85 research outputs found

    The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases

    Get PDF
    Laccases and their homologues form the protein superfamily of multicopper oxidases (MCO). They catalyze the oxidation of many, particularly phenolic substances, and, besides playing an important role in many cellular activities, are of interest in biotechnological applications. The Laccase Engineering Database (LccED, http://www.lcced.uni-stuttgart.de) was designed to serve as a tool for a systematic sequence-based classification and analysis of the diverse multicopper oxidase protein family. More than 2200 proteins were classified into 11 superfamilies and 56 homologous families. For each family, the LccED provides multiple sequence alignments, phylogenetic trees and family-specific HMM profiles. The integration of structures for 14 different proteins allows a comprehensive comparison of sequences and structures to derive biochemical properties. Among the families, the distribution of the proteins regarding different kingdoms was investigated. The database was applied to perform a comprehensive analysis by MCO- and laccase-specific patterns

    A Streptomyces lividans SipY defficient strain as a host for protein production : standardization of operational alternatives for model proteins

    Get PDF
    Background: Extracellular protein production by Gram-positive bacteria, such as Streptomyces, may be complementary to current established protein production processes. The performance of a Streptomyces lividans mutant strain, deficient in the major signal peptidase (SipY) is investigated for the production of proteins secreted via the secondary Tat pathway. - Results: The SipY deficient strain has shown advantages over the wild type strain, in terms of extracellular productivity, specific activity and rheological behaviour. Two operational modes, batch and fed-batch, have been studied using mannitol as carbon source. The results showed that two successive mannitol additions in fed-batch mode led to improved secretory protein production using Streptomyces agarase as a model protein. This production process was also explored for the Tat secretory protein S. lividans laccase. The predicted sequence for the pre-laccase coding sequence has been cloned into the mutant strain under the control of the agarase promoter. Batch and fed-batch laccase production, using either mannitol or glucose as carbon source, have been developed and quantified. - Conclusions: The usefulness of a Streptomyces lividans SipY deficient strain as protein producer has been demonstrated. A proposed operating mode with substrate additions has been employed for the optimisation of Tat proteins production, although some adjustments might be necessary depending on the secretory protein

    Bioinformatic Analysis Reveals High Diversity of Bacterial Genes for Laccase-Like Enzymes

    Get PDF
    Fungal laccases have been used in various fields ranging from processes in wood and paper industries to environmental applications. Although a few bacterial laccases have been characterized in recent years, prokaryotes have largely been neglected as a source of novel enzymes, in part due to the lack of knowledge about the diversity and distribution of laccases within Bacteria. In this work genes for laccase-like enzymes were searched for in over 2,200 complete and draft bacterial genomes and four metagenomic datasets, using the custom profile Hidden Markov Models for two- and three- domain laccases. More than 1,200 putative genes for laccase-like enzymes were retrieved from chromosomes and plasmids of diverse bacteria. In 76% of the genes, signal peptides were predicted, indicating that these bacterial laccases may be exported from the cytoplasm, which contrasts with the current belief. Moreover, several examples of putatively horizontally transferred bacterial laccase genes were described. Many metagenomic sequences encoding fragments of laccase-like enzymes could not be phylogenetically assigned, indicating considerable novelty. Laccase-like genes were also found in anaerobic bacteria, autotrophs and alkaliphiles, thus opening new hypotheses regarding their ecological functions. Bacteria identified as carrying laccase genes represent potential sources for future biotechnological applications

    Bacterial laccases: some recent advances and applications

    Get PDF
    Laccases belong to the large family of multi-copper oxidases (MCOs) that couple the one-electron oxidation of substrates with the four-electron reduction of molecular oxygen to water. Because of their high relative non-specific oxidation capacity particularly on phenols and aromatic amines as well as the lack of requirement for expensive organic cofactors, they have found application in a large number of biotechnological fields. The vast majority of studies and applications were performed using fungal laccases, but bacterial laccases show interesting properties such as optimal temperature above 50 °C, optimal pH at the neutral to alkaline range, thermal and chemical stability and increased salt tolerance. Additionally, bacterial systems benefit from a wide range of molecular biology tools that facilitates their engineering and achievement of high yields of protein production and set-up of cost-effective bioprocesses. In this review we will provide up-to-date information on the distribution and putative physiological role of bacterial laccases and highlight their distinctive structural and biochemical properties, discuss the key role of copper in the biochemical properties, discuss thermostability determinants and, finally, review biotechnological applications with a focus on catalytic mechanisms on phenolics and aromatic amines.info:eu-repo/semantics/publishedVersio

    Physical characterization of the rack effect and hydrogen bond networks in blue copper proteins

    Get PDF
    A summary of previous research is presented that indicates that the purpose of a blue copper protein's fold and hydrogen bond network, aka, the rack effect, enforce a copper(II) geometry around the copper(I) ion in the metal site. In several blue copper proteins, the C-terminal histidine ligand becomes protonated and detaches from the copper in the reduced forms. Mutants of amicyanin from Paracoccus denitrificans were made to alter the hydrogen bond network and quantify the rack effect by pKa shifts. The pKa's of mutant amicyanins have been measured by pH-dependent electrochemistry. P94F and P94A mutations loosen the Northern loop, allowing the reduced copper to adopt a relaxed conformation: the ability to relax drives the reduction potentials up. The measured potentials are 265 (wild type), 380 (P94A), and 415 (P94F) mV vs. NHE. The measured pKa's are 7.0 (wild type), 6.3 (P94A), and 5.0 (P94F). The additional hydrogen bond to the thiolate in the mutants is indicated by a red-shift in the blue copper absorption and an increase in the parallel hyperfine splitting in the EPR spectrum. This hydrogen bond is invoked as the cause for the increased stability of the C-terminal imidazole. Melting curves give a measure of the thermal stability of the protein. A thermodynamic intermediate with pH-dependent reversibility is revealed. Comparisons with the electrochemistry and apoamicyanin suggest that the intermediate involves the region of the protein near the metal site. This region is destabilized in the P94F mutant; coupled with the evidence that the imidazole is stabilized under the same conditions confirms an original concept of the rack effect: a high energy configuration is stabilized at a cost to the rest of the protein.</p

    An outer-sphere hydrogen-bond network constrains copper coordination in blue proteins

    No full text
    In azurins and other blue copper proteins with relatively low reduction potentials (E^0 [Cu^(II)/Cu^I]<400 mV vs. normal hydrogen electrode), the folded polypeptide framework constrains both copper(II) and copper(I) in such a way as to tune the reduction potentials to values that differ greatly from those for most copper complexes. Largely conserved networks of hydrogen bonds organize and lock the rest of the folded protein structure to a loop that contains three of the ligands to copper. Changes in hydrogen bonds that allow copper(I) to revert more closely to its preferred geometry [relative to the copper(II) geometry] accordingly lead to an increase in E^0. This paper reports mutations in the ligand loop of amicyanin from P. denitrificans that relax the constraints on ligation for copper(I) and significantly raise E^0 for these mutants (for example 415±4 mV) relative to that of the native amicyanin (265±4 mV). These mutations also shift the pK_a of a ligand histidine to below 5 relative to 7.0 in the wild type
    • …
    corecore