15 research outputs found

    Re-Architecting the NASA Wire Derating Approach for Space Flight Applications

    Get PDF
    Mr. Steve Rickman, NASA Technical Fellow for Passive Thermal, proposed a pathfinder study to develop an apparatus for wire and wire bundle thermal testing to measure their performance, and to support development of thermal analytical models. Development of such capability would enable wire and wire bundle amperage capacity. The goal of this study was to assess the feasibility of developing physics-based and regression thermal models of single wires and wire bundles. This report contains the outcome of the NESC assessment

    BALL - biochemical algorithms library 1.3

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Biochemical Algorithms Library (BALL) is a comprehensive rapid application development framework for structural bioinformatics. It provides an extensive C++ class library of data structures and algorithms for molecular modeling and structural bioinformatics. Using BALL as a programming toolbox does not only allow to greatly reduce application development times but also helps in ensuring stability and correctness by avoiding the error-prone reimplementation of complex algorithms and replacing them with calls into the library that has been well-tested by a large number of developers. In the ten years since its original publication, BALL has seen a substantial increase in functionality and numerous other improvements.</p> <p>Results</p> <p>Here, we discuss BALL's current functionality and highlight the key additions and improvements: support for additional file formats, molecular edit-functionality, new molecular mechanics force fields, novel energy minimization techniques, docking algorithms, and support for cheminformatics.</p> <p>Conclusions</p> <p>BALL is available for all major operating systems, including Linux, Windows, and MacOS X. It is available free of charge under the Lesser GNU Public License (LPGL). Parts of the code are distributed under the GNU Public License (GPL). BALL is available as source code and binary packages from the project web site at <url>http://www.ball-project.org</url>. Recently, it has been accepted into the debian project; integration into further distributions is currently pursued.</p

    The Set of p-Adic Continuous Functions not Satisfying the Luzin (N) Property

    No full text
    2023 Acuerdos transformativos CRUEMinisterio de Ciencia, Innovación y UniversidadesEuropean Social Fund through a “Contrato Predoctoral para la Formaci´on de Doctores, 2019”National Science Foundation (INSF)Depto. de Análisis Matemático y Matemática AplicadaFac. de Ciencias MatemáticasTRUEpubAPC financiada por la UC

    Xylazine detected in unregulated opioids and drug administration equipment in Toronto, Canada: clinical and social implications

    No full text
    Abstract Background The North American opioid overdose crisis is driven in large part by the presence of unknown psychoactive adulterants in the dynamic, unregulated drug supply. We herein report the first detection of the psychoactive veterinary compound xylazine in Toronto, the largest urban center in Canada, by the city’s drug checking service. Methods Toronto’s Drug Checking Service launched in October 2019. Between then and February 2021, 2263 samples were submitted for analysis. The service is offered voluntarily at harm reduction agencies that include supervised consumption services. Samples were analyzed using gas chromatography–mass spectrometry or liquid chromatography-high resolution mass spectrometry. Targeted and/or untargeted screens for psychoactive substances were undertaken. Results In September 2020, xylazine was first detected by Toronto’s Drug Checking Service. Among samples analyzed from September 2020 to February 2021 expected to contain fentanyl in isolation (610) or in combination with methamphetamine (16), xylazine was detected in 46 samples (7.2% and 12.5% of samples, respectively). Samples were predominantly drawn from used drug equipment. Three of the samples containing xylazine (6.5%) were associated with an overdose. Conclusion We present the first detection of xylazine in Toronto, North America’s fourth-largest metropolitan area. The increased risk of overdose associated with use of xylazine and its detection within our setting highlights the importance of drug checking services in supporting rapid responses to the emergence of potentially harmful adulterants. These data also highlight the clinical challenges presented by the dynamic nature of unregulated drug markets and the concomitant need to establish regulatory structures to reduce their contribution to overdose morbidity and mortality

    Diverse psychotropic substances detected in drug and drug administration equipment samples submitted to drug checking services in Toronto, Ontario, Canada, October 2019–April 2020

    No full text
    BackgroundThe overdose crisis has generated innovative harm reduction and drug market monitoring strategies. In Toronto, Ontario, Canada, a multi-site drug checking service (DCS) pilot project was launched in October 2019. The project provides people who use drugs with information on the chemical composition of their substances, thereby increasing their capacity to make more informed decisions about their drug use and avoid overdose. DCS also provides real-time market monitoring to identify trends in the unregulated drug supply.MethodsSample data were obtained through analyses of drug and used drug administration equipment samples submitted anonymously and free of charge to DCS in downtown Toronto from October 10, 2019, to April 9, 2020, representing the first six months of DCS implementation. Analyses were conducted in clinical laboratories using liquid chromatography- and/or gas chromatography-mass spectrometry (LC-MS, GC-MS) techniques.ResultsOverall, 555 samples were submitted, with 49% (271) of samples that were found to contain high-potency opioids, of which 87% (235) also contained stimulants. Benzodiazepine-type drugs were found in 21% (116) of all samples, and synthetic cannabinoids in 1% (7) of all samples. Negative effects (including overdose, adverse health events, and extreme sedation) were reported for 11% (59) of samples submitted for analysis.ConclusionsToronto's DCS identified a range of high-potency opioids with stimulants, benzodiazepine-type drugs, and a synthetic cannabinoid, AMB-FUBINACA. This information can inform a range of evidence-informed overdose prevention efforts

    Diverse psychotropic substances detected in drug and drug administration equipment samples submitted to drug checking services in Toronto, Ontario, Canada, October 2019–April 2020

    Get PDF
    Abstract Background The overdose crisis has generated innovative harm reduction and drug market monitoring strategies. In Toronto, Ontario, Canada, a multi-site drug checking service (DCS) pilot project was launched in October 2019. The project provides people who use drugs with information on the chemical composition of their substances, thereby increasing their capacity to make more informed decisions about their drug use and avoid overdose. DCS also provides real-time market monitoring to identify trends in the unregulated drug supply. Methods Sample data were obtained through analyses of drug and used drug administration equipment samples submitted anonymously and free of charge to DCS in downtown Toronto from October 10, 2019, to April 9, 2020, representing the first six months of DCS implementation. Analyses were conducted in clinical laboratories using liquid chromatography- and/or gas chromatography-mass spectrometry (LC–MS, GC–MS) techniques. Results Overall, 555 samples were submitted, with 49% (271) of samples that were found to contain high-potency opioids, of which 87% (235) also contained stimulants. Benzodiazepine-type drugs were found in 21% (116) of all samples, and synthetic cannabinoids in 1% (7) of all samples. Negative effects (including overdose, adverse health events, and extreme sedation) were reported for 11% (59) of samples submitted for analysis. Conclusions Toronto’s DCS identified a range of high-potency opioids with stimulants, benzodiazepine-type drugs, and a synthetic cannabinoid, AMB-FUBINACA. This information can inform a range of evidence-informed overdose prevention efforts

    LiCSAR: An Automatic InSAR Tool for Measuring and Monitoring Tectonic and Volcanic Activity

    Get PDF
    Space-borne Synthetic Aperture Radar (SAR) Interferometry (InSAR) is now a key geophysical tool for surface deformation studies. The European Commission’s Sentinel-1 Constellation began acquiring data systematically in late 2014. The data, which are free and open access, have global coverage at moderate resolution with a 6 or 12-day revisit, enabling researchers to investigate large-scale surface deformation systematically through time. However, full exploitation of the potential of Sentinel-1 requires specific processing approaches as well as the efficient use of modern computing and data storage facilities. Here we present Looking Into Continents from Space with Synthetic Aperture Radar (LiCSAR), an operational system built for large-scale interferometric processing of Sentinel-1 data. LiCSAR is designed to automatically produce geocoded wrapped and unwrapped interferograms and coherence estimates, for large regions, at 0.001° resolution (WGS-84 coordinate system). The products are continuously updated at a frequency depending on prioritised regions (monthly, weekly or live update strategy). The products are open and freely accessible and downloadable through an online portal. We describe the algorithms, processing, and storage solutions implemented in LiCSAR, and show several case studies that use LiCSAR products to measure tectonic and volcanic deformation. We aim to accelerate the uptake of InSAR data by researchers as well as non-expert users by mass producing interferograms and derived product
    corecore