68 research outputs found

    Radial density profiles of time-delay lensing galaxies

    Full text link
    We present non-parametric radial mass profiles for ten QSO strong lensing galaxies. Five of the galaxies have profiles close to ρ(r)r2\rho(r)\propto r^{-2}, while the rest are closer to r^{-1}, consistent with an NFW profile. The former are all relatively isolated early-types and dominated by their stellar light. The latter --though the modeling code did not know this-- are either in clusters, or have very high mass-to-light, suggesting dark-matter dominant lenses (one is a actually pair of merging galaxies). The same models give H_0^{-1} = 15.2_{-1.7}^{+2.5}\Gyr (H_0 = 64_{-9}^{+8} \legacy), consistent with a previous determination. When tested on simulated lenses taken from a cosmological hydrodynamical simulation, our modeling pipeline recovers both H_0 and ρ(r)\rho(r) within estimated uncertainties. Our result is contrary to some recent claims that lensing time delays imply either a low H_0 or galaxy profiles much steeper than r^{-2}. We diagnose these claims as resulting from an invalid modeling approximation: that small deviations from a power-law profile have a small effect on lensing time-delays. In fact, as we show using using both perturbation theory and numerical computation from a galaxy-formation simulation, a first-order perturbation of an isothermal lens can produce a zeroth-order change in the time delays.Comment: Replaced with final version accepted for publication in ApJ; very minor changes to text; high resolution figures may be obtained at justinread.ne

    The Hubble flow around the Local Group

    Full text link
    We use updated data on distances and velocities of galaxies in the proximity of the Local Group (LG) in order to establish properties of the local Hubble flow. For 30 neighbouring galaxies with distances 0.7 < D_LG < 3.0 Mpc, the Local flow is characterized by the Hubble parameter H_loc = (78+/-2) km/(s*Mpc), the mean-square peculiar velocity sigma_v = 25 km/s, corrected for errors of radial velocity measurements (~4 km/s) and distance measurements (~10 km/s), as well as the radius of the zero-velocity surface R_0 = (0.96+/-0.03) Mpc. The minimum value for sigma_v is achieved when the barycenter of the LG is located at the distance D_c = (0.55+/-0.05) D_M31 towards M31 corresponding to the Milky Way-to-M31 mass ratio M_MW / M_M31 ~ 4/5. In the reference frame of the 30 galaxies at 0.7 - 3.0 Mpc, the LG barycenter has a small peculiar velocity ~(24+/-4) km/s towards the Sculptor constellation. The derived value of R_0 corresponds to the total mass M_T(LG) = (1.9+/-0.2) 10^12 M_sun with Omega_m = 0.24 and a topologically flat universe, a value in good agreement with the sum of virial mass estimates for the Milky Way and M31.Comment: 14 pages, 6 figures, 1 table. Accepted for publication in MNRA

    Non-minimally coupled dark matter: effective pressure and structure formation

    Full text link
    We propose a phenomenological model in which a non-minimal coupling between gravity and dark matter is present in order to address some of the apparent small scales issues of \lcdm model. When described in a frame in which gravity dynamics is given by the standard Einstein-Hilbert action, the non-minimal coupling translates into an effective pressure for the dark matter component. We consider some phenomenological examples and describe both background and linear perturbations. We show that the presence of an effective pressure may lead these scenarios to differ from \lcdm at the scales where the non-minimal coupling (and therefore the pressure) is active. In particular two effects are present: a pressure term for the dark matter component that is able to reduce the growth of structures at galactic scales, possibly reconciling simulations and observations; an effective interaction term between dark matter and baryons that could explain observed correlations between the two components of the cosmic fluid within Tully-Fisher analysis.Comment: 18 pages, 6 figures, references added. Published in JCA

    Determining orbits for the Milky Way's dwarfs

    Full text link
    We calculate orbits for the Milky Way dwarf galaxies with proper motions, and compare these to subhalo orbits in a high resolution cosmological simulation. We use this same simulation to assess how well are able to recover orbits in the face of measurement errors, a time varying triaxial gravitational potential, and satellite-satellite interactions. We find that, for present measurement uncertainties, we are able to recover the apocentre r_a and pericentre r_p to ~ 40%. However, even with better data the non-sphericity of the potential and satellite interactions during group infall make the orbital recovery more challenging. Dynamical friction, satellite mass loss and the mass evolution of the main halo play a more minor role. We apply our technique to nine Milky Way dwarfs with observed proper motions. We show that their mean apocentre is consistent with the most massive subhalos that form before z=10, lending support to the idea that the Milky Way dwarfs formed before reionisation.Comment: 2 pages, 1 figure, conference proceeding in "Hunting for the Dark: The Hidden Side of Galaxy Formation", Malta, 19-23 Oct. 2009, eds. V.P. Debattista & C.C. Popesc

    Cluster Lenses

    Get PDF
    Clusters of galaxies are the most recently assembled, massive, bound structures in the Universe. As predicted by General Relativity, given their masses, clusters strongly deform space-time in their vicinity. Clusters act as some of the most powerful gravitational lenses in the Universe. Light rays traversing through clusters from distant sources are hence deflected, and the resulting images of these distant objects therefore appear distorted and magnified. Lensing by clusters occurs in two regimes, each with unique observational signatures. The strong lensing regime is characterized by effects readily seen by eye, namely, the production of giant arcs, multiple-images, and arclets. The weak lensing regime is characterized by small deformations in the shapes of background galaxies only detectable statistically. Cluster lenses have been exploited successfully to address several important current questions in cosmology: (i) the study of the lens(es) - understanding cluster mass distributions and issues pertaining to cluster formation and evolution, as well as constraining the nature of dark matter; (ii) the study of the lensed objects - probing the properties of the background lensed galaxy population - which is statistically at higher redshifts and of lower intrinsic luminosity thus enabling the probing of galaxy formation at the earliest times right up to the Dark Ages; and (iii) the study of the geometry of the Universe - as the strength of lensing depends on the ratios of angular diameter distances between the lens, source and observer, lens deflections are sensitive to the value of cosmological parameters and offer a powerful geometric tool to probe Dark Energy. In this review, we present the basics of cluster lensing and provide a current status report of the field.Comment: About 120 pages - Published in Open Access at: http://www.springerlink.com/content/j183018170485723/ . arXiv admin note: text overlap with arXiv:astro-ph/0504478 and arXiv:1003.3674 by other author

    Cosmology: small scale issues

    Get PDF
    The abundance of dark matter satellites and subhalos, the existence of density cusps at the centers of dark matter halos, and problems producing realistic disk galaxies in simulations are issues that have raised concerns about the viability of the standard cold dark matter (LambdaCDM) scenario for galaxy formation. This talk reviews these issues, and considers the implications for cold vs. various varieties of warm dark matter (WDM). The current evidence appears to be consistent with standard LambdaCDM, although improving data may point toward a rather tepid version of LambdaWDM - tepid since the dark matter cannot be very warm without violating observational constraints.Comment: 7 pages, 1 figure, to appear in the proceedings of the 8th UCLA Dark Matter Symposium, Marina del Rey, USA, 20-22 February 200
    corecore