252 research outputs found

    Mapping and Monitoring of Submerged Aquatic Vegetation in Escambia-Pensacola Bay System, Florida

    Get PDF
    Recently, the distribution and changes in submerged aquatic vegetation (SAY) in the Escambia-Pensacola Bay System in northeastern Florida were monitored by two techniques. One technique used divers to measure changes in the deepwater margin of beds and provided horizontal growth measurements to the nearest centimeter, the other used a differential global positioning system (DGPS) on a small boat to map the perimeter of SAY beds in shallow water. Current distribution of SAY in Escambia Bay shows that most of the SAY losses that occurred during the 1950s to 1970s have been recovered. In Santa Rosa Sound and Pensacola Bay, SAY showed significant increased growth with horizontal growth rates of some beds averaging more than 50 em over the past year. In Big Lagoon, however, SAY has declined an average of 10 em in horizontal coverage along the deepwater edge. Water quality and photosynthetically active radiation light measurements from the Escambia-Pensacola Bay System suggest that increased light availability was associated with the increased seagrass coverage in Santa Rosa Sound and Pensacola Bay, and elevated nutrient concentrations were associated with the seagrass declines in Big Lagoon

    Ensemble Concerts: Civic Chorale with Normal First United Methodist Church Chancel Choir, November 12, 2023

    Get PDF
    Center for the Performing Arts Concert HallSundayNovember 12, 20233:00 p.m

    State and specific growth estimation in heterologous protein production by Pichia pastoris

    Get PDF
    The productivity of an industrial fermentation process involving a filamentous microbe is heavily dependent on the morphological form adopted by the organism. The development of systems capable of rapidly and accurately characterizing morphology within a given process represents a significant challenge, as the complex phenotypes that are manifested are not easily quantified. Conventional parameters employed in these analyses are often of limited value, as they reveal little about the branching behavior of the organism; an important consideration given the demonstrated link between branching frequency and metabolite production. In this study, the influence of branching behavior on the spatial distribution of mycelia grown in silico is examined through fractal analysis. It is demonstrated that fractal dimension, quantified based on the frequency distribution of parameterized boundary curves, and lacunarity act as robust estimators of branching behavior. The analysis can, in theory, be applied to any morphological form, providing universally applicable process parameters for more complete data acquisition.This work was supported by a grant from the Spanish programme of Chemical Processes Technologies (CTQ2007-60347; CTQ2010-15131), HP2007-0045 from Science and Innovation Ministry, 2009-SGR-00281 and the Reference Network in Biotechnology (XRB) from the DURSI (Generalitat de Catalunya). Support from "Luso-Spanish Integrated Actions" (Action 100/08) are also acknowledged. JMB would like to thank the Spanish Education Ministry for his predoctoral fellowship

    Enhanced heterologous protein production in Pichia pastoris under increased air pressure

    Get PDF
    Pichia pastoris is a widely used host for the production of heterologous proteins. In this case, high cell densities are needed and oxygen is a major limiting factor. The increased air pressure could be used to improve the oxygen solubility in the medium and to reach the high oxygen demand of methanol metabolism. In this study, two P. pastoris strains producing two different recombinant proteins, one intracellular (β-galactosidase) and other extracellular (frutalin), were used to investigate the effect of increased air pressure on yeast growth in glycerol and heterologous protein production, using the methanol AOX1-inducible system. Experiments were carried out in a stainless steel bioreactor under total air pressure of 1 bar and 5 bar. The use of an air pressure raise of up to 5 bar proved to be applicable for P. pastoris cultivation. Moreover, no effects on the kinetic growth parameters and methanol utilization (Mut) phenotype of strains were found, while an increase in recombinant β-galactosidase-specific activity (ninefold) and recombinant frutalin production was observed. Furthermore, the air pressure raise led to a reduction in the secreted protease specific activity. This work shows for the first time that the application of an air pressure of 5 bar may be used as a strategy to decrease protease secretion and improve recombinant protein production in P. pastoris.The authors acknowledge the financial support provided by FCT (grant SFRH/BD/47371/2008 to Marlene Lopes and grant SFRH/BDP/63831/2009 to Carla Oliveira), by FCT Strategic Project PEst-OE/EQB/LA0023/2013 and by the Project "BioInd - Biotechnology and Bioengineering for improved Industrial and Agro-Food processes, REF. NORTE-07-0124-FEDER-000028" Co-funded by the Programa Operacional Regional do Norte (ON.2 - O Novo Norte), QREN, FEDER

    Production of in vivo biotinylated scFv specific to almond (Prunus dulcis) proteins by recombinant Pichia pastoris

    Get PDF
    The methylotropic yeast Pichia pastoris has demonstrated its suitability for large-scale production of recombinant proteins. As an eukaryotic organism P. pastoris presents a series of advantages at expression and processing of heterologous proteins when compared with Escherichia coli. In this work, P. pastoris has been used to express a scFv from a human synthetic library previously shown to bind almond proteins. In order to facilitate purification and post processing manipulations, the scFv was engineered with a C-terminal tag and biotinylated in vivo. After purification, biotinylated scFv were bound to avidin conjugated with HRP producing a multimeric scFv. The multimeric scFv showed to maintain their ability to recognize almond protein when assayed in ELISA, reaching a LOD of 470 mg kg−1. This study describes an easy method to produce large quantities of in vivo biotinylated scFv in P. pastoris. By substituting the enzyme or fluorochromes linked to avidin, it will be possible to generate a diverse number of multimeric scFv as probes to suit different analytical platforms in the detection of almond in food products

    Optimal Production and Biochemical Properties of a Lipase from Candida albicans

    Get PDF
    Lipases from microorganisms have multi-faceted properties and play an important role in ever-growing modern biotechnology and, consequently, it is of great significance to develop new ones. In the present work, a lipase gene from Candida albicans (CaLIP10) was cloned and two non-unusual CUG serine codons were mutated into universal codons, and its expression in Pichia pastoris performed optimally, as shown by response surface methodology. Optimal conditions were: initial pH of culture 6.86, temperature 25.53 °C, 3.48% of glucose and 1.32% of yeast extract. The corresponding maximal lipolytic activity of CaLIP10 was 8.06 U/mL. The purified CaLIP10 showed maximal activity at pH 8.0 and 25 °C, and a good resistance to non-ionic surfactants and polar organic solvent was noticed. CaLIP10 could effectively hydrolyze coconut oil, but exhibited no obvious preference to the fatty acids with different carbon length, and diacylglycerol was accumulated in the reaction products, suggesting that CaLIP10 is a potential lipase for the oil industry

    Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media

    Full text link
    [EN] Within the emergent field of Systems Biology, mathematical models obtained from physical chemical laws (the so-called first principles-based models) of microbial systems are employed to discern the principles that govern cellular behaviour and achieve a predictive understanding of cellular functions. The reliance on this biochemical knowledge has the drawback that some of the assumptions (specific kinetics of the reaction system, unknown dynamics and values of the model parameters) may not be valid for all the metabolic possible states of the network. In this uncertainty context, the combined use of fundamental knowledge and data measured in the fermentation that describe the behaviour of the microorganism in the manufacturing process is paramount to overcome this problem. In this paper, a grey modelling approach is presented combining data-driven and first principles information at different scales, developed for Pichia pastoris cultures grown on different carbon sources. This approach will allow us to relate patterns of recombinant protein production to intracellular metabolic states and correlate intra and extracellular reactions in order to understand how the internal state of the cells determines the observed behaviour in P. pastoris cultivations.Research in this study was partially supported by the Spanish Ministry of Science and Innovation and FEDER funds from the European Union through grants DPI2011-28112-C04-01 and DPI2011-28112-C04-02. The authors are also grateful to Biopolis SL for supporting this research. We also gratefully acknowledge Associate Professor Jose Camacho for providing the Exploratory Data Analysis Toolbox.González Martínez, JM.; Folch-Fortuny, A.; Llaneras Estrada, F.; Tortajada Serra, M.; Picó Marco, JA.; Ferrer, A. (2014). Metabolic flux understanding of Pichia pastoris grown on heterogenous culture media. Chemometrics and Intelligent Laboratory Systems. 134:89-99. https://doi.org/10.1016/j.chemolab.2014.02.003S899913

    The Development of Metabolomic Sampling Procedures for Pichia pastoris, and Baseline Metabolome Data

    Get PDF
    Metabolic profiling is increasingly being used to investigate a diverse range of biological questions. Due to the rapid turnover of intracellular metabolites it is important to have reliable, reproducible techniques for sampling and sample treatment. Through the use of non-targeted analytical techniques such as NMR and GC-MS we have performed a comprehensive quantitative investigation of sampling techniques for Pichia pastoris. It was clear that quenching metabolism using solutions based on the standard cold methanol protocol caused some metabolite losses from P. pastoris cells. However, these were at a low level, with the NMR results indicating metabolite increases in the quenching solution below 5% of their intracellular level for 75% of metabolites identified; while the GC-MS results suggest a slightly higher level with increases below 15% of their intracellular values. There were subtle differences between the four quenching solutions investigated but broadly, they all gave similar results. Total culture extraction of cells + broth using high cell density cultures typical of P. pastoris fermentations, was an efficient sampling technique for NMR analysis and provided a gold standard of intracellular metabolite levels; however, salts in the media affected the GC-MS analysis. Furthermore, there was no benefit in including an additional washing step in the quenching process, as the results were essentially identical to those obtained just by a single centrifugation step. We have identified the major high-concentration metabolites found in both the extra- and intracellular locations of P. pastoris cultures by NMR spectroscopy and GC-MS. This has provided us with a baseline metabolome for P. pastoris for future studies. The P. pastoris metabolome is significantly different from that of Saccharomyces cerevisiae, with the most notable difference being the production of high concentrations of arabitol by P. pastoris
    corecore