194 research outputs found

    Group B Streptococcus GAPDH Is Released upon Cell Lysis, Associates with Bacterial Surface, and Induces Apoptosis in Murine Macrophages

    Get PDF
    Glyceraldehyde 3-phosphate dehydrogenases (GAPDH) are cytoplasmic glycolytic enzymes that, despite lacking identifiable secretion signals, have been detected at the surface of several prokaryotic and eukaryotic organisms where they exhibit non-glycolytic functions including adhesion to host components. Group B Streptococcus (GBS) is a human commensal bacterium that has the capacity to cause life-threatening meningitis and septicemia in newborns. Electron microscopy and fluorescence-activated cell sorter (FACS) analysis demonstrated the surface localization of GAPDH in GBS. By addressing the question of GAPDH export to the cell surface of GBS strain NEM316 and isogenic mutant derivatives of our collection, we found that impaired GAPDH presence in the surface and supernatant of GBS was associated with a lower level of bacterial lysis. We also found that following GBS lysis, GAPDH can associate to the surface of many living bacteria. Finally, we provide evidence for a novel function of the secreted GAPDH as an inducer of apoptosis of murine macrophages

    Treatment planning systems dosimetry auditing project in Portugal

    Get PDF
    BACKGROUND AND PURPOSE: The Medical Physics Division of the Portuguese Physics Society (DFM_SPF) in collaboration with the IAEA, carried out a national auditing project in radiotherapy, between September 2011 and April 2012. The objective of this audit was to ensure the optimal usage of treatment planning systems. The national results are presented in this paper. MATERIAL AND METHODS: The audit methodology simulated all steps of external beam radiotherapy workflow, from image acquisition to treatment planning and dose delivery. A thorax CIRS phantom lend by IAEA was used in 8 planning test-cases for photon beams corresponding to 15 measuring points (33 point dose results, including individual fields in multi-field test cases and 5 sum results) in different phantom materials covering a set of typical clinical delivery techniques in 3D Conformal Radiotherapy. RESULTS: All 24 radiotherapy centers in Portugal have participated. 50 photon beams with energies 4-18 MV have been audited using 25 linear accelerators and 32 calculation algorithms. In general a very good consistency was observed for the same type of algorithm in all centres and for each beam quality. CONCLUSIONS: The overall results confirmed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy is generally acceptable with no major causes for concern. This project contributed to the strengthening of the cooperation between the centres and professionals, paving the way to further national collaborations

    Interactive effects of ambient fine particulate matter and ozone on daily mortality in 372 cities: two stage time series analysis

    Get PDF
    Objective To investigate potential interactive effects of fine particulate matter (PM2.5) and ozone (O3) on daily mortality at global level. Design Two stage time series analysis. Setting 372 cities across 19 countries and regions. Population Daily counts of deaths from all causes, cardiovascular disease, and respiratory disease. Main outcome measure Daily mortality data during 1994-2020. Stratified analyses by co-pollutant exposures and synergy index (>1 denotes the combined effect of pollutants is greater than individual effects) were applied to explore the interaction between PM2.5 and O3 in association with mortality. Results During the study period across the 372 cities, 19.3 million deaths were attributable to all causes, 5.3 million to cardiovascular disease, and 1.9 million to respiratory disease. The risk of total mortality for a 10 μg/m3 increment in PM2.5 (lag 0-1 days) ranged from 0.47% (95% confidence interval 0.26% to 0.67%) to 1.25% (1.02% to 1.48%) from the lowest to highest fourths of O3 concentration; and for a 10 μg/m3 increase in O3 ranged from 0.04% (−0.09% to 0.16%) to 0.29% (0.18% to 0.39%) from the lowest to highest fourths of PM2.5 concentration, with significant differences between strata (P for interaction <0.001). A significant synergistic interaction was also identified between PM2.5 and O3 for total mortality, with a synergy index of 1.93 (95% confidence interval 1.47 to 3.34). Subgroup analyses showed that interactions between PM2.5 and O3 on all three mortality endpoints were more prominent in high latitude regions and during cold seasons. Conclusion The findings of this study suggest a synergistic effect of PM2.5 and O3 on total, cardiovascular, and respiratory mortality, indicating the benefit of coordinated control strategies for both pollutants

    Ambient carbon monoxide and daily mortality: a global time-series study in 337 cities

    Get PDF
    BACKGROUND: Epidemiological evidence on short-term association between ambient carbon monoxide (CO) and mortality is inconclusive and limited to single cities, regions, or countries. Generalisation of results from previous studies is hindered by potential publication bias and different modelling approaches. We therefore assessed the association between short-term exposure to ambient CO and daily mortality in a multicity, multicountry setting. METHODS: We collected daily data on air pollution, meteorology, and total mortality from 337 cities in 18 countries or regions, covering various periods from 1979 to 2016. All included cities had at least 2 years of both CO and mortality data. We estimated city-specific associations using confounder-adjusted generalised additive models with a quasi-Poisson distribution, and then pooled the estimates, accounting for their statistical uncertainty, using a random-effects multilevel meta-analytical model. We also assessed the overall shape of the exposure-response curve and evaluated the possibility of a threshold below which health is not affected. FINDINGS: Overall, a 1 mg/m3 increase in the average CO concentration of the previous day was associated with a 0·91% (95% CI 0·32-1·50) increase in daily total mortality. The pooled exposure-response curve showed a continuously elevated mortality risk with increasing CO concentrations, suggesting no threshold. The exposure-response curve was steeper at daily CO levels lower than 1 mg/m3, indicating greater risk of mortality per increment in CO exposure, and persisted at daily concentrations as low as 0·6 mg/m3 or less. The association remained similar after adjustment for ozone but was attenuated after adjustment for particulate matter or sulphur dioxide, or even reduced to null after adjustment for nitrogen dioxide. INTERPRETATION: This international study is by far the largest epidemiological investigation on short-term CO-related mortality. We found significant associations between ambient CO and daily mortality, even at levels well below current air quality guidelines. Further studies are warranted to disentangle its independent effect from other traffic-related pollutants. FUNDING: EU Horizon 2020, UK Medical Research Council, and Natural Environment Research Council

    Global, regional, and national burden of mortality associated with short-term temperature variability from 2000-19: a three-stage modelling study

    Get PDF
    BACKGROUND: Increased mortality risk is associated with short-term temperature variability. However, to our knowledge, there has been no comprehensive assessment of the temperature variability-related mortality burden worldwide. In this study, using data from the MCC Collaborative Research Network, we first explored the association between temperature variability and mortality across 43 countries or regions. Then, to provide a more comprehensive picture of the global burden of mortality associated with temperature variability, global gridded temperature data with a resolution of 0.5 degrees x 0.5 degrees were used to assess the temperature variability-related mortality burden at the global, regional, and national levels. Furthermore, temporal trends in temperature variability-related mortality burden were also explored from 2000-19. METHODS: In this modelling study, we applied a three-stage meta-analytical approach to assess the global temperature variability-related mortality burden at a spatial resolution of 0.5 degrees x 0.5 degrees from 2000-19. Temperature variability was calculated as the SD of the average of the same and previous days' minimum and maximum temperatures. We first obtained location-specific temperature variability related-mortality associations based on a daily time series of 750 locations from the Multi-country Multi-city Collaborative Research Network. We subsequently constructed a multivariable meta-regression model with five predictors to estimate grid-specific temperature variability related-mortality associations across the globe. Finally, percentage excess in mortality and excess mortality rate were calculated to quantify the temperature variability-related mortality burden and to further explore its temporal trend over two decades. FINDINGS: An increasing trend in temperature variability was identified at the global level from 2000 to 2019. Globally, 1 753 392 deaths (95% CI 1 159 901-2 357 718) were associated with temperature variability per year, accounting for 3.4% (2.2-4.6) of all deaths. Most of Asia, Australia, and New Zealand were observed to have a higher percentage excess in mortality than the global mean. Globally, the percentage excess in mortality increased by about 4.6% (3.7-5.3) per decade. The largest increase occurred in Australia and New Zealand (7.3%, 95% CI 4.3-10.4), followed by Europe (4.4%, 2.2-5.6) and Africa (3.3, 1.9-4.6). INTERPRETATION: Globally, a substantial mortality burden was associated with temperature variability, showing geographical heterogeneity and a slightly increasing temporal trend. Our findings could assist in raising public awareness and improving the understanding of the health impacts of temperature variability. FUNDING: Australian Research Council, Australian National Health & Medical Research Council

    Associations between extreme temperatures and cardiovascular cause-specific mortality: results from 27 countries

    Get PDF
    BACKGROUND: Cardiovascular disease is the leading cause of death worldwide. Existing studies on the association between temperatures and cardiovascular deaths have been limited in geographic zones and have generally considered associations with total cardiovascular deaths rather than cause-speci fi c cardiovascular deaths. METHODS: We used uni fi ed data collection protocols within the Multi-Country Multi-City Collaborative Network to assemble a database of daily counts of speci fi c cardiovascular causes of death from 567 cities in 27 countries across 5 continents in overlapping periods ranging from 1979 to 2019. City-speci fi c daily ambient temperatures were obtained from weather stations and climate reanalysis models. To investigate cardiovascular mortality associations with extreme hot and cold temperatures, we fi t case-crossover models in each city and then used a mixed-effects meta-analytic framework to pool individual city estimates. Extreme temperature percentiles were compared with the minimum mortality temperature in each location. Excess deaths were calculated for a range of extreme temperature days. RESULTS: The analyses included deaths from any cardiovascular cause (32 154 935), ischemic heart disease (11 745 880), stroke (9 351 312), heart failure (3 673 723), and arrhythmia (670 859). At extreme temperature percentiles, heat (99th percentile) and cold (1st percentile) were associated with higher risk of dying from any cardiovascular cause, ischemic heart disease, stroke, and heart failure as compared to the minimum mortality temperature, which is the temperature associated with least mortality. Across a range of extreme temperatures, hot days (above 97.5th percentile) and cold days (below 2.5th percentile) accounted for 2.2 (95% empirical CI [eCI], 2.1-2.3) and 9.1 (95% eCI, 8.9-9.2) excess deaths for every 1000 cardiovascular deaths, respectively. Heart failure was associated with the highest excess deaths proportion from extreme hot and cold days with 2.6 (95% eCI, 2.4-2.8) and 12.8 (95% eCI, 12.2-13.1) for every 1000 heart failure deaths, respectively. CONCLUSIONS: Across a large, multinational sample, exposure to extreme hot and cold temperatures was associated with a greater risk of mortality from multiple common cardiovascular conditions. The intersections between extreme temperatures and cardiovascular health need to be thoroughly characterized in the present day-and especially under a changing climate

    Fluctuating temperature modifies heat-mortality association around the globe

    Get PDF
    Studies have investigated the effects of heat and temperature variability (TV) on mortality. However, few assessed whether TV modifies the heat-mortality association. Data on daily temperature and mortality in the warm season were collected from 717 locations across 36 countries. TV was calculated as the standard deviation of the average of the same and previous days’ minimum and maximum temperatures. We used location-specific quasi-Poisson regression models with an interaction term between the cross-basis term for mean temperature and quartiles of TV to obtain heat-mortality associations under each quartile of TV, and then pooled estimates at the country, regional, and global levels. Results show the increased risk in heat-related mortality with increments in TV, accounting for 0.70% (95% confidence interval [CI]: −0.33 to 1.69), 1.34% (95% CI: −0.14 to 2.73), 1.99% (95% CI: 0.29–3.57), and 2.73% (95% CI: 0.76–4.50) of total deaths for Q1–Q4 (first quartile–fourth quartile) of TV. The modification effects of TV varied geographically. Central Europe had the highest attributable fractions (AFs), corresponding to 7.68% (95% CI: 5.25–9.89) of total deaths for Q4 of TV, while the lowest AFs were observed in North America, with the values for Q4 of 1.74% (95% CI: −0.09 to 3.39). TV had a significant modification effect on the heat-mortality association, causing a higher heat-related mortality burden with increments of TV. Implementing targeted strategies against heat exposure and fluctuant temperatures simultaneously would benefit public health. © 2022 The Author(s)Funding text 1: This study was supported by the Australian Research Council (DP210102076) and the Australian National Health and Medical Research Council (APP2000581). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S); N.S. was supported by the National Institute of Environmental Health Sciences-funded HERCULES Center (no. P30ES019776); Y.H. was supported by the Environment Research and Technology Development Fund (JPMEERF15S11412) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research (IUT34–17); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia (SFRH/BPD/115112/2016); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1), the Natural Environment Research Council UK (grant ID NE/R009384/1), and the EU's Horizon 2020 project, Exhaustion (grant ID 820655); A.S. and F.d.D. were supported by the EU's Horizon 2020 project, Exhaustion (grant ID 820655); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study. Y.G. A.G. M.H. and B. Armstrong set up the collaborative network. Y.G. S.L. and Y.W. designed the study. Y.G. S.L. and A.G. developed the statistical methods. Y.W. B.W. S.L. and Y.G. took the lead in drafting the manuscript and interpreting the results. Y.W. B.W. Y.G. A.G. S.T. A.O. A.U. A.S. A.E. A.M.V.-C. A. Zanobetti, A.A. A. Zeka, A.T. B. Alahmad, B. Armstrong, B.F. C.Í. C. Ameling, C.D.l.C.V. C. Åström, D.H. D.V.D. D.R. E.I. E.L. F.M. F.A. F.D. F.S. G.C.-E. H. Kan, H.O. H. Kim, I.-H.H. J.K. J.M. J.S. K.K. M.H.-D. M.S.R. M.H. M.P. M.d.S.Z.S.C. N.S. P.M. P.G. P.H.N.S. R.A. S.O. T.N.D. V.C. V.H. W.L. X.S. Y.H. M.L.B. and S.L. provided the data and contributed to the interpretation of the results and the submitted version of the manuscript. Y.G. S.L. and Y.W. accessed and verified the data. All of the authors had full access to all of the data in the study and had final responsibility for the decision to submit for publication. The authors declare no competing interests.; Funding text 2: This study was supported by the Australian Research Council ( DP210102076 ) and the Australian National Health and Medical Research Council ( APP2000581 ). Y.W and B.W. were supported by the China Scholarship Council (nos. 202006010044 and 202006010043 ); S.L. was supported by an Emerging Leader Fellowship of the Australian National Health and Medical Research Council (no. APP2009866 ); Y.G. was supported by Career Development Fellowship (no. APP1163693) and Leader Fellowship (no. APP2008813) of the Australian National Health and Medical Research Council ; J.K. and A.U. were supported by the Czech Science Foundation (project no. 20–28560S ); N.S. was supported by the National Institute of Environmental Health Sciences -funded HERCULES Center (no. P30ES019776 ); Y.H. was supported by the Environment Research and Technology Development Fund ( JPMEERF15S11412 ) of the Environmental Restoration and Conservation Agency; M.d.S.Z.S.C. and P.H.N.S. were supported by the São Paulo Research Foundation (FAPESP); H.O. and E.I. were supported by the Estonian Ministry of Education and Research ( IUT34–17 ); J.M. was supported by a fellowship of Fundação para a Ciência e a Tecnlogia ( SFRH/BPD/115112/2016 ); A.G. and F.S. were supported by the Medical Research Council UK (grant ID MR/R013349/1 ), the Natural Environment Research Council UK (grant ID NE/R009384/1 ), and the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); A.S. and F.d.D. were supported by the EU’s Horizon 2020 project, Exhaustion (grant ID 820655 ); V.H. was supported by the Spanish Ministry of Economy, Industry and Competitiveness (grant ID PCIN-2017–046 ); and A.T. by MCIN/AEI/10.13039/501100011033 (grant CEX2018-000794-S). Statistics South Africa kindly provided the mortality data, but had no other role in the study
    corecore