7 research outputs found

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Adverse Events Associated With Mohs Micrographic Surgery: Multicenter Prospective Cohort Study of 20 821 Cases at 23 Centers

    No full text
    Importance Detailed information regarding perioperative risk and adverse events associated with Mohs micrographic surgery (MMS) can guide clinical management. Much of the data regarding complications of MMS are anecdotal or report findings from single centers or single events. Objectives To quantify adverse events associated with MMS and detect differences relevant to safety. Design, Setting, and Participants Multicenter prospective inception cohort study of 21 private and 2 institutional US ambulatory referral centers for MMS. Participants were a consecutive sample of patients presenting with MMS for 35 weeks at each center, with staggered start times. Exposure Mohs micrographic surgery. Main Outcomes and Measures Intraoperative and postoperative minor and serious adverse events. Results Among 20 821 MMS procedures, 149 adverse events (0.72%), including 4 serious events (0.02%), and no deaths were reported. Common adverse events reported were infections (61.1%), dehiscence and partial or full necrosis (20.1%), and bleeding and hematoma (15.4%). Most bleeding and wound-healing complications occurred in patients receiving anticoagulation therapy. Use of some antiseptics and antibiotics and sterile gloves during MMS were associated with modest reduction of risk for adverse events. Conclusions and Relevance Mohs micrographic surgery is safe, with a very low rate of adverse events, an exceedingly low rate of serious adverse events, and an undetectable mortality rate. Common complications include infections, followed by impaired wound healing and bleeding. Bleeding and wound-healing issues are often associated with preexisting anticoagulation therapy, which is nonetheless managed safely during MMS. We are not certain whether the small effects seen with the use of sterile gloves and antiseptics and antibiotics are clinically significant and whether wide-scale practice changes would be cost-effective given the small risk reductions

    The trans-ancestral genomic architecture of glycemic traits

    No full text
    Abstract Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P &lt; 5 x 10-8), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution
    corecore