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Abstract 
Coupling additive manufacturing (AM) with interlayer peening introduces bulk anisotropic proper-
ties within a build across several centimeters. Current methods to map high resolution anisotropy 
and heterogeneity are either destructive or have a limited penetration depth using a nondestructive 
method. An alternative pseudo-nondestructive method to map high-resolution anisotropy and het-
erogeneity is through energy consumption during milling. Previous research has shown energy con-
sumption during milling correlates with surface integrity. Since surface milling of additively manu-
factured parts is often required for post-processing to improve dimensional accuracy, an opportunity 
is available to use surface milling as an alternative method to measure mechanical properties and 
build quality. The variation of energy consumption during the machining of additive parts, as well 
as hybrid AM parts, is poorly understood. In this study, the use of net cutting specific energy was 
proposed as a suitable metric for measuring mechanical properties after interlayer ultrasonic peening 
of 316 stainless steel. Energy consumption was mapped throughout half of a cuboidal build volume. 
Results indicated the variation of net cutting specific energy increased farther away from the surface 
and was higher for hybrid AM compared to as-printed and wrought. The average lateral and layer 
variation of the net cutting specific energy for printed samples was 81% higher than the control, 
which indicated a significantly higher degree of heterogeneity. Further, it was found that energy 
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consumption was an effective process signature exhibiting strong correlations with microhardness. 
Anisotropy based on residual strains were measured using net cutting specific energy and validated 
by hole drilling. The proposed technique contributes to filling part of the measure gap in hybrid 
additive manufacturing and capitalizes on the preexisting need for machining of AM parts to achieve 
both goals of surface finish and quality assessment in one milling operation. 
 
Keywords: hybrid additive manufacturing, milling, energy, glocal integrity, ultrasonic peening 
 
1. Introduction 
 
Hybrid additive manufacturing (AM) processes are defined as the use of AM with one or 
more secondary processes or energy sources that are fully coupled and synergistically af-
fect part quality, functionality, and/ or process performance [1]. Coupling additive manu-
facturing (AM) with surface treatments improves mechanical properties and performance 
of printed parts by forming a complex glocal integrity that affects plastic flow [2]. Glocal 
integrity refers to a cumulative surface integrity caused by applying surface treatments to 
multiple layers during AM. This interlayer processing introduces highly heterogeneous 
and anisotropic properties across a build that comprises a complex glocal integrity. Map-
ping the heterogeneity of these properties is challenging using existing methods due to a 
lack of resolution or accuracy. Techniques such as X-ray diffraction or hole drilling are 
accurate, but measurement over centimeters in depth are impractical and require material 
removal, which is destructive. The high cost of metal additive manufacturing limits the 
ability to print excess parts for destructive evaluation. More practical volumetric ap-
proaches to measure residual stress that are nondestructive include synchrotron or neu-
tron diffraction; however, these methods have limited resolution and are accessible only 
through national labs. An alternative method is needed that enables rapid, high-resolution 
mapping of material properties that is nondestructive. The proposed method, which is the 
use of milling machines as measurement tools, would bridge the gap between accessibility 
and spatial resolution. The measurement gap for residual stress caused by hybrid additive 
manufacturing is shown in Figure 1. Existing methods fail to capture high spatial resolu-
tion across large penetration depths. Similar gaps exist for measuring microhardness and 
microstructure across hybrid additive manufactured constructs. Although ultrasound is a 
promising nondestructive approach, understanding the influence of texture and grain mor-
phology on wave speed and backscatter remain critical technical barriers to direct meas-
urement of glocal integrity [3, 4]. A pseudo-nondestructive method to map high-resolution 
heterogeneity is measuring energy consumption during end-milling of AM parts (Fig. 2). 
Milling is often used to improve the surface finish after additive manufacturing. The aver-
age surface roughness (Ra) obtained after additive manufacturing of 316 stainless steel us-
ing powder bed fusion (Matsuura Lumex Avance-25) was 14.05 μm. Thus, milling is an 
important sequence in the manufacturing process chain to improve part quality. Further, 
energy consumption has shown to correlate with surface integrity caused by milling [5]. 
However, this relationship has not been shown for a preexisting glocal integrity imparted 
by AM or hybrid AM. The approach capitalizes on the preexisting need for machining as 
a pseudo-nondestructive technique to measure heterogeneous properties imparted by 
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interlayer surface treatments. The advantage of this approach is achieving both goals of 
surface finish and validation using one milling operation and helps fill the measurement 
gap in hybrid AM. Incremental interlayer milling extends across five or more decades of 
penetration depth to capture glocal integrity with a spatial resolution less than 100 μm 
(blue dashed line in Fig. 1). 
 

 
 

Figure 1. Measurement gap for residual stress in hybrid additive manufacturing (AM). 
Modified from [6,7]. 

 

 
 

Figure 2. Machining-based sensing (MBS) to measure glocal integrity (e.g., hardness) of 
3D printed parts via energy consumption during the cutting process. 

 
The purpose of this research is to use surface-based machining to validate a unique 

glocal integrity imparted by interlayer surface treatments. Local regions of internal 
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reinforced domains are created by interlayer surface treatments. However, the underlying 
fundamental relationship between milling-based energy consumption and internally rein-
forced domains is poorly understood. For example, how does energy consumption vary 
along the build direction considering the innate variation caused by AM? Further, intro-
ducing internally reinforced domains by hybrid-AM further complicates this relationship. 
Thus, the objective of this study was to map heterogeneous variation of energy consumed 
during milling of interlayer ultrasonic peened AM samples made from 316 stainless steel. 
More specifically, the working hypothesis was that anisotropic variation in mechanical 
properties is proportional to the energy consumed during milling of as-printed and inter-
layer ultrasonic peened samples. Assuming symmetry, the energy used to machine half of 
the build volume (rather than surface only) was used to examine the relationship between 
power consumption and glocal integrity. 
 
2. Literature review 
 
2.1. Hybrid additive manufacturing terminology 
Since hybrid additive manufacturing is an emerging field, this section provides context on 
hybrid additive manufacturing terminology in order to improve clarity and intent. Further 
justification for use of this terminology is found in the corresponding references. 
 

Term Definition 

Hybrid additive manufacturing Broader term used to designate hybrid processes and machines 
as well as multi-material, multi-structural, and multifunctional 
3D printing [1] 

Hybrid additive manufacturing processes Refers to the use of AM with one or more secondary processes 
or energy sources that are fully coupled and synergistically affect 
part quality, functionality, and/or process performance [1] 

In-situ or series combination of an additive manufacturing pro-
cess and secondary energy sources in which physical mechanisms 
are fundamentally altered/controlled to affect the resulting 
properties of the material and/or part [8]; including “in-situ” 
secondary processes and process chains 

Surface integrity Inherent or enhanced condition of a surface produced in a 
machining or other surface-generating operations [9] 

The physical and chemical properties of surfaces layers with 
respect to the functional performance of a part [10] 

The study and control of the surface layer and the changes that 
occur during processing that influence the performance of the 
finished part [11] 

Glocal integrity Refers to the physical and chemical properties of components 
due to a cumulative surface integrity enabled by secondary pro-
cessing of individual layers during additive manufacturing [2]. 
Glocal is a portmanteau to describe how local changes cause 
global effects. 

Continued next page  
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Continued from previous page 

Term Definition 

Internal reinforced domains Temporary accessible regions during AM locally reinforced by 
a secondary process with a high degree of freedom regarding 
their design [12] 

Anisotropy Refers to anisotropic residual stress/strain fields created by hy-
brid AM (e.g., interlayer ultrasonic peening) while assuming an 
elastically isotropic material; modeled with a constant elastic 
modulus and Poisson’s ratio. 

Heterogeneous Inhomogeneous properties throughout a build volume as meas-
ured by residual stress, hardness, microstructure, porosity, con-
ductivity, resistance, dislocation density, magnetism, etc. 

 
2.2. Interlayer ultrasonic peening during additive manufacturing 
Hybrid AM by ultrasonic peening (UP) is applying ultrasonic energy to a workpiece layer 
by layer or multiple layers thereof using an electromechanical transducer. UP is a mechan-
ical surface treatment capable of imparting compressive residual stress, stress relief, and 
microstructural grain refinement. UP is a low-cost simple solution to improve interlayer 
mechanical properties relatively quickly. One of the open questions in this field is which 
layers and where secondary processing should occur. A model was developed to deter-
mine hybrid ultrasonic impact treatment conditions based on the thickness of each depos-
ited layer, linear energy density from AM, ultrasonic frequency, and amplitude in the UIT 
process [13]. However, this model assumes every layer should be secondarily treated ra-
ther than identifying the proper solution for a given load or environmental condition. Lu 
et al. demonstrated directional dependence on strength and ductility of fixed interval laser 
peening using horizontal and vertical configurations [14]; however, the glocal integrity 
was not mapped across multiple intervals to understand compounding effects. To confirm 
the proper solution was achieved by selectively peening critical layers during AM, new 
measurement tools are needed to validate the glocal integrity. Milling-based energy con-
sumption is proposed as alternative tool to measure glocal integrity. Therefore, this study 
hypothesizes that energy consumed during milling of UP layers is greater than untreated 
controls. This is based on the observation that hybrid UP treatment while 3D printing stain-
less steel revealed that peened layers were harder than as-printed layers [15]. Further, this 
research analyzes the ability to measure anisotropy in hybrid AM and AM-only samples. 
The use of interlayer UP during powder bed fusion is expected to reduce anisotropy in the 
lateral (i.e., horizontal) and build directions. Interlayer forging during wire-arc AM on 
Ti-6Al-4V reduced anisotropy and improved mechanical properties [16]. Similar observa-
tions were reported on interlayer micro-rolling during wire-arc AM of bainite steel [17]. 
Both studies used wire-arc AM, which had a relatively larger melt pool and slower cooling 
rate compared to powder bed fusion indicating less anisotropy was expected. 
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2.3. Sensing glocal integrity by measuring energy consumption during milling 
 
2.3.1. Hybrid additive-subtractive manufacturing 
Coupling milling with additive manufacturing aims to improve surface finish and ensures 
dimensional accuracy of printed components. Automation of the process and real time re-
pairs regarding dimensional accuracy remain open challenges [18,19]. Residual stress in-
duced by milling of additive parts causes a new stress equilibrium that further affects part 
distortion [20]. The implementation of these solutions is time consuming, and there is no 
efficient way to certify the surface/glocal integrity imparted to the printed parts. The cur-
rent study focuses on presenting milling as a hybrid process that dual serves as a measure-
ment tool to measure glocal integrity imparted to an additive component subjected to 
interlayer peening as a second hybrid process. 

Milling in situ or out-of-envelope has different effects on the cutting specific energy. 
Milling in situ reduces machinability, and there is a possibility that the unsintered metallic 
powders interfere between the flank face and workpiece to create abusive milling condi-
tions. Milling has proven to increase specific cutting energy from 14% to 35% [21,22]. To 
mitigate excessive tool wear and the related increase in energy, milling was conducted out-
of-envelop on a 3-axis milling machine (Optomec LENS Hybrid Machine Tool Series). 
 
2.3.2. Energy consumption as a process signature 
Every manufacturing process produces a unique measurable process signature. The pro-
cess signature is useful for predicting suitable machining processes to achieve functional 
properties [23]. In this study, the process signature of the machining process is an energy-
based approach to map the glocal integrity of the workpiece. Monitoring energy consump-
tion during milling is an effective tool to establish coherence between functional properties 
and energy consumption [5]. However, during milling, properties like residual stress and 
microstructure are altered at the milled surface and subsurface, whereas hardness does not 
reveal any significant change from milling [24–26]. Hence, the specific approach in this 
preliminary study was to machine a volume of material and to correlate the microhardness 
and residual stress with the electrical energy consumption during milling. 
 
2.3.3. Metrics for process signature 
The most widely reported metric for specific energy is at the machine level, which includes 
total energy consumed divided by the material removal rate (i.e., total specific energy, Ut) 
[27]. Modern milling machines include a wide variety of functions, including electric con-
trol system, cooling systems, and auxiliary systems. These various functions account for 
the overwhelming majority of the total energy requirements of the machine tool. The actual 
machining energy is only 14.8% of the total specific energy [28]. While total specific energy 
is best for investigating overall energy efficiency and sustainability [29], it is a poor metric 
for correlating with mechanical properties and not valid for predicting energy consumed 
at the individual process level. To remove the influence of peripheral loads that dilute the 
energy signal, the concept of net cutting specific energy was established to characterize 
energy consumed by the actual cutting process. The net cutting specific energy (Unc) was 
defined as the difference in total power and air-cutting power per unit material volume 
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removed. This approach to quantify a process signature is unique to conventional machin-
ing centers. Conventional milling machines resort to the spindle motor resistance as a feed-
back loop system that adjusts the electrical energy required based on the cutting conditions 
and material properties. Thus, measuring electrical energy needed by the spindle motor is 
a direct measure of the work needed to shear the workpiece. Hybrid additive manufactur-
ing systems that couple AM and milling offer inherent capabilities to map glocal integrity 
using energy-based milling as a sensor. Milling has shown not to negatively affect surface 
integrity or mechanical properties in hybrid systems [30]. 
 
3. Materials and methods 
 
In this study, 316 stainless steel samples were printed using powder bed fusion on a 
Matsuura Lumex Avance-25 and coupled with interlayer ultrasonic peening. The powder 
was Matsuura Stainless 316L (SUS316L JIS equivalent) with an average powder size of 
29 ± 10 μm (Fig. 3). The layer thickness, laser power, and scanning speed were 50 μm, 320 W, 
and 700 mm/s, respectively. The raster orientation was randomized using ± 45° within 
5 mm × 5 mm cells that were printed randomly. All samples were cuboid coupons of size 
(L) 25.4 mm × (W) 25.4 mm × (H) 10 mm. Wrought and as-printed samples provided base-
line controls. The as-printed sample was continuously printed, and wrought samples were 
annealed 316 stainless steel (ASTM A240, Rockwell B95) with a yield strength of 207 MPa. 
Samples were ground using SiC papers with 400, 600, and 800 grit followed by polishing 
with 3 μm diamond suspensions and 0.05 μm alumina oxide powder. Next, samples were 
electrolytically etched in a 10% oxalic acid solution applying a potential difference of 5 V 
for 60 s to reveal the melt pool. 
 

 
 

Figure 3. Powder morphology of Matsuura stainless steel 316L powder. 
 
3.1. Asynchronous ultrasonic peening procedure 
Hybrid samples were asynchronously printed and ultrasonic peened out of envelope every 
10 layers (i.e., 500 μm). The ultrasonic peening frequency was 20 kHz with a power output 
of 100 W. The peening head used 4 needles that were 3 mm in diameter with a 2 mm 
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spacing. Each surface was peened once (i.e., 100% coverage) with an oscillatory raster pat-
tern shown in Figure 4. 
 

 
 

Figure 4. Hybrid-AM coupling powder bed fusion with ultrasonic peening. 
 
3.2. Energy consumption analysis 
Milling was performed on an Optomec LENS Hybrid Machine Tool Series 500 (originally 
a Fryer Compact Milling Series CM-20) using two TiN/TiAIN coated carbide inserts (ENHU 
050304R-pH on an Ingersoll DiPos-Tetra series 90° end mill cutter (1TJ1C-05012S4R0). The 
cutting tool diameter was 12.7 mm. The total current and voltage consumed during milling 
was measured using a Fluke Norma 5000 power analyzer. The sampling frequency was 
341 kHz, and the average time was 150 ms. This results in approximately 44 data points 
along a cutting length (L) of 25.4 mm at a feed rate (vf) of 251 mm/min. The lateral variation 
of the net cutting specific energy for the wrought sample (11.5 ± 0.6 J/mm3) suggests that 
the 44 data points was enough to quantify the average specific energy of every milling 
pass. The milling parameters are given in Table 1. Samples were assumed symmetric with 
respect to the raster direction. Thus, half of each sample was milled while the other half 
was used for materials characterization. The axial depth of cut was equivalent to one peen-
ing cycle (i.e., L10 or ten PBF layers) as shown in Figure 5. Machining increments were 
offset from peened layers by 0.25 mm such that milling occurred between two peened layers. 
 

Table 1. Milling parameters 
Cutting process parameters Value 

Axial depth of cut (ap) 0.5 mm 
Radial depth of cut (ae) 0.5 mm 
Cutting speed (v) 100 m/min 
Feed per tooth (f) 0.05 mm/tooth 
Material removal rate (MRR) 1.04 mm3/s 
Milling mode Down milling 
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Figure 5. Peening and machining diagram. 
 

The energy was quantified in terms of total (Ut) and net cutting specific energy (Unc) in 
units of J/mm3. The total specific energy was defined as the total power consumed (Pt) 
divided by the material removal rate (MRR). The net cutting specific energy (Unc) was cal-
culated from the net cutting power (Pnc) divided by the material removal rate [30]. Accord-
ing to the cutting tool manufacturer, the maximum allowable depth of cut and usable 
length was 4.6 mm and 19.1 mm, respectively. However, a stair-step cutting plan (Fig. 6a) 
was used to minimize the excessive tool wear of the cutting inserts (Fig. 6b). The measured 
flank wear in Figure 6b is approximately 0.4 mm. A 3D view of the tool showed excessive 
crater wear and a complete destruction of the tool’s nose. Since more tool wear results in 
more inaccurate energy data [31], the maximum engagement between the sidewall and 
flank face was approximately 2.5 mm (or less) on the last cut of each layer. Also, tool wear 
was the dominant factor in energy consumed during cutting at the process level rather 
than the primary cutting conditions, such as speed or depth of cut [32]. Further, the stair-
step approach minimized redundant work caused by friction between the flank face and 
workpiece. Excessive redundant work would dilute the energy data leading to inaccurate 
correlations with glocal integrity. 
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Figure 6. (a) Reduced number of lateral passes along the depth (i.e., stair-steps) to mini-
mize abrasion between tool and workpiece and (b) excessive tool wear on the flank face 
without using a stair-step approach. 

 
Tool wear rate was measured after five milling cycles (i.e., approximately 16.6 min of 

cutting) for each treatment condition. After 50 min, tool wear was check more routinely by 
measuring after each machining cycle. SEM images of the tool’s condition were taken using 
a JEOL JCM-6000PLUS benchtop SEM. 
 
4. Results and discussion 
 
4.1. Tool wear 
The evolution of flank wear throughout milling is shown in Figure 7. The inserts used to 
mill printed samples, i.e., as-printed and hybrid, exhibited a faster wear rate compared to 
wrought milling inserts. The maximum flank wear after 65 min was 0.10 mm, 0.07 mm, 
and 0.06 mm for hybrid, as-printed, and wrought samples, respectively. The tool break-in 
region was similar for both printed conditions. All inserts appeared to be in the stable tool 
wear growth region after 65 min of milling. Between 20 and 65 min, the wear rate for hy-
brid cutting inserts was fastest. Flank wear for hybrid cutting inserts was approximately 
32–38% higher than as-printed and wrought samples, respectively. One mechanism driv-
ing this observation was that work hardening induced by ultrasonic peening increased the 
strength and hardness. As a result, inserts used in cutting hybrid samples were exposed to 
higher cutting forces that ultimately shortened tool life. Based on this observation, the cut-
ting energy required for hybrid samples was expected to be higher compared to the control 
samples. 
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Figure 7. Tool wear curve from end milling hybrid, as-printed, and wrought 316L stain-
less steel. 

 
4.2. Energy consumption results 
The power consumed during milling was measured across 3 phases supplying power to 
the machine tool. Representative power curves are shown in Figure 8 where the wrought 
net cutting power refers to the difference in power consumption while milling the wrought 
sample to air cutting. The wrought total cutting power refers to the average total power 
consumed while milling the wrought sample. The measured total power includes several 
peripheral systems (e.g., chillers, pumps) that cycle on and off independently of printing 
or machining. Therefore, the air cutting and cutting powers may be different (i.e., shifted); 
however, the net cutting specific energy that captures the difference between cutting and 
air cutting was unaffected and did not influence the quality of the measurements. The 
power consumed on each lateral increment was quantified in terms of total specific energy 
(Ut) and net cutting specific energy (Unc). The specific energy of each sample was mapped 
across the x-z plane as shown in Figure 9, where each square corresponds to the specific 
energy for one lateral increment (i.e., one power curve divided by the MRR). The green 
color depicts the minimum energy consumed, and the red color depicts the maximum en-
ergy consumed. The objective was to examine the variation of energy consumption across 
the lateral (x) direction and the build (z) direction for as-printed and hybrid UP samples. 
 

 
 

Figure 8. Representative total active power curves for wrought, as-printed, and hybrid 
samples. 
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Figure 9. Energy maps for (a) total specific energy, Ut and (b) net cutting specific energy, Unc. 
 

The average specific energy and standard deviation is provided in Table 2. As expected, 
the total and net cutting specific energy profiles for the wrought sample was relatively 
uniform as evidenced by the lowest degree of variation. Printed samples varied more from 
layer to layer and were generally more uniform within the same layer. As expected, the 
wrought sample varied less in both x- and z-directions as compared to the printed samples. 
This observation indicates that the hot rolled and annealed sample was relatively more 
homogeneous. Interestingly, the total and net cutting specific energy profiles for the printed 
samples exhibited different trends. The as-printed condition exhibited the highest total 
specific energy but the lowest net cutting specific energy. The net cutting specific energy 
for the hybrid sample was approximately 8.3% higher than wrought and as-printed. The 
hybrid sample was expected to be higher since cold working intermittent layers requires 
more energy to shear. This assumes harder and tougher materials require more energy to 
cut. This observation further supports the argument that net cutting specific energy is a 
better indicator for glocal integrity since total specific energy dilutes information. 
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Table 2. Average total and net cutting specific energy and variation 
 Total specific energy (Ut)  Net cutting specific energy (Unc) 

 Wrought As-printed Hybrid  Wrought As-printed Hybrid 

Sample average (J/mm3) 524.8 529.1 526.8  11.5 11.4 12.4 
Total std. dev. 2.0 3.1 2.7  1.1 1.9 1.8 
Std. dev. of lateral avg. 0.4 1.3 0.9  0.6 0.7 0.8 
Std. dev. of layer avg. 1.8 2.8 2.7  0.7 1.7 1.5 

 
The average net cutting specific energy as a function of depth and lateral distance from 

the edge are plotted in Figure 10. Generally, the specific energy increased farther away 
from the top and sidewall surfaces with one noticeable exception. For total specific energy, 
the as-printed sample consumed more energy on the first 4.5 mm along the depth before 
decreasing. The stair-step approach reduced the amount of data in the center in order to 
minimize friction between the tool and workpiece that would affect energy consumption 
data. Based on standard deviations, printed samples were approximately 81% more heter-
ogeneous compared to the wrought sample. The bulk anisotropy was expected to be higher 
because of cumulative residual stress and complex microstructure formation driven by the 
thermal history. Further, the net cutting specific energy varied approximately 86% more 
along the build (z-) direction as compared to the lateral (x-) direction indicating a higher 
degree of bulk anisotropy. The hybrid sample was slightly more homogeneous, indicating 
that peening every tenth layer reduced natural variation caused by AM. 
 

 
 

Figure 10. Average net cutting specific energy as a function of (a) depth and (b) lateral 
distance from the edge. 

 
4.3. Glocal integrity in relation to energy consumption 
 
4.3.1. Melt pool and microstructure 
The electropolishing procedure revealed melt pool boundaries and various microstruc-
tures of the printed samples (Fig. 11). The enclosed area during milling spanned the depth 
and width of approximately seven and five melt pools, respectively. The layer thickness 
was 50 μm. The microstructure of as-printed and hybrid samples were similar and domi-
nated by columnar coarse grains oriented along the build direction that often crossed sev-
eral melt pools. Inside these coarser grains were finer cellular subgrain structures oriented 
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along multiple directions within the same coarse grain. The direction of the heat flux and 
temperature gradients during melting and remelting resulted in multidirection cooling 
that gave rise to the random orientation of the subgrain structures. Since milling crossed 
several melt pools composed of even more coarse grains, any microstructural modifica-
tions were thought to have a negligible effect on the cutting energy. 
 

 
 

Figure 11. (a) Melt pools from 3D printing 316SS on a Matsuura Lumex Avance-25 with a 
50 μm layer thickness, (b) coarse grains crossing melt pool boundaries, and (c) cellular 
subgrains with different orientations. 

 
4.3.2. Microhardness 
Vickers’ microhardness was mapped along the build direction using a LECO LM110 with 
a force equivalent of 1 kg and a dwell time of 10 s (Fig. 12). Each measurement was repeated 
five times on the xy-plane (on top) of each layer between milling cycles and on the side-
walls before any milling. Due to physical size constraints of the sample and equipment, 
hardness was mapped only 6 mm along the build direction from the top printed surface. 
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Figure 12. Vickers microhardness of 316 stainless steel measured on (a) xy-plane during 
milling and (b) sidewall before milling. 

 
Hardness of the hybrid-L10 sample was on average higher than the as-printed sample. 

The improvement in hardness of the hybrid sample was due to the work hardening printed 
layers during ultrasonic peening. Since data was collected on the milled surface, it is im-
portant to note that the cutting process influenced the measurements and resulted in a 
higher in-plane hardness compared to the sidewall data. The points of inflection on the xy-
plane microhardness (Fig. 12a) and net cutting specific energy (Fig. 10a) aligned well be-
tween 1 and 6 mm. Results before 1 mm likely experienced edge effects and after 6 mm 
were not measurable due to sample size constraints. For example, the hardness and net 
cutting specific energy of the as-printed sample both increased 5 mm below the surface. 
When the hardness of the hybrid sample was increasing/decreasing, the net cutting specific 
energy also increased/decreased, accordingly. On the contrary, the total specific energy 
showed no observable correlation with either in-plane or sidewall microhardness. Since 
the total energy of the machine tool encompasses energy consumed by other accessories 
during milling, the power data is diluted, and total specific cutting energy is not repre-
sentative of glocal integrity. 

Results provide growing evidence that net cutting specific energy is a useful metric for 
correlating with glocal integrity, namely microhardness (Fig. 13). One mechanism driving 
this observation is that interlayer peening resulted in work hardening that was measurable 
by both micro-indentation and energy consumed during milling or work hardened layers. 
Although more experiments are needed, the R-squared values suggest that more than half 
the variation in microhardness was attributed to the net cutting specific energy. Future 
studies are needed to examine the influence of other glocal integrity measures, such as 
residual stress and porosity. 
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Figure 13. Correlation between microhardness and net cutting specific energy. 
 
4.3.3. Residual stress and strain 
Residual stress and strain was measured using the hole drilling method according to 
ASTM E837. The hole-drilling setup was powered by an air compressor which rotates the 
turbine at 400,000 RPM to drill through an HBM strain gage (1-RY6-1.5/120K) attached to 
the sample. Residual strains were measured up to a depth of 1 mm in increments of 16 μm. 
The strain data was analyzed using the SINT Eval 7 software to convert the measured 
strains to residual stresses as appropriate. The correlation between the residual stresses 
(RS) and the net cutting specific energy (Unc) is plotted in Figure 14. 
 

 
 

Figure 14. Correlation between residual stress and net cutting specific energy. 
 

The as-printed sample contained predominantly tensile residual stresses as expected. 
Interlayer ultrasonic peening caused the hybrid sample to shift to predominately compres-
sive residual stresses. Results showed that the net cutting specific energy (Unc) in the first 
millimeter was higher for the hybrid sample because more energy was required to machine 
through compressive residual stress. This observation contradicted the total specific en-
ergy (Ut), which consumed more energy while milling the first millimeter of the as-printed 
sample. Results further support the fact that total energy consumed is an inaccurate meas-
ure of glocal integrity, and analysis of the net cutting specific energy is needed to map 
internally reinforced regional domains. 
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To evaluate if Unc was capable of capturing lateral anisotropy frequently observed in 
the residual strain measurements of hybrid samples, the x- and y-direction strains along 
the depth and the corresponding directional specific energies are shown in Figure 15. Re-
sidual strains were directly analyzed from the strain gages to minimize further processing 
and filtering of the data based on ASTM E837 for hole drilling. The results highlight the 
ability of net cutting specific energy to capture anisotropy in hybrid additive manufacturing. 
 

 
 

Figure 15. Use of residual strain and net cutting specific energy (Unc) to measure aniso-
tropy in additive manufactured 316 stainless steel: (a) as-printed and (b) hybrid-L10. 

 
The negative residual strains in the as-printed sample (indicating tensile residual stress) 

did not vary in the x- and y-directions. Similarly, the difference between directions for Unc 
in Figure 15a was approximately 6%, which indicated minimal or negligible anisotropy 
that was likely attributed to alternating print raster patterns. In the hybrid sample (Fig. 
15b), the degree of anisotropy was considerably higher. Unc captured a 30% difference be-
tween the lateral x- and y-directions. Residual strain measurements for hybrid AM provide 
support that the peening procedure introduce a higher degree of anisotropy compared to 
printing alone and that it is measurable by monitoring energy consumption. 
 
5. Summary and conclusions 
 
The objective of this study was to map anisotropic and heterogeneous variation of energy 
consumed during milling of interlayer ultrasonic peened AM samples made from 316 
stainless steel. Hybrid cuboids were printed by powder bed fusion, ultrasonically peened 
out of envelope, and compared with as-printed and wrought control samples. The total 
and net cutting specific energy were mapped along the xz-plane to understand natural 
variation from the print process and induced variation caused by cold working discrete 
layers. The influence of interlayer peening on flank wear was assessed. The microhardness, 
microstructure, and residual stress were also measured to determine if there were observ-
able correlations with total and net cutting specific energy. The key results are summarized 
as follows: 

• For the first time, net cutting specific energy was shown to capture glocal integrity 
variation induced by hybrid additive manufacturing. 
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• Machining after ultrasonic peening every 10 layers accelerated tool wear approxi-
mately 35% over as-printed and wrought samples due to cold working. Micro-
hardness was higher on hybrid samples and more closely correlated with net 
cutting specific energy rather than total specific energy. Although this seems ob-
vious, this is significant because [2] highlights that interlayer laser peening de-
creased hardness compared to an as-printed control sample, which contradicts 
conventional thinking that cold working discrete layers increases hardness that 
would in turn shorten tool life. The hardness reported in [2] and remeasured using 
ultrasound in [3] suggest that residual stress relaxation during indentation caused 
the hardness to artificially measure lower. In this work, cutting energy was an in-
dependent measure to confirm increased hardness after interlayer cold working. 

• The degree of variation in net cutting specific energy between layers was 86% 
higher on average compared to the lateral variation (along the cutting direction), 
which indicates a high degree of bulk anisotropy in the x-z plane. 

• The average lateral and layer variation for additive manufactured samples (both 
as-printed and hybrid) was 81% higher than wrought based on net cutting specific 
energy, which indicated a significantly higher degree of heterogeneity. 

• Total and net cutting specific energy generally increased away from the surfaces. 
• Anisotropic residual strain fields induced by ultrasonic peened were measured by 

net cutting specific energy and validated by hole drilling (ASTM E837). 
• The hybrid sample was approximately 14% and 12% more homogeneous in the 

lateral x-direction and layer z-direction, respectively, as measured by a lower 
standard deviation, indicating that peening every tenth layer reduced natural var-
iation caused by AM. 

• As expected, total specific energy produced more noise and weaker correlations 
with glocal integrity. 

 
In conclusion, the proposed concept to use milling to measure anisotropy and hetero-

geneity caused by interlayer ultrasonic peening is feasible. The proposed technique con-
tributes to filling part of the measure gap in hybrid additive manufacturing by increasing 
the spatial resolution to 10s or 100s of microns across large penetration depths exceeding 
several centimeters. The preexisting need for machining of AM parts is advantageous for 
industry in achieving both goals of surface finish and quality assessment in one milling 
operation across larger build volumes. 
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