69 research outputs found
Chemometric Modelling and Remote Sensing of Arable Land Soil Organic Carbon as Mediterranean Land Degradation Indicator - A Case Study in Southern Italy
The application of chemometric models for the quantitative estimation of soil organic matter (SOM) from laboratory reflectance data from samples taken on the regional/national level from Italian sites is explored in Part 1 of this report. In addition, the possibility to transfer the developed models from the spectral resolution of lab/field instrumentation to the one of operational satellite systems has been evaluated, by using the laboratory spectra to simulate the respective soil reflectance signatures of Landsat-TM, MODIS and MERIS.
Soil physical and chemical laboratory analyses results were provided by the JRC-IES SOIL action (formerly JRC FP6 MOSES action). The 376 soil samples, used in this study, were collected for previous projects of the IES SOIL action and its partners within a wide range of environmental settings in Italy. Reflectance measurements were obtained on disturbed soil samples using an ASD Field Spec Pro spectro-radiometer. Data transformation methods (standardisation, vector-normalisation and first and second order derivatives) have been applied on the spectral data. The transformed spectral data have been used for the prediction of SOM and carbonate content using the partial least squares regression (PLSR). The results (R2 between 0.57 and 0.8) demonstrate the successful application of reflectance spectroscopy combined with chemometric modelling for the estimation of SOM and carbonate content. The calibration models demonstrated a tolerable stability over a variety of different soil types, which is a positive factor for opening the opportunity to use this methodology for monitoring larger areas. Furthermore it could be shown, that the spectral resolution of the MERIS sensor is sufficient for approximation of the SOC/SOM content from pure soil spectra.
Consequently the second part of the study focused on the use of MERIS satellite data for the estimation of soil organic carbon content of bare soils at regional scale. The study concentrated on the Apulia region, where we had high density of available field sampling sites, and on parts of the coastal areas of the Abruzzi region South of Pescara, which are known to be amongst the more critical areas in Italy suffering from land degradation problems and desertification risk.
For specific morphological-lithological units simple spectral models, based on soil colour and spectral shape attributes, were built to derive soil organic carbon content.
In order to apply these models to MERIS satellite data, a time series of images covering the years 2003 and 2004 were acquired for Southern Italy. Pre-processing of image data aimed at extracting those pixels with negligible vegetation abundance at least at one date of observation per year, i.e. practically showing pure bare soil signatures only, and consisted of:
¿ geometrical co-registration and superposition of images from different acquisition dates
¿ the derivation of minimum vegetation composites for each year applying simple minimum value criteria for MERIS vegetation indices
¿ the determination of soil and vegetation abundance at sub-pixel level based on spectral mixture modelling.
¿ the removal of residual vegetation influence from image spectra
Soil colour attributes (soil lightness, R coordinate of R-G-B model) and coefficients of a second order polynomial fitted through the pixel reflectance signatures were derived from the minimum vegetation composites of both years. The spatial distribution of soil organic carbon was estimated for each year within specific morphological-lithological units in the Apulia region. In addition models could be applied to other regions in Southern Italy. Estimation results showed good agreement with independent field data and the pedo-transfer rules based estimations of Jones et. al. (2004, 2005).JRC.H.7-Land management and natural hazard
Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?
Understanding the link between vegetation characteristics and tree transpiration is a critical need to facilitate satellite-based transpiration estimation. Many studies use the Normalized Difference Vegetation Index (NDVI), a proxy for tree biophysical characteristics, to estimate evapotranspiration. In this study, we investigated the link between sap velocity and 30 m resolution Landsat-derived NDVI for 20 days during 2 contrasting precipitation years in a temperate deciduous forest catchment. Sap velocity was measured in the Attert catchment in Luxembourg in 25 plots of 20×20 m covering three geologies with sensors installed in two to four trees per plot. The results show that, spatially, sap velocity and NDVI were significantly positively correlated in April, i.e. NDVI successfully captured the pattern of sap velocity during the phase of green-up. After green-up, a significant negative correlation was found during half of the studied days. During a dry period, sap velocity was uncorrelated with NDVI but influenced by geology and aspect. In summary, in our study area, the correlation between sap velocity and NDVI was not constant, but varied with phenology and water availability. The same behaviour was found for the Enhanced Vegetation Index (EVI). This suggests that methods using NDVI or EVI to predict small-scale variability in (evapo)transpiration should be carefully applied, and that NDVI and EVI cannot be used to scale sap velocity to stand-level transpiration in temperate forest ecosystems
Reviews and syntheses:Remotely sensed optical time series for monitoring vegetation productivity
International audienceAbstract. Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time; reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include e.g., gross primary productivity, net primary productivity, biomass or yield. To summarize current knowledge, in this paper, we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVM). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS-data derived productivity metrics: (1) using in situ measured data, such as yield, (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras, and (3) inter-comparison of different productivity products or modelled estimates. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully-integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and also enhances the accuracy of vegetation productivity monitoring
Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as “Digital Twin”. This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring
Does the Normalized Difference Vegetation Index explain spatial and temporal variability in sap velocity in temperate forest ecosystems?
Understanding the link between vegetation characteristics and tree transpiration is a critical need
to facilitate satellite-based transpiration estimation. Many studies use the
Normalized Difference Vegetation Index (NDVI), a proxy for tree biophysical
characteristics, to estimate evapotranspiration. In this study, we
investigated the link between sap velocity and 30 m resolution
Landsat-derived NDVI for 20 days during 2 contrasting precipitation years in
a temperate deciduous forest catchment. Sap velocity was measured in the
Attert catchment in Luxembourg in 25 plots of 20×20 m covering three
geologies with sensors installed in two to four trees per plot. The results
show that, spatially, sap velocity and NDVI were significantly positively
correlated in April, i.e. NDVI successfully captured the pattern of sap
velocity during the phase of green-up. After green-up, a significant negative
correlation was found during half of the studied days. During a dry period,
sap velocity was uncorrelated with NDVI but influenced by geology and aspect.
In summary, in our study area, the correlation between sap velocity and NDVI
was not constant, but varied with phenology and water availability. The same
behaviour was found for the Enhanced Vegetation Index (EVI). This suggests
that methods using NDVI or EVI to predict small-scale variability in
(evapo)transpiration should be carefully applied, and that NDVI and EVI
cannot be used to scale sap velocity to stand-level transpiration in
temperate forest ecosystems.</p
Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as "Digital Twin". This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring
Reviews and syntheses: remotely sensed optical time series for monitoring vegetation productivity
Vegetation productivity is a critical indicator of global ecosystem health and is impacted by human activities and climate change. A wide range of optical sensing platforms, from ground-based to airborne and satellite, provide spatially continuous information on terrestrial vegetation status and functioning. As optical Earth observation (EO) data are usually routinely acquired, vegetation can be monitored repeatedly over time, reflecting seasonal vegetation patterns and trends in vegetation productivity metrics. Such metrics include gross primary productivity, net primary productivity, biomass, or yield. To summarize current knowledge, in this paper we systematically reviewed time series (TS) literature for assessing state-of-the-art vegetation productivity monitoring approaches for different ecosystems based on optical remote sensing (RS) data. As the integration of solar-induced fluorescence (SIF) data in vegetation productivity processing chains has emerged as a promising source, we also include this relatively recent sensor modality. We define three methodological categories to derive productivity metrics from remotely sensed TS of vegetation indices or quantitative traits: (i) trend analysis and anomaly detection, (ii) land surface phenology, and (iii) integration and assimilation of TS-derived metrics into statistical and process-based dynamic vegetation models (DVMs). Although the majority of used TS data streams originate from data acquired from satellite platforms, TS data from aircraft and unoccupied aerial vehicles have found their way into productivity monitoring studies. To facilitate processing, we provide a list of common toolboxes for inferring productivity metrics and information from TS data. We further discuss validation strategies of the RS data derived productivity metrics: (1) using in situ measured data, such as yield; (2) sensor networks of distinct sensors, including spectroradiometers, flux towers, or phenological cameras; and (3) inter-comparison of different productivity metrics. Finally, we address current challenges and propose a conceptual framework for productivity metrics derivation, including fully integrated DVMs and radiative transfer models here labelled as “Digital Twin”. This novel framework meets the requirements of multiple ecosystems and enables both an improved understanding of vegetation temporal dynamics in response to climate and environmental drivers and enhances the accuracy of vegetation productivity monitoring
Multi-sensor spectral synergies for crop stress detection and monitoring in the optical domain: A review
Remote detection and monitoring of the vegetation responses to stress became relevant for sustainable agriculture. Ongoing developments in optical remote sensing technologies have provided tools to increase our understanding of stress-related physiological processes. Therefore, this study aimed to provide an overview of the main spectral technologies and retrieval approaches for detecting crop stress in agriculture. Firstly, we present integrated views on: i) biotic and abiotic stress factors, the phases of stress, and respective plant responses, and ii) the affected traits, appropriate spectral domains and corresponding methods for measuring traits remotely. Secondly, representative results of a systematic literature analysis are highlighted, identifying the current status and possible future trends in stress detection and monitoring. Distinct plant responses occurring under short-term, medium-term or severe chronic stress exposure can be captured with remote sensing due to specific light interaction processes, such as absorption and scattering manifested in the reflected radiance, i.e. visible (VIS), near infrared (NIR), shortwave infrared, and emitted radiance, i.e. solar-induced fluorescence and thermal infrared (TIR). From the analysis of 96 research papers, the following trends can be observed: increasing usage of satellite and unmanned aerial vehicle data in parallel with a shift in methods from simpler parametric approaches towards more advanced physically-based and hybrid models. Most study designs were largely driven by sensor availability and practical economic reasons, leading to the common usage of VIS-NIR-TIR sensor combinations. The majority of reviewed studies compared stress proxies calculated from single-source sensor domains rather than using data in a synergistic way. We identified new ways forward as guidance for improved synergistic usage of spectral domains for stress detection: (1) combined acquisition of data from multiple sensors for analysing multiple stress responses simultaneously (holistic view); (2) simultaneous retrieval of plant traits combining multi-domain radiative transfer models and machine learning methods; (3) assimilation of estimated plant traits from distinct spectral domains into integrated crop growth models. As a future outlook, we recommend combining multiple remote sensing data streams into crop model assimilation schemes to build up Digital Twins of agroecosystems, which may provide the most efficient way to detect the diversity of environmental and biotic stresses and thus enable respective management decisions
- …