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1. Introduction

The concept of fractional calculus was first proposed by Leibniz in 1695. Since then, many famous mathematicians,

such as Euler, Laplace, Fourier, Abel, Liouville, Riemann, Grünwald, Letnikov, Lévy and Riesz, have worked in

this field of mathematics and provided important contributions. The main characteristic of fractional order

differential equations is that they contain non-integer order derivatives [1, 2]. Fractional models can be used to

describe the memory and transmissibility of many kinds of materials, and they play an increasingly important

role in science and engineering [3–10]. Metzler and Klafter [4] demonstrated that fractional equations have come

of age as a complementary tool in the description of anomalous transport processes. Zaslavsky [5] reviewed a

new concept of fractional kinetics for systems with Hamiltonian chaos. New characteristics of the kinetics are
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extended to fractional kinetics and the most important are anomalous transport, superdiffusion and weak mixing,

amongst others. Gorenflo et al. [6] derived the fundamental solution for the time fractional diffusion equation, and

interpreted it as a probability density of a self-similar non-Markovian stochastic process related to the phenomenon

of slow anomalous diffusion. Meerschaert and Tadjeran [7] developed practical numerical methods for solving the

one-dimensional space fractional advection-dispersion equation with variable coefficients on a finite domain. The

application of their results was illustrated by modelling a radial flow problem. Yu et al. [8] proposed an Adomian

decomposition method to construct numerical solutions of the linear and non-linear space-time fractional reaction-

diffusion equations in the form of a rapidly convergent series with easily computable components. Podlubny et

al. [9] presented a matrix approach for the solution of time fractional and space fractional partial differential

equations. The method is based on the idea of a net of discretisation nodes, where solutions at every desired

point in time and space are found simultaneously by the solution of an appropriate linear system.

In physics and chemistry, specifically in nuclear magnetic resonance (NMR) and magnetic resonance imaging

(MRI), the Bloch equations represent a set of macroscopic equations that are used for modeling the nuclear mag-

netization as a function of time [11]. The Bloch-Torrey equations were proposed by Torrey [12] as a generalization

of the Bloch equations to describe situations when the diffusion of the spin magnetic moment is not negligible.

Bhalekar et al. [13] considered transient chaos in a non-linear version of the Bloch equation that involved a radi-

ation damping model. The fractional Bloch equation provides an opportunity to describe numerous experimental

situations including heterogeneous, porous or composite materials [14, 15]. Petrás̆ [16] proposed numerical and

simulation models of the classical and fractional order Bloch equations. Magin et al. [17] considered the fractional

Bloch equation to describe anomalous NMR relaxation phenomena (T1 and T2) in Cartilage Matrix Components.

Bhalekar et al. [18] considered the fractional Bloch equation with time delays, and analysed different stability

behaviors for the T1 and the T2 relaxation processes.

Kenkre et al. [19] proposed a simple technique for solving the Bloch-Torrey equations in the NMR study of

molecular diffusion under gradient fields. Barzykin [20] derived an exact analytical solution of the Bloch-Torrey

equation for restricted diffusion in a steady field gradient and, as a result, for any step-wise pulse sequence.

Jochimsen et al. [21] proposed an algorithm for simulating MRI with Bloch-Torrey equations, and showed that

the algorithm is efficient and decreases simulation time while retaining accuracy.

Recently, fractional order calculus has been used to examine the connection between fractional order dynamics

and diffusion by solving the Bloch-Torrey equation [22–25]. It was pointed out that a fractional diffusion model

could be successfully applied to analyzing diffusion images of human brain tissues and provides new insights into

further investigations of other tissue structures and the micro-environment.

Magin et al. [24] proposed a new diffusion model for solving the Bloch-Torrey equation using fractional order

calculus with respect to time and space (ST-FBTE):

τα−1 C
0 D

α
t Mxy(r, t) = λMxy(r, t) +Dµ2(β−1)RβMxy(r, t), (1)
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where λ = −iγ(r ·G(t)), r = (x, y, z), G(t) is the magnetic field gradient, γ and D are the gyromagnetic ratio

and the diffusion coefficient, respectively. C
0 D

α
t is the Caputo time fractional derivative of order α (0 < α ≤ 1)

with respect to t, and with the starting point at t = 0 is defined as [2]:

C
0 D

α
t M(x, y, z, t) =

1

Γ(1− α)

∫ t

0

M ′(x, y, z, τ)

(t− τ)α
dτ. (2)

Mxy(r, t) = Mx(r, t) + iMy(r, t), where i =
√
−1, comprises the transverse components of the magnetization; and

τα−1 and µ2(β−1) are the fractional order time and space constants needed to preserve units, (0 < α ≤ 1, and

1 < β ≤ 2). Magin et al. [24] considered Rβ = (Rβx + Rβy + Rβz ) as a sequential Riesz fractional order operator

in space [2], and some authors [26–29] proposed to study the fractional Laplacian operator formulation replacing

the Riesz fractional derivative. In this paper, we consider three types of space and time fractional Bloch-Torrey

equations in two dimensions (ST-FBTE2D), namely, Model-1: ST-FBTE2D with the Riesz fractional derivative;

Model-2: ST-FBTE2D with the one-dimensional fractional Laplacian operator, and Model-3: the space fractional

Bloch-Torrey equation with a two-dimensional fractional Laplacian operator.

Compared with the considerable work carried out on theoretical analysis, little work has been done on the

numerical solution of equation (1). Magin et al. [24] derived analytical solutions with fractional order dynamics

in space (i.e., α = 1 and 1 < β ≤ 2) and time (i.e., 0 < α < 1 and β = 2). Zhou et al. [31] applied the

results from [30] to analyze diffusion images of healthy human brain tissues in vivo successfully at high b values

up to 4700 sec/mm2. Yu et al. [23] derived an analytical solution and an effective implicit numerical method

for solving equation (1), and also considered the stability and convergence properties of the implicit numerical

method. However, due to computational overheads necessary to perform the simulations for ST-FBTE in three

dimensions, Yu et al. [23] presented a preliminary study based on a two-dimensional example to confirm their

theoretical analysis. Yu et al. [22] proposed a fractional alternating direction implicit scheme to overcome this

problem, they also proved the stability and convergence of the proposed method with order of convergence one

in space.

For the Riesz fractional formulation, the Grünwald-Letnikov derivative approximation scheme of order one can

be used [22, 23, 30–32]. However, in order to better approximate the Riesz fractional derivative, Ortigueira [33]

defined a ’fractional centered derivative’ and proved that the Riesz fractional derivative of an analytic function can

be represented by the fractional centered derivative. Celik and Duman [34] used the fractional centered derivative

to approximate the Riesz fractional derivative and applied the Crank-Nicolson method to a fractional diffusion

equation in the Riesz formulation, and showed that the method is unconditionally stable and convergent with

accuracy two.

In this paper, we use the fractional centered derivative to approximate the Riesz fractional derivative in Model-1

which can obtain second order accuracy in space, and propose an implicit numerical method. In addition, the

matrix transfer technique for solving Models 2 and 3 is investigated.

The remainder of this paper is arranged as follows. Some mathematical preliminaries are introduced in Section 2.
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In Section 3, we propose an implicit numerical method for Model-1. The Matrix transform technique for Models

2 and 3 is demonstrated in Sections 4 and 5, respectively. Finally, some numerical results are given to assess the

behaviours of these models on varying domain sizes with zero Dirichlet boundary conditions.

2. Preliminary knowledge

In this section, we outline some preliminary knowledge used throughout the remaining sections of this paper. It

is assumed throughout this section that M(x, y, t) ∈ C3,3,2
x,y,t(Ω) for 0 < α ≤ 1 and 1 < β ≤ 2, where t ∈ [0, T ] and

Ω : −∞ ≤ x, y ≤ +∞.

Definition 2.1.
Let M be as defined above on an infinite interval Ω : −∞ ≤ x, y ≤ +∞. The Riesz fractional operator Rβ is
defined as [27]

RβxM(x, y, t) =
∂βM(x, y, t)

∂|x|β = −cβ(−∞D
β
x +x D

β
+∞)M(x, y, t), (3)

where cβ = 1

2 cos(πβ
2

)
, β 6= 1,

−∞D
β
xM(x, y, t) =

1

Γ(2− β)

∂2

∂x2

∫ x

−∞

M(ξ, y, t)dξ
(x− ξ)β−1

,

xD
β
+∞M(x, y, t) =

(−1)2

Γ(2− β)

∂2

∂x2

∫ +∞

x

M(ξ, y, t)dξ
(ξ − x)β−1

.

Similarly, we can define the Riesz fractional derivatives RβyM(x, y, t) = ∂βM(x,y,t)

∂|y|β of order β (1 < β ≤ 2) with

respect to y.

Lemma 2.1.
Suppose that M(x) ∈ C3(−∞,∞), the following equality holds

∂β

∂|x|βM(x) = − 1

2 cos πβ
2

[−∞D
β
x + xD

β
+∞]M(x), (4)

where 1 < β ≤ 2.

Proof. See [30, 31].

Lemma 2.2.
Suppose that M(x) ∈ C3[0, L], the following equality

∂β

∂|x|βM(x) = − 1

2 cos πβ
2

[0D
β
x + xD

β
L]M∗(x), (5)

also holds when setting

M∗(x) =

{
M(x), x ∈ (0, L),

0, x /∈ (0, L),

i.e., M∗(x) = 0 on the boundary points and beyond the boundary points.
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Proof. See [30, 31].

The use of Lemmas 1 and 2 above allows us to define the Riesz fractional operator on a bounded set Ω with zero

Dirichlet boundary conditions.

Definition 2.2.
[26] Suppose the one-dimensional Laplacian (−∆) has a complete set of orthonormal eigenfunctions ϕn corre-
sponding to eigenvalues λ2

n on a bounded region Ω = [0, L], i.e., (−∆)ϕn = λ2
nϕn on a bounded region Ω;

B(ϕ) = 0 on ∂Ω, where B(ϕ) represents homogeneous Dirichlet boundary condition. Let

F =

{
f =

∞∑
n=1

cnϕn, cn = 〈f, ϕn〉,
∞∑
n=1

|cn|2|λn|2β <∞, 1 < β ≤ 2

}
,

then for any f ∈ F , (−∆)
β
2 is defined by

(−∆)
β
2 f =

∞∑
n=1

cn(λ2
n)

β
2 ϕn, (6)

where λ2
n = n2π2

L2 for n = 1, 2, · · · , and the corresponding eigenfunctions are nonzero constant multiples of
ϕn = sin nπx

L
.

Definition 2.3.
[27] Suppose the two-dimensional Laplacian (−∆) has a complete set of orthonormal eigenfunctions ϕn,m cor-
responding to eigenvalues λ2

n,m in a rectangular region Ω = [0, L1] × [0, L2], i.e., (−∆)ϕn,m = λ2
n,mϕn,m on Ω;

B(ϕ) = 0 on ∂Ω, where B(ϕ) is the standard homogeneous Dirichlet boundary condition. Let

F =

{
f =

∞∑
n=1

∞∑
m=1

cn,mϕn,m, cn,m = 〈f, ϕn,m〉,
∞∑
n=1

∞∑
m=1

|cn,m|2|λn,m|2β <∞, 1 < β ≤ 2

}
,

then for any f ∈ F , the two-dimensional fractional Laplacian (−∆)β/2 is defined by

(−∆)β/2f =

∞∑
n=1

∞∑
m=1

cn,m(λ2
n,m)

β
2 ϕn,m, (7)

where λ2
n,m = n2π2

L2
1

+ m2π2

L2
2

, and ϕn,m = sin nπx
L1

sin mπy
L2

are the eigenvalues and corresponding eigenfunctions of

the three-dimensional Laplacian (−∆) for n,m = 1, 2, . . ..

We present our solution techniques for solving the following three types of ST-FBTE2D.

Model-1: the ST-FBTE2D with Riesz formulation is rewritten in the form, with now r = (x, y), as

Kα
C
0 D

α
t Mxy(r, t) = λMxy(r, t) +KβR

β
1Mxy(r, t), (8)

where Rβ
1 = ( ∂β

∂|x|β + ∂β

∂|y|β ). We equate real and imaginary components to express equation (8) as a coupled

system of partial differential equations for the components Mx and My with λG = γ(r ·G(t)), namely

Kα
C
0 D

α
t Mx(r, t) = λGMy(r, t) +Kβ(

∂β

∂|x|β +
∂β

∂|y|β )Mx(r, t), (9)

Kα
C
0 D

α
t My(r, t) = −λGMx(r, t) +Kβ(

∂β

∂|x|β +
∂β

∂|y|β )My(r, t). (10)
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For convenience, ST-FBTEs (9) and (10) are decoupled (see [35]), which is equivalent to solving a fractional in

space and time partial differential equation of the form

Kα
C
0 D

α
t M(r, t) = Kβ(

∂β

∂|x|β +
∂β

∂|y|β )M(r, t) + f(r, t), (11)

where M can be either Mx or My, and f(r, t) = λGMy(r, t) if M = Mx, and f(r, t) = −λGMx(r, t) if M = My.

Model-2: the ST-FBTE2D with the one-dimensional fractional Laplacian operator could be written as

Kα
C
0 D

α
t Mxy(r, t) = λMxy(r, t) +KβR

β
2Mxy(r, t), (12)

with Rβ
2 = −

[
(−∆x)

β
2 + (−∆y)

β
2

]
, where ∆x = ∂2

∂x2
and ∆y = ∂2

∂y2
.

Similarly, equation (12) could be written as:

Kα
C
0 D

α
t M(r, t) = −Kβ

[
(−∆x)

β
2 + (−∆y)

β
2

]
M(r, t) + f(r, t). (13)

Model-3: the space fractional Bloch-Torrey equation in two dimensions with the two-dimensional fractional Lapla-

cian operator, could be written as

∂M(r, t)

∂t
= −Kβ(−∆)

β
2M(r, t) + f(r, t), (14)

where ∆ = ∂2

∂x2
+ ∂2

∂y2
.

3. An implicit numerical method for Model-1

We propose an implicit numerical method for solving Model-1 with initial and zero Dirichlet boundary conditions

on a finite domain given by

Kα
C
0 D

α
t M(r, t) = Kβ(

∂β

∂|x|β +
∂β

∂|y|β )M(r, t) + f(r, t), (15)

M(r, 0) = M0(r), (16)

M(r, t)|Ω̄ = 0, (17)

where 0 < α ≤ 1, 1 < β ≤ 2, 0 < t ≤ T , r = (x, y) ∈ Ω, Ω is the finite rectangular region [0, L1] × [0, L2],

M0(r) = M0(x, y) is continuous on Ω, Ω̄ is R2 − Ω.

Suppose that the continuous problem (15)-(17) has a smooth solution M(x, y, t) ∈ C3,3,2
x,y,t(Ω). Let hx =

L1/N1, hy = L2/N2, and τ = T/N be the spatial and time steps, respectively. At a point (xi, yj) at the moment

of time tn for i, j ∈ N and n ∈ N , we denote the exact and numerical solutions of M(r, t) as u(xi, yj , tn) and

uni,j , respectively.
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Firstly, we discretize the Caputo time fractional derivative of u(xi, yj , tn+1) by adopting the scheme in [32] as

C
0 D

α
t u(xi, yj , t)|t=tn+1 =

τ−α

Γ(2− α)

n∑
l=0

bl[u(xi, yj , tn+1−l)− u(xi, yj , tn−l)] +O(τ2−α), (18)

where bl = (l + 1)1−α − l1−α, l = 0, 1, · · · , N .

Secondly, we discretize the Riesz fractional derivative using the fractional centered difference scheme given in [34]

∂β

∂|x|β u(x, yj , tn+1)|x=xi = − 1

hβx

i∑
p=−N1+i

ωpu(xi−p, yj , tn+1) +O(h2
x), (19)

where the coefficients ωp are defined by

ωp =
(−1)pΓ(β + 1)

Γ(β
2
− p+ 1)Γ(β

2
+ p+ 1)

, p = 0,∓1,∓2, · · · . (20)

Similarly,

∂β

∂|y|β u(xi, y, tn+1)|y=yj = − 1

hβy

j∑
q=−N2+j

ωqu(xi, yj−q, tn+1) +O(h2
y). (21)

Thus, we can derive the implicit numerical scheme:

Kατ
−α

Γ(2− α)

n∑
l=0

bl(u
n+1−l
i,j − un−li,j ) = −Kβ

(
1

hβx

i∑
p=−N1+i

ωpu
n+1
i−p,j +

1

hβy

j∑
q=−N2+j

ωqu
n+1
i,j−q

)
+ fni,j . (22)

We then can obtain the following implicit difference approximation:

un+1
i,j + µ1

i∑
p=−N1+i

ωpu
n+1
i−p,j + µ2

j∑
q=−N2+j

ωqu
n+1
i,j−q =

n−1∑
l=0

(bl − bl+1)un−li,j + bnu
0
i,j + µ0f

n
i,j , (23)

i = 1, 2, · · · , N1 − 1, j = 1, 2, · · · , N2 − 1,

with

u0
i,j = M0(xi, yj), un+1

0,j = un+1
N1,j

= un+1
i,0 = un+1

i,N2
= 0,

(i = 0, 1, · · · , N1, j = 0, 1, · · · , N2),

where µ0 = ταΓ(2−α)
Kα

, µ1 =
Kβτ

αΓ(2−α)

Kαh
β
x

, µ2 =
Kβτ

αΓ(2−α)

Kαh
β
y

, and noting that coefficients µ0, µ1, µ2 > 0 for

0 < α ≤ 1 and 1 < β ≤ 2.

Lemma 3.1.
The coefficients bl, l = 0, 1, 2, · · · satisfy:

1. b0 = 1, bl > 0 for l = 1, 2, · · · ;

2. bl > bl+1 for l = 0, 1, 2, · · · .
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Proof. See [36].

Lemma 3.2.
The coefficients ωp (p ∈ N ) satisfy:

1. ω0 ≥ 0, ω−k = ωk ≤ 0 for all |k| ≥ 1;

2.
∞∑

p=−∞
ωp = 0;

3. For any positive integer n,m with n < m, we have
n∑

p=−m+n

ωp > 0.

Proof. See [33, 34].

3.1. Stability of the implicit numerical method

Let ũni,j be the approximate solution of the implicit numerical method (23). Setting εni,j = uni,j − ũni,j , and

En = [εn1,1, ε
n
2,1, · · · , εnN1−1,N2−1]T .

Assuming ‖En‖∞ = max
1≤i≤N1−1,1≤j≤N2−1

|εni,j |, and using mathematical induction, we have the following theorem.

Theorem 3.1.
The implicit difference approximation defined by (23) is unconditionally stable, and

‖En+1‖∞ ≤ ‖E0‖∞, n = 0, 1, 2, · · · , N.

Proof. According to (23), the error εni,j satisfies

εn+1
i,j + µ1

i∑
p=−N1+i

ωpε
n+1
i−p,j + µ2

j∑
q=−N2+j

ωqε
n+1
i,j−q =

n−1∑
l=0

(bl − bl+1)εn−mi,j + bnε
0
i,j , (24)

for i = 1, 2, · · · , N1 − 1, j = 1, 2, · · · , N2 − 1.

When n = 0, assume that ‖E1‖∞ = max
1≤i≤N1−1,1≤j≤N2−1

|ε1
i,j | = |ε1

i∗,j∗ |. With the well known inequality |Z1| −

8
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|Z2| ≤ |Z1 − Z2|, using Lemmas 3.1 and 3.2, and noting that µ1, µ2 > 0 we have

‖E1‖∞ = |ε1
i∗,j∗ |

≤ |ε1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗

ωp|ε1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗

ωq|ε1
i∗,j∗ |

= [1 + ω0(µ1 + µ2)]|ε1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p6=0

ωp|ε1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|ε1
i∗,j∗ |

≤ [1 + ω0(µ1 + µ2)]|ε1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p6=0

ωp|ε1
i∗−p,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|ε1
i∗,j∗−q|

≤

∣∣∣∣∣∣[1 + ω0(µ1 + µ2)]ε1
i∗,j∗ + µ1

i∗∑
p=−N1+i∗,p6=0

ωpε
1
i∗−p,j∗ + µ2

j∗∑
q=−N2+j∗,q 6=0

ωqε
1
i∗,j∗−q

∣∣∣∣∣∣
=

∣∣∣∣∣ε1
i∗,j∗ + µ1

i∗∑
p=−N1+i∗

ωpε
1
i∗−p,j∗ + µ2

j∗∑
q=−N2+j∗

ωqε
1
i∗,j∗−q

∣∣∣∣∣
= |b0ε0

i∗,j∗ |

≤ ‖E0‖∞.

Now, suppose that ‖Em‖∞ ≤ ‖E0‖∞,m = 1, 2, · · · , n. By assuming that ‖En+1‖∞ = max
1≤i≤N1−1,1≤j≤N2−1

|εn+1
i,j | =

|εn+1
i∗,j∗ |, using Lemmas 3.1 and 3.2 we have

‖En+1‖∞ = |εn+1
i∗,j∗ |

≤ |εn+1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗

ωp|εn+1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗

ωq|εn+1
i∗,j∗ |

= [1 + ω0(µ1 + µ2)]|εn+1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p6=0

ωp|εn+1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|εn+1
i∗,j∗ |

≤ [1 + ω0(µ1 + µ2)]|εn+1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p6=0

ωp|εn+1
i∗−p,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|εn+1
i∗,j∗−q|

≤

∣∣∣∣∣∣[1 + ω0(µ1 + µ2)]εn+1
i∗,j∗ + µ1

i∗∑
p=−N1+i∗,p6=0

ωpε
n+1
i∗−p,j∗ + µ2

j∗∑
q=−N2+j∗,q 6=0

ωqε
n+1
i∗,j∗−q

∣∣∣∣∣∣
=

∣∣∣∣∣εn+1
i∗,j∗ + µ1

i∗∑
p=−N1+i∗

ωpε
n+1
i∗−p,j∗ + µ2

j∗∑
q=−N2+j∗

ωqε
n+1
i∗,j∗−q

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
l=0

(bl − bl+1)εn−li∗,j∗ + bnε
0
i∗,j∗

∣∣∣∣∣
≤

n−1∑
l=0

(bl − bl+1)‖En−l‖∞ + bn‖E0‖∞

≤

(
n−1∑
l=0

(bl − bl+1) + bn

)
‖E0‖∞

= ‖E0‖∞.

Hence the implicit numerical method defined by (23) is unconditionally stable.

9
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3.2. Convergence of the implicit numerical method

Setting eni,j = u(xi, yj , tn)− uni,j , and denoting Rn = [en1,1, e
n
2,1, · · · , enN1−1,N2−1]T , then R0 = 0. Here Rn and 0

are ((N1 − 1)× (N2 − 1)) vectors, respectively.

From (15)-(23), the error eni,j satisfies to the highest order expansion terms in τ , hx and hy

en+1
i,j + µ1

i∑
p=−N1+i

ωpe
n+1
i−p,j + µ2

j∑
q=−N2+j

ωqe
n+1
i,j−q =

n−1∑
l=0

(bl − bl+1)en−li,j + C1τ
α(τ2−α + τ + h2

x + h2
y), (25)

for i = 1, 2, · · · , N1 − 1, j = 1, 2, · · · , N2 − 1.

Assuming ‖Rn+1‖∞ = max
1≤i≤N1−1,1≤j≤N2−1

|en+1
i,j |, and using mathematical induction, we have the following the-

orem.

Theorem 3.2.
The implicit difference approximation defined by (23) is convergent, and there is a positive constant C∗, such that

‖Rn+1‖∞ ≤ C∗(τ2−α + τ + h2
x + h2

y), n = 0, 1, 2, · · · , N. (26)

Proof. When n = 0, assume that ‖R1‖∞ = max
1≤i≤N1−1,1≤j≤N2−1

|e1
i,j | = |e1

i∗,j∗ |. Similarly, using inequality

|Z1| − |Z2| ≤ |Z1 − Z2|, Lemmas 3.1 and 3.2, and noting that µ1, µ2 > 0, we have

‖R1‖∞ = |e1
i∗,j∗ |

≤ |e1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗

ωp|e1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗

ωq|e1
i∗,j∗ |

= [1 + ω0(µ1 + µ2)]|e1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p 6=0

ωp|e1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|e1
i∗,j∗ |

≤ [1 + ω0(µ1 + µ2)]|e1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p 6=0

ωp|e1
i∗−p,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|e1
i∗,j∗−q|

≤

∣∣∣∣∣e1
i∗,j∗ + µ1

i∗∑
p=−N1+i∗

ωpe
1
i∗−p,j∗ + µ2

j∗∑
q=−N2+j∗

ωqe
1
i∗,j∗−q

∣∣∣∣∣ .
Similar to the proof of the stability in Theorem 3.1, this leads to

‖R1‖∞ ≤ C1τ
α(τ2−α + τ + h2

x + h2
y) = C1b

−1
0 τα(τ2−α + τ + h2

x + h2
y).

Now, suppose that ‖Rm‖∞ ≤ C1b
−1
m−1τ

α(τ2−α + τ + h2
x + h2

y), m = 1, 2, · · · , n. By assuming that ‖Rn+1‖∞ =

10
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max
1≤i≤N1−1,1≤j≤N2−1

|en+1
i,j | = |e

n+1
i∗,j∗ |, using Lemmas 3.1, Lemma 3.2 and (25) again, we have

‖Rn+1‖∞ = |en+1
i∗,j∗ |

≤ |en+1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗

ωp|en+1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗

ωq|en+1
i∗,j∗ |

= [1 + ω0(µ1 + µ2)]|en+1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p6=0

ωp|en+1
i∗,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|en+1
i∗,j∗ |

≤ [1 + ω0(µ1 + µ2)]|en+1
i∗,j∗ |+ µ1

i∗∑
p=−N1+i∗,p6=0

ωp|en+1
i∗−p,j∗ |+ µ2

j∗∑
q=−N2+j∗,q 6=0

ωq|en+1
i∗,j∗−q|

≤

∣∣∣∣∣en+1
i∗,j∗ + µ1

i∗∑
p=−N1+i∗

ωpe
n+1
i∗−p,j∗ + µ2

j∗∑
q=−N2+j∗

ωqe
n+1
i∗,j∗−q

∣∣∣∣∣
=

∣∣∣∣∣
n−1∑
l=0

(bl − bl+1)en−li∗,j∗ + C1τ
α(τ2−α + τ + h2

x + h2
y)

∣∣∣∣∣
≤

n−1∑
l=0

(bl − bl+1)|en−li∗,j∗ |+ C1τ
α(τ2−α + τ + h2

x + h2
y)

≤

(
n−1∑
l=0

(bl − bl+1)b−1
n−l−1 + 1

)
C1τ

α(τ2−α + τ + h2
x + h2

y)

≤

(
n−1∑
l=0

(bl − bl+1)b−1
n + 1

)
C1τ

α(τ2−α + τ + h2
x + h2

y)

=
(
(b0 − bn)b−1

n + 1
)
C1τ

α(τ2−α + τ + h2
x + h2

y)

= C1b
−1
n τα(τ2−α + τ + h2

x + h2
y).

We note that

lim
n→∞

b−1
n

nα
= lim
n→∞

n−α

(n+ 1)1−α − n1−α =
1

1− α,

and there exists a positive constant C2, such that

‖Rn+1‖∞ ≤ C1C2n
ατα(τ2−α + τ + h2

x + h2
y).

Finally, note that nτ ≤ T is finite, so there exists a positive constant C∗, such that ‖Rn+1‖∞ ≤ C∗(τ2−α + τ +

h2
x + h2

y) for n = 0, 1, 2, · · · .

Hence the implicit numerical method defined by (23) is convergent.

4. The matrix transfer method for Model-2

In this section, we utilize the matrix transfer technique proposed by Ilic et al. [26] to discretize the one-dimensional

fractional Laplacian operator for solving Model-2, with initial and zero Dirichlet boundary conditions on a finite

11
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domain given by

Kα
C
0 D

α
t M(r, t) = −Kβ

[
(−∆x)

β
2 + (−∆y)

β
2

]
M(r, t) + f(r, t), (27)

M(r, 0) = M0(r), (28)

M(r, t)|Ω̄ = 0, (29)

where 0 < α ≤ 1, 1 < β ≤ 2, 0 < t ≤ T , r = (x, y) ∈ Ω, Ω is the finite rectangular region [0, L1] × [0, L2],

M0(r) = M0(x, y) is continuous on Ω, and Ω̄ is R2 − Ω.

Noting that the symbols (−∆x)
β
2 and (−∆y)

β
2 have their usual meanings as a function of one-dimensional

Laplacian (−∆), which are defined in terms of their’s spectral decomposition. For boundary value problems on

finite domains, discrete eigenfunction expansions are used, where Definition 2.2 is adopted.

The standard finite difference stencil with equal grid spacing in both x and y directions, i.e., h = L1/N1 = L2/N2,

will result in the tridiagonal approximate matrix representation of the Laplacian operator (−∆x) and (−∆y),

respectively, namely

A = m(−∆x) =
1

h2
diag(A∗, A∗, · · · , A∗), (30)

B = m(−∆y) =
1

h2
tridiag(−I, B∗,−I), (31)

where m is the “coordinate” isomorphism, A∗ = tridiag(−1, 2,−1) and B∗ = 2I. Here A,B ∈

R(N1−1)(N2−1)×(N1−1)(N2−1), A∗, B∗ ∈ R(N1−1)×(N1−1), and I ∈ R(N1−1)×(N1−1) is the identity matrix.

For a real nonsingular, symmetric matrix A(N1−1)(N2−1)×(N1−1)(N2−1), there exists a nonsingular matrix

P x(N1−1)(N2−1)×(N1−1)(N2−1), such that A = P xΛxP
xT , where Λx = diag(λx1 , λ

x
2 , · · · , λx(N1−1)(N2−1)) and λxk(k =

1, 2, · · · , (N1 − 1)(N2 − 1)) are the eigenvalues of A. Hence we obtain the matrix representation

m(−∆x)
β
2 = A

β
2 = (P xΛxP

xT )
β
2 = P xΛβ/2x P x

T

:= A∗∗ = (aij). (32)

Similarly, we have

m(−∆y)
β
2 = B

β
2 = (P yΛyP

yT )
β
2 = P yΛβ/2y P y

T

:= B∗∗ = (b∗∗ij ), (33)

where Λy = diag(λy1 , λ
y
2 , · · · , λ

y
(N1−1)(N2−1)) and λyk(k = 1, 2, · · · , (N1 − 1)(N2 − 1)) are the eigenvalues of B.

We denote the exact and numerical solutions of M(r, t) as u(xi, yj , tn) and uni,j , respectively, and the Caputo time

fractional derivative C
0 D

α
t is discretized as in equation (18), thus together with equations (32) and (33), we can

obtain the following numerical approximation of Model-2 (27)-(29) as:

un+1
i,j + µ

N2−1∑
p=1

N1−1∑
q=1

(
a(i−1)(N1−1)+j,(p−1)(N1−1)+q + b∗∗(i−1)(N1−1)+j,(p−1)(N1−1)+q

)
un+1
pq

=

n−1∑
l=0

(bl − bl+1)un−li,j + bnu
0
i,j + µ0f

n
i,j , (34)

where µ0 = ταΓ(2−α)
Kα

, µ =
Kβτ

αΓ(2−α)

Kα
, i = 1, 2, · · · , N2 − 1, j = 1, 2, · · · , N1 − 1 and n = 0, 1, 2, · · · , N − 1.

12
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5. The matrix transfer method for Model-3

In this section, we utilize the matrix transfer technique proposed by Yang et al. [27] to discretize the two-

dimensional fractional Laplacian operator for solving Model-3, with initial and zero Dirichlet boundary conditions

on a finite domain given by

∂M(r, t)

∂t
= −Kβ(−∆)

β
2M(r, t) + f(r, t), (35)

M(r, 0) = M0(r), (36)

M(r, t)|Ω̄ = 0, (37)

where ∆ = ∂2

∂x2
+ ∂2

∂y2
, 0 < α ≤ 1, 1 < β ≤ 2, 0 < t ≤ T , r = (x, y) ∈ Ω, Ω is the finite rectangular region

[0, L1]× [0, L2], M0(r) = M0(x, y) is continuous on Ω, and Ω̄ is R2 − Ω.

The symbol (−∆)
β
2 has the usual meaning as a function of two-dimensional Laplacian (−∆), which is defined

in terms of its spectral decomposition. For boundary value problems on finite domains, discrete eigenfunction

expansions are used, where Definition 2.3 is adopted.

The standard five-point finite difference stencil with equal grid spacing in both x and y directions, i.e., h =

L1/N1 = L2/N2, will result in the block tridiagonal approximate matrix representation of the Laplacian, namely

A] = m(−∆) =
1

h2
tridiag(−I, B],−I), (38)

where B] = tridiag(−1, 4,−1). Here A] ∈ R(M1−1)(M2−1)×(M1−1)(M2−1), B] ∈ R(M1−1)×(M1−1), and I ∈

R(M1−1)×(M1−1) is the identity matrix.

Similarly, for a real nonsingular, symmetric matrix A], there exists a nonsingular matrix

P(N1−1)(N2−1)×(N1−1)(N2−1), such that A] = PΛPT , where Λ = diag(λ1, λ2, · · · , λ(N1−1)(N2−1)) and

λk(k = 1, 2, · · · , (N1 − 1)(N2 − 1)) are the eigenvalues of A]. Hence we obtain the matrix representation

m(−∆)
β
2 = A]

β
2 = (PΛPT )

β
2 = PΛβ/2PT := A]] = (a]]ij). (39)

Let τ = T/N be the time step, and denote the numerical solutions of M(r, t) as uni,j . Thus, discretizing the

time derivative using the backward differentiation formula and using equation (39), we can obtain the following

numerical approximation of Model-3 (35)-(37) as:

un+1
i,j + τKβ

N2−1∑
p=1

N1−1∑
q=1

a]](i−1)(N1−1)+j,(p−1)(N1−1)+qu
n+1
pq = uni,j + τfni,j , (40)

where i = 1, 2, · · · , N2 − 1, j = 1, 2, · · · , N1 − 1 and n = 0, 1, 2, · · · , N − 1.
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6. Numerical results

In this section, we compare the numerical solutions of the three types of space and time fractional Bloch-Torrey

equations in 2D presented throughout Sections 3-5.

In Example 6.1, we confirm the convergence order of the implicit numerical method for Model-1 and show the

solution behaviours of Models-1 and 2.

Example 6.1.
Models-1 and 2 on a finite domain are considered, namely

Model − 1 : Kα
C
0 D

α
t M(r, t) = Kβ(

∂β

∂|x|β +
∂β

∂|y|β )M(r, t) + f(r, t), (41)

Model − 2 : Kα
C
0 D

α
t M(r, t) = −Kβ

[
(−∆x)

β
2 + (−∆y)

β
2

]
M(r, t) + f(r, t), (42)

with zero initial and zero Dirichlet boundary conditions

M(r, 0) = 0, (43)

M(r, t)|Ω̄ = 0, (44)

where

f(r, t) =
Kβt

α+β

2cos(βπ/2)

((
2

Γ(3− β)
[x2−β + (1− x)2−β ]− 12

Γ(4− β)
[x3−β + (1− x)3−β ] +

24

Γ(5− β)
[x4−β

+(1− x)4−β ]
)
y2(1− y)2 +

(
2

Γ(3− β)
[y2−β + (1− y)2−β ]− 12

Γ(4− β)
[y3−β + (1− y)3−β ]

+
24

Γ(5− β)
[y4−β + (1− y)4−β ]

)
x2(1− x)2

)
+
KαΓ(α+ β + 1)

Γ(β + 1)
tβx2(1− x)2y2(1− y)2,

and 0 < α ≤ 1, 1 < β ≤ 2, 0 < t ≤ T , r = (x, y) ∈ Ω, Ω is the finite rectangular region [0, 1] × [0, 1] and Ω̄ is
R2 − Ω.
The exact solution of this problem is M(r, t) = tα+βx2(1 − x)2y2(1 − y)2, which can be verified by substituting
directly into (41) or (42).
The relative error norm defined by

ε =

√√√√( N1∑
i=0

N2∑
j=0

(uexactij − unumij )2

)/(
N1∑
i=0

N2∑
j=0

(uexactij )2

)
(45)

will be used to calculate the error between the exact and numerical solutions.
With Kα = Kβ = 1.0, α = 0.8, and β = 1.8, Table 1 lists the relative error between the exact and numerical
solutions obtained by the implicit numerical method for equation (41), with spatial and temporal steps τ1/2 =
hx = hy = 1/4, 1/8, 1/16, 1/32 at time t = 1.
From Table 1, it can be seen that the

Error rate =
error(h)2

error( 1
2
h)2
≈ 4.

This is in good agreement with our theoretical analysis, namely the convergence order of the implicit numerical
method for equation (41) is (τ2−α + τ + h2

x + h2
y).

In addition, the comparison of solution profiles obtained by the implicit numerical method and the matrix transfer
technique, respectively, with spatial and temporal steps h = 1/16, τ = 1/102 at time t = 10/102 with Kα = Kβ =
1.0, tfinal = 1.0 for α = 0.8 and β = 1.8 is given in Figure 1. From Figure 1, it can be seen that the numerical
solutions obtained by the matrix transfer technique applied to Model-2 are in good agreement with those by the
implicit numerical method for Model-1.
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(a) (b)

Figure 1. The comparison of solution profiles between Models-1 and 2 with spatial and temporal steps h = 1/16, τ = 1/102 at
time t = 10/102 with Kα = Kβ = 1.0, tfinal = 1.0 for α = 0.8 and β = 1.8. (a) Implicit numerical method. (b)
Matrix transfer technique.

Figure 2. The comparison of solution profiles between Models-1 and 2 with spatial and temporal steps h = 1/16, τ = 1/102 at
time t = 10/102 with Kα = Kβ = 1.0, tfinal = 1.0 for y = 0.5, α = 0.8 and β = 1.8, and the solutions are plotted
along the centre line.

Remark 6.1.
A closer comparison of solution profiles between Models-1 and 2 on the unit square with spatial and temporal
steps h = 1/16, τ = 1/102 at time t = 10/102 with Kα = Kβ = 1.0, tfinal = 1.0 for y = 0.5, α = 0.8 and β = 1.8
is given in Figure 2. The solutions are plotted along the centre line, and we can see that the solutions obtained
from two models both close to exact solution.

Table 1. Comparison of relative error for the implicit numerical method for Model-1 at time t = 1.0

τ1/2 = hx = hy Relative error ε Error rate

1/4 0.19893660 -

1/8 0.04694709 4.24

1/16 0.01113693 4.22

1/32 0.00262580 4.24
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(a) (b)

Figure 3. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with spatial and temporal
steps h = 1/16, τ = 1/102 at time t = 10/102 with Kα = Kβ = 1.0, tfinal = 1.0 for α = 0.8 and β = 1.8. (a) Implicit
numerical method. (b) Matrix transfer technique.

We now exhibit in Example 6.2 a comparison of the numerical solutions between Models-1 and 2 with a nonlinear

source term. We also investigate the equivalence of the two models further, by studying the solution behaviour

as the solution domain is extended.

Example 6.2.
We now consider problems (41) and (42) with an initial source term and zero Dirichlet boundary conditions given
by

M(r, 0) = δ(x− 0.5, y − 0.5), (46)

M(r, t)|Ω̄ = 0, (47)

where the nonlinear source term f(M, r, t) is Fisher’s growth equation f(M, r, t) = 0.25M(r, t)[1−M(r, t)], and
0 < α ≤ 1, 1 < β ≤ 2, 0 < t ≤ T , r = (x, y) ∈ Ω, Ω is the finite rectangular region [0, 1]× [0, 1] and Ω̄ is R2 − Ω.
The comparison of solution profiles obtained by the implicit numerical method and matrix transfer technique,
respectively, with spatial and temporal steps h = 1/16, τ = 1/102 at time t = 10/102 with Kα = Kβ = 1.0,
tfinal = 1.0 and for α = 0.8, β = 1.8 and α = 0.5, β = 1.5 are given in Figures 3 and 4, respectively. We see that
as α and β are reduced the profiles become more spiky, and that the numerical solutions obtained by the matrix
transfer technique are in good agreement with those by the implicit numerical method.
In order to see the effect of domain size on the difference between the two models, we present a comparison
between the two with spatial and temporal steps h = 1/8, τ = 1/64, Kα = Kβ = 1.0, and α = 1.0 and β = 1.8
for different t on the domain [−1, 1]× [−1, 1] (Figure 5) and domain [−2, 2]× [−2, 2] (Figure 6). We see that as
the domain size becomes larger the solution for the two models closer in agreement.
In order to see the effect of time on the difference between the two models, we present a comparison between the
two with spatial and temporal steps h = 1/8, τ = 1/64, Kα = Kβ = 1.0, and α = 1.0 and β = 1.8 for different
t on the domain [−2, 2] × [−2, 2] (Figure 7) and domain [−3, 3] × [−3, 3] (Figure 8). We see that as the time
becomes larger the differences in the solution profiles for the two models becomes larger, however, extending the
domain can reduce the difference between two models.
Figure 9 shows the error of solutions between the two models with spatial and temporal steps h = 1/8, τ = 1/64,
Kα = Kβ = 1.0, and α = 1.0 and β = 1.8 for different t on the domain [−2, 2]×[−2, 2] and domain [−3, 3]×[−3, 3].
We see that as the domain becomes larger the error becomes smaller.
We repeat these simulations, except now we replace the zero Dirichlet boundary condition by the homogeneous
Neumann boundary condition

∂M(r, t)

∂r
|Ω̄ = 0. (48)
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(a) (b)

Figure 4. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with spatial and temporal
steps h = 1/16, τ = 1/102 at time t = 10/102 with Kα = Kβ = 1.0, tfinal = 1.0 for α = 0.5 and β = 1.5. (a) Implicit
numerical method. (b) Matrix transfer technique.

(a) (b)

(c) (d)

Figure 5. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with zero Dirichlet boundary
condition with spatial and temporal steps h = 1/8, τ = 1/64 at a finite rectangular region [−1, 1] × [−1, 1] with
Kα = Kβ = 1.0 for y = 0, α = 1.0 and β = 1.8 for different t.(a) t = 0.1. (b) t = 0.2. (c) t = 0.5. (d) t = 1.0.
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(a) (b)

(c) (d)

Figure 6. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with zero Dirichlet boundary
condition with spatial and temporal steps h = 1/8, τ = 1/64 at a finite rectangular region [−2, 2] × [−2, 2] with
Kα = Kβ = 1.0 for y = 0, α = 1.0 and β = 1.8 for different t.(a) t = 0.1. (b) t = 0.2. (c) t = 0.5. (d) t = 1.0.

Figures 10 and 11 give the dynamics for the domains [−1, 1] × [−1, 1] and [−2, 2] × [−2, 2], respectively. In this
case, it can clearly be observed that the behaviour of the models, particularly at the boundaries at late times, is
very different.

Finally, in Example 6.3 we give a comparison of the numerical solutions between Models-1 and 3 with a nonlinear

source term.

Example 6.3.

Model − 1 :
∂M(r, t)

∂t
= Kβ(

∂β

∂|x|β +
∂β

∂|y|β )M(r, t) + f(M, r, t), (49)

Model − 3 :
∂M(r, t)

∂t
= −Kβ(−∆)

β
2M(r, t) + f(M, r, t), (50)

with initial and zero Dirichlet boundary conditions

M(r, 0) = δ(x− 0.5, y − 0.5), (51)

M(r, t)|Ω̄ = 0, (52)
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(a) (b)

(c) (d)

(e) (f )

Figure 7. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with zero Dirichlet boundary
condition with spatial and temporal steps h = 1/8, τ = 1/64 at a finite rectangular region [−2, 2] × [−2, 2] with
Kα = Kβ = 1.0 for y = 0, α = 1.0 and β = 1.8 for different t.(a) t = 0.1. (b) t = 1. (c) t = 2. (d) t = 5. (e) t = 8.
(f ) t = 10.

where the nonlinear source term f(M, r, t) is Fisher’s growth equation f(M, r, t) = 0.25M(r, t)[1−M(r, t)], and
1 < β ≤ 2, 0 < t ≤ T , r = (x, y) ∈ Ω, Ω is the finite rectangular region [0, 1]× [0, 1] and Ω̄ is R2 − Ω.
The comparison of solution profiles of equations (49) and (50) obtained by the implicit numerical method and
matrix transfer technique, respectively, with spatial and temporal steps h = 1/10, τ = 1/100 at time t = 0.1 with
Kβ = 1.0, tfinal = 1.0 for β = 1.8 is given in Figure 12. From Figure 12, it can be seen clearly that the numerical
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(a) (b)

(c) (d)

(e) (f )

Figure 8. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with zero Dirichlet boundary
condition with spatial and temporal steps h = 1/8, τ = 1/64 at a finite rectangular region [−3, 3] × [−3, 3] with
Kα = Kβ = 1.0 for y = 0, α = 1.0 and β = 1.8 for different t.(a) t = 0.1. (b) t = 1. (c) t = 2. (d) t = 5. (e) t = 8.
(f ) t = 10.

solutions obtained from Model-3 are not in good agreement with those of the implicit numerical method from
Model-1.
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(a) (b)

Figure 9. The error of solutions between Models-1 and 2 with a nonlinear source term with zero Dirichlet boundary condition
with spatial and temporal steps h = 1/8, τ = 1/64 with Kα = Kβ = 1.0 for y = 0, α = 1.0 and β = 1.8 for different
finite rectangular domains.(a) Finite rectangular region [−2, 2]× [−2, 2]. (b) Finite rectangular region [−3, 3]× [−3, 3].

(a) (b)

(c) (d)

Figure 10. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with homogeneous Neumann
boundary condition with spatial and temporal steps h = 1/8, τ = 1/64 at a finite rectangular region [−1, 1] × [−1, 1]
with Kα = Kβ = 1.0 for y = 0, α = 1.0 and β = 1.8 for different t.(a) t = 0.1. (b) t = 0.2. (c) t = 0.5. (d) t = 1.0.
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(a) (b)

(c) (d)

Figure 11. The comparison of solution profiles between Models-1 and 2 with a nonlinear source term with homogeneous Neumann
boundary condition with spatial and temporal steps h = 1/8, τ = 1/64 at a finite rectangular region [−2, 2] × [−2, 2]
with Kα = Kβ = 1.0 for y = 0, α = 1.0 and β = 1.8 for different t.(a) t = 0.1. (b) t = 0.2. (c) t = 0.5. (d) t = 1.0.

(a) (b)

Figure 12. The comparison of solution profiles between Models-1 and 3 with a nonlinear source term with spatial and temporal
steps h = 1/10, τ = 1/100 at time t = 0.1 with Kβ = 1.0, tfinal = 1.0 for β = 1.8. (a) Implicit numerical method.
(b) Matrix transfer technique.
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7. Conclusions

In this paper, we compare the numerical solutions obtained from an implicit numerical method and the matrix

transfer technique, for three types of space and time fractional Bloch-Torrey equations in two dimensions based

on a Riesz derivative and two forms of a fractional Laplacian in one dimension and two dimensions, respectively.

The main focus is on finite domains with zero Dirichlet boundary conditions. We show that these formulations

are not equivalent, but that as the size of the domain increases, Model 1 and Model 2 are increasingly similar.

However, this is not the case for homogeneous Neumann boundary conditions where Model 1 and Model 2 are very

different. Furthermore, the one-dimensional and two-dimensional forms for the Laplacian can also be different

even in the case of zero Dirichlet boundary conditions. This shows that the dynamics of fractional models very

much depend on the boundary conditions in the case of finite domains, and that even in the case of zero Dirichlet

boundary conditions we must take considerable care in deciding which model we should use and in interpreting

the simulation results. In the future we plan to compare our methods for solving the space and time fractional

models studied here with the methods proposed by Podlubny et al. [9]. However in that paper all examples are

in one spatial dimension, although it is claimed that the approach is easily extendable to higher dimensions.
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