74 research outputs found

    Use of Energy Consumption during Milling to Fill a Measurement Gap in Hybrid Additive Manufacturing

    Get PDF
    Coupling additive manufacturing (AM) with interlayer peening introduces bulk anisotropic properties within a build across several centimeters. Current methods to map high resolution anisotropy and heterogeneity are either destructive or have a limited penetration depth using a nondestructive method. An alternative pseudo-nondestructive method to map high-resolution anisotropy and heterogeneity is through energy consumption during milling. Previous research has shown energy consumption during milling correlates with surface integrity. Since surface milling of additively manufactured parts is often required for post-processing to improve dimensional accuracy, an opportunity is available to use surface milling as an alternative method to measure mechanical properties and build quality. The variation of energy consumption during the machining of additive parts, as well as hybrid AM parts, is poorly understood. In this study, the use of net cutting specific energy was proposed as a suitable metric for measuring mechanical properties after interlayer ultrasonic peening of 316 stainless steel. Energy consumption was mapped throughout half of a cuboidal build volume. Results indicated the variation of net cutting specific energy increased farther away from the surface and was higher for hybrid AM compared to as-printed and wrought. The average lateral and layer variation of the net cutting specific energy for printed samples was 81% higher than the control, which indicated a significantly higher degree of heterogeneity. Further, it was found that energy consumption was an effective process signature exhibiting strong correlations with microhardness. Anisotropy based on residual strains were measured using net cutting specific energy and validated by hole drilling. The proposed technique contributes to filling part of the measure gap in hybrid additive manufacturing and capitalizes on the preexisting need for machining of AM parts to achieve both goals of surface finish and quality assessment in one milling operation

    Acute kidney injury in patients hospitalized with COVID-19

    Get PDF
    © 2020 International Society of Nephrology The rate of acute kidney injury (AKI) associated with patients hospitalized with Covid-19, and associated outcomes are not well understood. This study describes the presentation, risk factors and outcomes of AKI in patients hospitalized with Covid-19. We reviewed the health records for all patients hospitalized with Covid-19 between March 1, and April 5, 2020, at 13 academic and community hospitals in metropolitan New York. Patients younger than 18 years of age, with end stage kidney disease or with a kidney transplant were excluded. AKI was defined according to KDIGO criteria. Of 5,449 patients admitted with Covid-19, AKI developed in 1,993 (36.6%). The peak stages of AKI were stage 1 in 46.5%, stage 2 in 22.4% and stage 3 in 31.1%. Of these, 14.3% required renal replacement therapy (RRT). AKI was primarily seen in Covid-19 patients with respiratory failure, with 89.7% of patients on mechanical ventilation developing AKI compared to 21.7% of non-ventilated patients. 276/285 (96.8%) of patients requiring RRT were on ventilators. Of patients who required ventilation and developed AKI, 52.2% had the onset of AKI within 24 hours of intubation. Risk factors for AKI included older age, diabetes mellitus, cardiovascular disease, black race, hypertension and need for ventilation and vasopressor medications. Among patients with AKI, 694 died (35%), 519 (26%) were discharged and 780 (39%) were still hospitalized. AKI occurs frequently among patients with Covid-19 disease. It occurs early and in temporal association with respiratory failure and is associated with a poor prognosis

    A Domain-Agnostic Approach for Characterization of Lifelong Learning Systems

    Full text link
    Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to "real world" events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and systems will instead need to adapt to novel distributions and tasks while deployed. This critical gap may be addressed through the development of "Lifelong Learning" systems that are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability. Unfortunately, efforts to improve these capabilities are typically treated as distinct areas of research that are assessed independently, without regard to the impact of each separate capability on other aspects of the system. We instead propose a holistic approach, using a suite of metrics and an evaluation framework to assess Lifelong Learning in a principled way that is agnostic to specific domains or system techniques. Through five case studies, we show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems. We highlight how the proposed suite of metrics quantifies performance trade-offs present during Lifelong Learning system development - both the widely discussed Stability-Plasticity dilemma and the newly proposed relationship between Sample Efficient and Robust Learning. Further, we make recommendations for the formulation and use of metrics to guide the continuing development of Lifelong Learning systems and assess their progress in the future.Comment: To appear in Neural Network

    Genetic overlap between autoimmune diseases and non-Hodgkin lymphoma subtypes

    Get PDF
    Epidemiologic studies show an increased risk of non-Hodgkin lymphoma (NHL) in patients with autoimmune disease (AD), due to a combination of shared environmental factors and/or genetic factors, or a causative cascade: chronic inflammation/antigen-stimulation in one disease leads to another. Here we assess shared genetic risk in genome-wide-association-studies (GWAS). Secondary analysis of GWAS of NHL subtypes (chronic lymphocytic leukemia, diffuse large B-cell lymphoma, follicular lymphoma, and marginal zone lymphoma) and ADs (rheumatoid arthritis, systemic lupus erythematosus, and multiple sclerosis). Shared genetic risk was assessed by (a) description of regional genetic of overlap, (b) polygenic risk score (PRS), (c)"diseasome", (d)meta-analysis. Descriptive analysis revealed few shared genetic factors between each AD and each NHL subtype. The PRS of ADs were not increased in NHL patients (nor vice versa). In the diseasome, NHLs shared more genetic etiology with ADs than solid cancers (p = .0041). A meta-analysis (combing AD with NHL) implicated genes of apoptosis and telomere length. This GWAS-based analysis four NHL subtypes and three ADs revealed few weakly-associated shared loci, explaining little total risk. This suggests common genetic variation, as assessed by GWAS in these sample sizes, may not be the primary explanation for the link between these ADs and NHLs

    Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility

    Get PDF
    We analyzed genetic data of 47,429 multiple sclerosis (MS) and 68,374 control subjects and established a reference map of the genetic architecture of MS that includes 200 autosomal susceptibility variants outside the major histocompatibility complex (MHC), one chromosome X variant, and 32 variants within the extended MHC. We used an ensemble of methods to prioritize 551 putative susceptibility genes that implicate multiple innate and adaptive pathways distributed across the cellular components of the immune system. Using expression profiles from purified human microglia, we observed enrichment for MS genes in these brain-resident immune cells, suggesting that these may have a role in targeting an autoimmune process to the central nervous system, although MS is most likely initially triggered by perturbation of peripheral immune responses

    Sequencing of the IL6 gene in a case–control study of cerebral palsy in children

    Get PDF
    BACKGROUND: Cerebral palsy (CP) is a group of nonprogressive disorders of movement and posture caused by abnormal development of, or damage to, motor control centers of the brain. A single nucleotide polymorphism (SNP), rs1800795, in the promoter region of the interleukin-6 (IL6) gene has been implicated in the pathogenesis of CP by mediating IL-6 protein levels in amniotic fluid and cord plasma and within brain lesions. This SNP has been associated with other neurological, vascular, and malignant processes as well, often as part of a haplotype block. METHODS: To refine the regional genetic association with CP, we sequenced (Sanger) the IL6 gene and part of the promoter region in 250 infants with CP and 305 controls. RESULTS: We identified a haplotype of 7 SNPs that includes rs1800795. In a recessive model of inheritance, the variant haplotype conferred greater risk (OR = 4.3, CI = [2.0-10.1], p = 0.00007) than did the lone variant at rs1800795 (OR = 2.5, CI = [1.4-4.6], p = 0.002). The risk haplotype contains one SNP (rs2069845, CI = [1.2-4.3], OR = 2.3, p = 0.009) that disrupts a methylation site. CONCLUSIONS: The risk haplotype identified in this study overlaps with previously identified haplotypes that include additional promoter SNPs. A risk haplotype at the IL6 gene likely confers risk to CP, and perhaps other diseases, via a multi-factorial mechanism

    Maintenance of genome stability by Fanconi anemia proteins

    Get PDF

    A systems biology approach uncovers cell-specific gene regulatory effects of genetic associations in multiple sclerosis

    Get PDF
    Genome-wide association studies (GWAS) have identified more than 50,000 unique associations with common human traits. While this represents a substantial step forward, establishing the biology underlying these associations has proven extremely difficult. Even determining which cell types and which particular gene(s) are relevant continues to be a challenge. Here, we conduct a cell-specific pathway analysis of the latest GWAS in multiple sclerosis (MS), which had analyzed a total of 47,351 cases and 68,284 healthy controls and found more than 200 non-MHC genome-wide associations. Our analysis identifies pan immune cell as well as cell-specific susceptibility genes in T cells, B cells and monocytes. Finally, genotype-level data from 2,370 patients and 412 controls is used to compute intra-individual and cell-specific susceptibility pathways that offer a biological interpretation of the individual genetic risk to MS. This approach could be adopted in any other complex trait for which genome-wide data is available

    Reducing Corrosion of Additive Manufactured Magnesium Alloys by Interlayer Ultrasonic Peening

    Get PDF
    Additive manufad (AM) magn alloys corrode rapidly due to tensile stress and coarse microstructures. Cyclically combining (hybridizing) additive manufacturing with interlayer ultrasonic peening was proposed as a solution to improve corrosion resistance of additive manufactured magnesium WE43 alloy through strengthening mechanisms and compressive residual stress. Applying interlayer peening work hardened discrete layers and formed a glocal integrity of regional grain refinement and subsurface compressive residual stress barriers. Tensile residual stress that typically accelerates corrosion decreased 90%. Results showed time-resolved control over corrosion was attainable by interlayer peening, and local corrosion within print cells decreased 57% with respect to as-printed WE43

    SARS-CoV-2 meta-interactome suggests disease-specific, autoimmune pathophysiologies and therapeutic targets

    No full text
    Background: Severe coronavirus disease 2019 (COVID-19) is associated with multiple comorbidities and is characterized by an auto-aggressive inflammatory state leading to massive collateral damage. To identify preventive and therapeutic strategies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is important to ascertain the molecular interactions between virus and host, and how they translate into disease pathophysiology. Methods: We matched virus-human protein interactions of human coronaviruses and other respiratory viruses with lists of genes associated with autoimmune diseases and comorbidities associated to worse COVID-19 course. We then selected the genes included in the statistically significant intersection between SARS-CoV-2 network and disease associated gene sets, identifying a meta-interactome. We analyzed the meta-interactome genes expression in samples derived from lungs of infected humans, and their regulation by IFN-β. Finally, we performed a drug repurposing screening to target the network's most critical nodes. Results: We found a significant enrichment of SARS-CoV-2 interactors in immunological pathways and a strong association with autoimmunity and three prognostically relevant conditions (type 2 diabetes, coronary artery diseases, asthma), that present more independent physiopathological subnetworks. We observed a reduced expression of meta-interactome genes in human lungs after SARS-CoV-2 infection, and a regulatory potential of type I interferons. We also underscored multiple repurposable drugs to tailor the therapeutic strategies. Conclusions: Our data underscored a plausible genetic background that may contribute to the distinct observed pathophysiologies of severe COVID-19. Also, these results may help identify the most promising therapeutic targets and treatments for this condition
    • …
    corecore