassing Approach for ablation modeling (Kendall et al.^[1]) VKI: 1D Stagnation line description w/ surface ablation (A. Munafo^[2] / A. Turchi, VKI)

[1] Kendall et al., NASA CR 1060 (1968)[2] A. Munafò, PhD Thesis, Ecole Central Paris, 2014

Boundary condition from experiments & plasma free-stream Experimental data for validation GOAL: Coupling <u>1-D SL-code</u> & <u>material code</u> (P. Schrooyen)

Materials of Investigation

Carbon fiber preform, non-pyrolyzing (Mersen Scotland Holytown Ltd.)

AQ61, carbon-phenolic (AIRBUS DS)

1.2-MW Inductively Coupled Plasmatron

Gas: Air, N₂, CO₂, Ar Power: 1.2-MW Heat Flux: > 12 MW/m² Pressure: 10 mbar - 1 atm

Techniques for In-Situ Ablation Characterization

Our interest

Surface temperature Emissivity Internal Temperature In-situ recession analysis Volumetric recession Chemical composition Temperature estimation (AIAA 2013-2770)

Boundary Layer Radiation Profiles Experimental: Spatial CN violet emission

Boundary Layer Radiation Profiles Numerical: Simplified approach using Specair slab

Simulate line-of-sight measurement

Comparison of Boundary Layer Radiation Profiles Very preliminary approach but promising comparison

CN Radiation Simulation for Temperature Estimation Non-equilibrium?

Non-thermal vibrational level distribution at low pressure (AIAA 2013-2770)

- Thermal non-equilibrium?
- Deviation from Boltzmann distribution?

Boundary Layer Temperature Profile Non-equilibrium at the wall?

15/ 23

Ablation Regimes of Preform and AQ61

diffusion limited ablation and sublimation regimerecession not much influenced by pressure!

Diffusion Limited Ablation and Code Comparison

Pyrolysis-Gas Blowing Rate Determination Non-pyrolyzing carbon-preform

$$m_{pg} + m_c = (\rho V)_w$$

 $m_{pg} = m_{pg} - \frac{(V_{abl} \cdot \rho_c)}{t_{exp}}$
Carbon Preform (non-pyrection)

$$ightarrow m_c = m_{tot} = V_{abl} \cdot
ho_c$$

<u>ol.)</u>:

Pyrolysis-Gas Blowing Rate Determination Non-pyrolyzing carbon-preform

discrepancy:

- water
- initial density
- damage by deinstallation

Pyrolysis-Gas Blowing Rate Determination Thermogravimetric Analysis (TGA)

Argon (20-200 ml/min), 10 K/min, 1 atm

charred AQ61: $\rho_c = 80-85\% \rho_v$

Pyrolysis-Gas Blowing Rate Determination Carbon - phenolic: AQ61

$$m_{pg} + m_c = (\rho V)_w$$

$$m_{pg} = m_{pg} - \frac{(V_{abl} \cdot \rho_c)}{t_{exp}}$$

$$\frac{AQ61 \text{ (carbon-phenolic)}}{m_{meas}} = 4.03 \text{ g}$$

$$m_{c,HSC} = 2.26 \pm 0.4 \text{ g}$$

$$m_{pg} = 1.77 \text{ g} \pm 0.4 \text{ g}$$

<u>Main challenges</u>: Side-wall outgassing, non-1D effects, too-long test times

Ongoing Work Rebuilding of ablation tests in nitrogen plasmas $\rightarrow \gamma_N$

Nitridation negligible for recession \longrightarrow Match of T_s for γ_N

Conclusions

(1) Materials and Methods

- hemispherical samples
- HSC imaging
- coupled w/ 3 Spectrometers
- (2) BL emission
 - steady ablation process
 - preliminary comparison num/exp radiation profiles
- (3) Char blowing rates
 - diffusion limited ablation and sublimation
 - deviation from num. model
- (4) Pyrolysis outgassing
 - Vol. ablation + TGA $\rightarrow \dot{m}_{pg}$

Which chemical and physical phenomena matter?

ACKNOWLEDGEMENTS

Funding and materials supply:

agency for Innovation by Science and Technology In particular:

- > Jean-Marc Bouilly & Gregory Pinaud (Airbus Defence & Space)
- > N.N. Mansour (NASA ARC), J. Lachaud (UC Santa Cruz), F. Panerai (University of Kentucky) for informative support
- > VKI Plasmatron & Ablation Team
- > VUB SURF research team