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Estimation of biomass, substrate, and specific growth rate (�) by two nonlinear observers (nonlinear observer-based
estimator—NLOBE, asymptotic observer with second-order dynamics tuning—AO-SODE) and a linear estimator
(recursive least squares with variable forgetting factor—RLS-VFF) is presented. Heterologous protein production in Pichia
pastoris PAOX1 (Mut+) and PFLD1-based systems is closely related to � and has been addressed due to its high relevance
in modern biotechnology and bioprocess engineering. � was estimated by online gas analyses or substrate measurements,
biomass, and substrate considering yield coefficients and mass balances. In simulation studies, NLOBE showed high
sensitivity to tuning and initialization variables. Validation experiments demonstrated AO-SODE performs better than the
RLS-VFF for moderate to rapid changes of � and model parameters being known. If low changes on � are presented, for
instance, in substrate regulation, RLS-VFF comes up as the best option, because of its reduced requirements. VVC 2011
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Introduction

To achieve high productivity, constant product quality,
and also to allow optimization and control of biotechnologi-
cal processes, real-time monitoring of the key fermentation
variables (biomass, substrate, and products) is of major aca-
demic and industrial relevance. Some reviews and specific
papers have addressed this topic, covering the wide range of
techniques that have been applied.1–4 Biomass is usually the
central variable of the mathematical models used to describe
microbial growth, where it is included as a state variable.
Several analytical methods have been adapted to monitor
cell density evolution during bioprocesses. However, a stand-
ard method for the online determination of biomass is not

currently available, as each available technique has its own
advantages and disadvantages.5,6

The methylotrophic yeast Pichia pastoris has been widely

reported as a suitable expression system for both basic

research and industrial application.7 In recent years, more

than 500 proteins have been expressed using this system.8

The strong and tightly regulated alcohol oxidase 1 promoter

(PAOX1) is the most widely used P. pastoris promoter for

recombinant expression, being induced by methanol.9,10 To

avoid methanol use, FLD1 promoter has been recently con-

sidered.11 The gene encodes a formaldehyde dehydrogenase

(FLD), a key enzyme required for the catabolism of metha-

nol and certain primary amines, such as methylamine used

as nitrogen source in methylotrophic yeast.12 With this pro-

moter, methanol is replaced by sorbitol as carbon source and

methylamine is used as sole nitrogen source and inducer of

protein production.

Correspondence concerning this article should be addressed to J. L. Montesinos
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The specific growth rate is a critical parameter in the
optimization of the heterologous protein production by P.
pastoris. There is an optimum growth rate for optimal prod-
uct formation, which is protein specific. Nevertheless,
besides being difficult to estimate online, this parameter
may vary during the fermentation process, since this is usu-
ally operated in batch and fed-batch modes. Moreover, there
are variations in substrates and operational conditions
applied within the different phases of the production
process.13

Online estimation of the specific growth rate(s) is usually
performed together with the determination of state variables
such as biomass, as the direct estimation of the specific
growth rate is not possible. The determination of these varia-
bles can be achieved by the development of estimation algo-
rithms or software sensors that require the existence of accu-
rate mathematical models of the process.14–19 Nonetheless,
the development of a suitable mathematical description and
its identification is difficult due to the complex interactions
exhibited by the microorganism, as well as to the operating
conditions and the state of the system.

To eliminate errors in estimation owing to inaccurate
models, it is possible to design adaptive algorithms that esti-
mate simultaneously the state and some parameters of the
process, considered as time-varying parameters.

This type of estimation can be achieved by an adaptive
extended Kalman filter,20,21 a recursive prediction error
method,22 an adaptive extended Luenberger observer,23 and
also by nonlinear observers,24 which are based on the accu-
rate knowledge of both model structure and parameters.
However, these observers present a problem of convergence
over a wide range of operational conditions. In addition,
guessing suitable initial values for different state variables
and parameters is rather critical to obtain precise estimates.

Adaptive observers somewhat easier to implement have
been designed.25 They estimate the state and the kinetics of
the process, considered as time-varying parameters, through
partial measurements of the state.

Observer-based estimators (OBE), whose fundamentals are
based on the nonlinear systems theory, have also been pro-
posed. In this approach, estimation of reaction rates is car-
ried out from the measurement of state variables.26,27 The
observer gain depends on measured state variables and also
constraints, which are added for the calibration of the gain
when the measurements used are relatively noisy. Further-
more, specific nonlinear observer-based estimators (NLOBEs)
have been developed.27 The main characteristic of those esti-
mators lie in the ease with which they may be implemented
and specifically calibrated. Their tuning is reduced to the
calibration of a simple tuning parameter.

Because of the complexity to tune OBE’s, some authors

studied their stability, dynamics of convergence, and suitable

values for tuning parameters.28 Recently, an asymptotic ob-

server (AO) for the estimation of state variables has been

designed and its performance compared with that of a classi-

cal observer (extended Kalman observer).29 The specific

growth rates were obtained using an estimator based on the

reformulation proposed by Bastin and Dochain.25,30 The AO
allows reconstructing the missing state variables, even if the

process is not exponentially observable and the kinetics is

unknown. Another advantage of this kind of observers is that

there are no tuning parameters. However, it is assumed that

the yield coefficients are known.

In addition, estimation of parameters by the recursive least
squares (RLS) method has been proposed, especially for the
specific growth rate and for the process state, thus, achieving
unbiased convergence and making possible the estimation of
changing process parameters.31,32 The main advantage of the
RLS methods is that, it does not require an accurate knowl-
edge of the system because a linear model that only depends
on the online measures is considered.

The modulating-function method has also been used for
the online identification of a microbial growth model.33

Nevertheless, due to large number of estimated coefficients
and parameters, the method is of difficult application to ex-
perimental conditions.

In this article, the estimation of biomass, substrate, and
specific growth rate are presented and applied to the heterol-
ogous production of Rhizopus oryzae lipase (ROL) by
P. pastoris in batch and fed-batch operational modes. Differ-
ent algorithms and procedures are studied and discussed,
always considering their applicability in terms of overall per-
formance, taking into account aspects, which are not often
considered from an experimental point of view.

Two of the estimators studied belong to the OBE class
(NLOBE and AO) and the other is based on the RLS method,
all three selected owing to their main advantages described
earlier. The aim of this work has been to compare the perform-
ance of different algorithms in P. pastoris bioprocesses.
Online exhaust gas analyses or substrate concentration meas-
urements were used to estimate the specific growth rate. With
the aim to simplify and to reduce instabilities and the number
of tuning parameters, biomass and substrate were straightfor-
wardly obtained by solving their corresponding mass balances.

This article is structured as follows: first, process descrip-
tion and estimation algorithms are presented. Second, simu-
lations for different alternatives are performed with the P.
pastoris PAOX1-based system, Mutþ phenotype, discussing
the most suitable ones using single and global performance
metrics. Finally, experimental validation for both P. pastoris
AOX Mutþ and FLD promoter is shown.

Process Description and Modeling

Strains

The wild type P. pastoris X-33 strain (Mutþ), containing
the vector pPICZaAROL, was used for heterologous expres-
sion of ROL under the control of the AOX1 promoter.34

P. pastoris X-33 containing the vector pPICZFLDaROL was
chosen for the expression of ROL controlled by the FLD1
promoter.34

Cultivation setup and operational conditions

Batch and fed-batch processes for the heterologous produc-
tion by P. pastoris were studied. Cells were cultured in a 5-L
Braun Biostat ED fermenter (Braun Biotech, Melsungen, Ger-
many). Fermentation conditions were: stirring rate 800 rpm;
temperature 30�C; pH controlled at 5.5 adding NH4OH 30%
(v/v) (batch) or 5 M KOH (fed-batch) for PAOX1 and 5 M
KOH for PFLD1 (batch and fed-batch); dissolved oxygen con-
trolled above 30% with an air flow rate of 1.5–20 L�min�1.

For the P. pastoris PAOX1-based systems, the cultivations
were carried out in two phases: a first batch growth phase on
glycerol (3.5 L volume with an initial glycerol concentration
of 40 g�L�1) followed by a second phase (fed-batch), where
first a mixture of glycerol plus methanol was fed to the culture
and after that, only methanol was used as the sole carbon
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source and production of the recombinant protein took place.34

Cultivations using P. pastoris PFLD1-based systems pro-
ceeded as follows: after a batch phase on glycerol, a pulse of
sorbitol and methylamine was added into the bioreactor. For
the induction phase, 300 g�L�1 of sorbitol, 30 g�L�1 of methyl-
amine chloride, and 7.5 mL of trace salts solution feeding me-
dium was used in an exponential feeding rate strategy.34

Glycerol, methanol, sorbitol, and methylamine were added
in the transition and production phases by an automatic micro-
burette MicroBU-2031 from Crison Instruments (Alella, Bar-
celona, Spain). Online substrate measurements are possible by
the implementation of automated manifolds as previously
reported.35,36 Off-gas analyses were performed by infrared and
paramagnetic detectors (Multor, Maihak, Hamburg, Ger-

many). Carbon dioxide production rate (CPR) and oxygen
uptake rate (OUR) were considered approximately equal to
carbon dioxide transfer rate (CTR) and oxygen transfer rate
(OTR), respectively, and, thus, obtained through mass balan-
ces of CO2 and O2 measured in the exhaust gas.

For the estimation procedure, the integration step and the
sampling time were fixed at 0.055 h (200 s). Online gas
measurements are a result of 20 averaged raw data points.
So, the filtered signal was used as the input for the estima-
tor.

A more detailed description of materials and methods can
be found elsewhere.34

The process model

For the oxidative assimilation of substrate (glycerol, meth-
anol, or sorbitol), equations for growth (1), protein produc-
tion (2), and maintenance (3) can be stated as

k1 Sþ k2 O2 �!
rX

X þ k3CO2 (1)

k4 Sþ k5 O2 �!
rP

Pþ k6CO2 (2)

Sþ k7 O2 �!
rm

k8CO2 (3)

where X, S, O2, CO2, and P represent biomass, substrate,
dissolved oxygen, dissolved carbon dioxide, and product,
respectively, (in the sequel, the same symbols are used to
represent component concentrations); rx, rp, and rm are the
reaction rates; ki are the yield (stoichiometric) coefficients.

The corresponding dynamic model can be represented as
follows

d
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where S0 is the substrate concentration in the feed, OTR
is the oxygen transfer rate from gas to liquid phase, and
CTR is the carbon dioxide transfer rate from liquid to gas
phase. D ¼ Fin/V is the dilution rate; Fin is the inlet volu-
metric flow rate, and V is the reactor volume (dV/dt ¼ Fin).

l, qm, and qp are biomass, product, and maintenance spe-
cific reaction rates, respectively.

Neglecting product formation in mass balance equations

and considering a global reaction scheme for growth and

maintenance, then, Eqs. 1–4 are transformed into Eqs. 5 and

6, where overall yield coefficients (k�i ¼ Y�c=x) are used.

k�1Sþ k�2 O2 �!
rX

X þ k�3CO2 (5)

d

dt
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Kinetic parameters and yield coefficients used for P. pastoris
process under PAOX1 (Mutþ) and PFLD1 for ROL production

were obtained from previous experiments in batch and fed-
batch cultivations.34,37,38 The yield and maintenance coeffi-
cients in the kinetic models were identified as previously
reported39,40 but adapted to fed-batch processes. Process
model parameters and coefficients are listed in Table 1.

Estimation Algorithms

The main objective of this work is to implement different
estimators, for the determination of state variables and spe-
cific growth rate using, if it is possible, single and easily
available measurements from a bioprocess system. Equally,
estimation algorithms can use either gas transfer rates or
substrate concentration as online measurements to first esti-
mate the specific growth rate without requiring a kinetic
model for growth, after that, state variables are calculated.
The estimators considered are two nonlinear observers
(NLOBE, AO) and another one based on the RLS method.

They are appropriate to systems, where component kinetic
rates (CKRs) can be considered related to biomass concen-
tration (X) and the specific growth rate (l) through a compo-
nent to biomass intrinsic yield (Yc/x) and a maintenance

Table 1. Parameters and Coefficients Used for P. pastoris
Process Under PAOX1 (Mut

1
) and PFLD1 for ROL

Production

Parameters and
Coefficients

PAOX1 (Mutþ) PFLD1

Batch Fed-batch Fed-batch

Substrate Glycerol Methanol Sorbitol
lmax (h�1) 0.260 0.059 0.030
Ks (g�L�1) 0.20 0.22 –
YCO2/X (molCO2

g�1
X ) 1.57 � 10�2 1.02 � 10�1 1.32 � 10�2

mCO2/X(molCO2
g�1
X h�1) 2.6 � 10�4 3.1 � 10�4 6.5 � 10�4

YO2/XmolO2
g�1
X ) 2.4 � 10�2 1.69 � 10�1 2.80 � 10�2

mO2/X(molO2
g�1
X h�1) 3.1 � 10�4 4.7 � 10�4 7.1 � 10�4

YS/X(gSg
�1
X ) 1.97 4.29 0.47

mS/X(gSg
�1
X h�1) 0.008 0.010 0.043

KLa (h�1) – 360 –
O2,sat(molO2

L�1) – 6.6 � 10�4 –
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coefficient (mc/x) described by the so-called Luedeking–Piret
relationship as follows

CKR ¼ Yc=xlX þ mc=xX � Y�
c=xlX (7)

So, the proposed methodology can be implemented, where
either the CPR, the OUR, or the substrate uptake rate (SUR)
can be determined online.

Nonlinear observer-based estimator

The first estimator tested is based on a general design for
a nonlinear observer27 represented by

dẑ

dt
¼ Fðs; ẑÞẑþ Gðu; s; ẑÞ � K�1ðs; ẑÞS�1

h CTðC ẑ� yÞ (8)

where ẑ is the estimated state and (u, s) and y are, respectively,
the input and the output of the system.

The used estimator considers that only z1 is available as
online measurement. It is correlated to biomass and the spe-
cific growth rate by the Luedeking–Piret type model men-
tioned earlier. For instance, considering CPR as the CKR,
Eqs. 9 and 10 are taken into account.

CPRðtÞ ¼ YCO2=XlðtÞXðtÞ þ mCO2=XXðtÞ (9)

z1 ¼ CPR (10)

Thus, the structure of the estimator is developed as follows41

dẑ1

dt
¼ ẑ2ẑ1 � Dẑ1 � 3dðẑ1 � z1Þ (11)

dẑ2

dt
¼ ẑ3 � 3

d2

z1

ðẑ1 � z1Þ (12)

dẑ3

dt
¼ � d3

z1

ðẑ1 � z1Þ (13)

Therefore, the l estimates can be obtained from Eq. 14

dl̂
dt

¼ ðẑ2 � l̂Þ l̂þ
mCO2=X

YCO2=X

� �
(14)

In this approach, a priori, only a single tuning parameter d is
needed to calibrate the estimation procedure. However,
suitable initial values for ẑ10, ẑ20, and ẑ30 have to be provided
to obtain satisfactory estimates.

Asymptotic observer with second-order dynamics tuning

The second estimator tested was an AO, which is used for
the estimation of state variables. The specific growth rate is
obtained using an estimator based on the reformulation pro-
posed by Bastin and Dochain.25,30

A general dynamic model for stirred tank bioreactors can
be described following mass balance equations written in a
matrix form as

dn
dt

¼ KHðnÞqðnÞ � Dnþ F� QðnÞ (15)

where n is the state vector (the set of n component
concentrations), K is a (n � m) matrix of known yield
coefficients, D is the dilution rate, F is the feed rate vector
with dim(F) ¼ n and Q is the gaseous outflow rate vector
which dim(Q) ¼ n. D, F, and Q are measured online. The

reaction rates are defined as u(n) ¼ H(n)q(n) to take
advantage of any possible knowledge of the kinetic model,
H(n) being a (m � r) matrix of known functions of the state
and q(n) a vector of r unknown functions of state. The reaction
rates can be estimated using the following the AO general
structure28

d n
^

dt
¼ KHðnÞq^ �D nþF� Q� Xðn� n

^
Þ (16)

d q
^

dt
¼ ½KHðnÞ�TCðn� n

^
Þ (17)

As previously reported,28 the stability considerations for the
related linear time varying perturbing system are developed
for AO with SODE. The first step is the selection of the r
equations from the full state space model to be used in the
estimator. For the specific growth rate estimation from the
global reaction defined in Eq. 5, it is necessary to introduce a
‘‘c’’ one-dimensional subspace related with the measured
variable (S, O2, or CO2), its feeding rate or component transfer
rate and its respective yield coefficient k�c .

Furthermore, the SODE algorithm usually uses a trans-
formed state variable, defined as

W ¼ K�1
C � nC ¼ 1

�k�C
C (18)

Combining Eqs. 16 and 17 with Eq. 18, the estimator is
obtained

dw
^

dt
¼ H q

^ �DwþK�1
C ðFC � QCÞ � XCðw� w

^
Þ (19)

d q
^

dt
¼ HTCCðw� w

^
Þ (20)

where the gain matrices (XC and CC) and their parameters are
defined as follows

CC ¼ diag �cif g; XC ¼ diagf � xig (21)

c ¼ 2 � f
s

� 1

X
^
d X

^

dt
;x ¼ 1

X
^
�s2

(22)

The estimation of biomass (X) is obtained from one
measurement C (substrate, oxygen, or carbon dioxide
concentration and their respective feeding or gaseous outflow
rates), according to the choice of a subspace c. Thus, the
system model from Eq. 6 is simplified, according with the
expression (23)

d

dt

X
C

� �
¼ 1

�k�C

� �
� l � X � D

X
C

� �
� 0

FC � QC

� �
(23)

Finally, biomass estimation is calculated by an auxiliary
variable (Z) that depends on C concentration, CKR measure-
ments, or the feeding rate, the overall yield coefficient and
biomass.25

Z
^
¼ X

^
þ 1

�k�C
C (24)
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d Z
^

dt
¼ �DZ

^
þ 1

�k�C
ðFC � QCÞ (25)

X
^
¼ Z

^
� 1

�k�C
C (26)

As previously described,28,29 when D, the dilution rate, is kept
close to zero for long period of time, the performance of the
AO is expected to be not satisfactory, as the rate of
convergence of the estimation fully depends on the values of
that variable. Therefore, the AO estimation procedure was not
applied in the batch phase and will be tested and validated only
in fed-batch operation.

Furthermore, although the kinetics of the process may be
considered unknown in these observers, the estimation of the
state variables requires an accurate knowledge about the
reaction scheme and stoichiometric coefficients. Conse-
quently, uncertainties on these model parameters, besides
noisy online measurements can generate a large bias in the
estimation procedure. For that reason, it is advisable, as
implemented by some authors,19,31 to use filtered data with
setting bounds on l (0.05lmax 	 l 	 lmax) to avoid unreal-
istic estimated values for the specific growth rate and Y�c=x in
Eq. 7.

Recursive least squares with variable forgetting factor

Estimators based on the RLS method consider a linear
model for the system within the time interval, where the
identification procedure is performed. Some authors have
shown the capacity of linear estimators to adequately esti-
mate the fermentation process without increasing the model
structure complexity.42,43 In this way, some approaches have
been developed to carry out the estimation from measure-
ment of oxygen31 or carbon dioxide in the exhaust gas of
the fermentor.32 It has been applied to a type of processes
where a sole substrate for growth and induction was added
in a noncontinuous mode. From Eq. 7, considering the CPR
and its time-derivative, Eq. 27 can be obtained.

dCPRðtÞ
dt

¼ dðlðtÞÞ
dt

XðtÞYCO2=X þ dXðtÞ
dt

YCO2=XlðtÞ

þ mCO2=X
dðXðtÞÞ

dt
ð27Þ

Then, considering the mass balance for biomass

dCPRðtÞ
dt

¼ dðlðtÞÞ
dt

XðtÞYCO2=X þ ðlðtÞ � DðtÞÞCPRðtÞ (28)

where l(t) is an unknown time-varying parameter, CPR(t) is
an indirect online measurement, and biomass X(t) cannot be
measured online.

Considering that l varies slowly within the sampling
interval, the term corresponding to the l first-time derivative
in Eq. 28 can be neglected. Discretization of the resulting
equation is conducted using a first-order central Euler
approximation

CPRðtkþ1Þ � CPRðtk�1Þ
2Dt

¼ ðlðtkÞ � DðtkÞÞCPRðtkÞ (29)

Thereupon, a time varying parameter ĥðtkÞ can be defined,
which will be recursively estimated with the RLS method.

CPRðtkþ1Þ ¼ ĥðtkÞCPRðtkÞ þ CPRðtk�1Þ (30)

From the previous estimate, the specific growth rate is obtained

lðtkÞ ¼
ĥðtkÞ
2Dt

þ DðtkÞ (31)

The proposed estimator uses the RLS method to estimate ĥðtkÞ
according to the set of equations presented below

h
^
ðtkÞ ¼ h

^
ðtk�1Þ þ KðtkÞðyðtkÞ � y

^
ðtkÞÞ (32)

y
^
ðtkÞ ¼ WTðtkÞ h

^
ðtk�1Þ (33)

KðtkÞ ¼ QðtkÞWðtkÞ (34)

QðtkÞ ¼
Pðtk�1Þ

kþWðtkÞTPðtk�1ÞWðtkÞ
(35)

PðtkÞ ¼
1

k
Pðtk�1Þ �

Pðtk�1ÞWðtkÞWðtkÞTPðtk�1Þ
kþWðtkÞTPðtk�1ÞWðtkÞ

8>>>:
9>>>; (36)

where P(t) is the covariance matrix, Q(t) is an auxiliary matrix,
y(t) is the CPR(t), and W the data vector.

In the heterologous protein production by P. pastoris,
sometimes there are important changes in the system charac-
teristics, such as substrates, concentrations, and operating
conditions, which may lead to less satisfactory estimation
results. The nonlinear dynamics of the specific growth rate
can be included in the estimator, considering a variable for-
getting factor (VFF) k(t) to conform the proposed estimator.
The time-varying forgetting factor prevents the constant
reduction in the value of the covariance matrix during the
dynamic process.32 The calculation of the VFF is based on
model error and both the data vector and covariance matrix.

kðtkÞ ¼ 1 � ðyðtkÞ � ŷðtkÞÞ2P
0

1 � WðtkÞTPðtk�1ÞWðtkÞ
kðtk�1Þ þWðtkÞTPðtk�1ÞWðtkÞ

8>>>:
9>>>; ð37Þ

R0 is the only tuning parameter and it needs to be determined
empirically, because it depends on process dynamics,
sampling time, and measurement noise.

Finally, it is necessary to impose biological restrictions in
the l estimation to be always positive and bounded (	lmax).

Performance indicators

Single metrics sum of squared error (SSE), root mean
squared error (RMSE), mean relative error (MRE), root mean
squared noise sensitivity (RMNS), integral time-weighted
absolute error (ITAE), and rise time (RT) were used for the
evaluation of the ‘‘goodness-of-estimation’’ in the simulation
phase. SSE, RMSE, and MRE were calculated for l, X, and S
estimations. RMNS, ITAE, and RT were obtained for l esti-
mates.

The SSE can be defined as follows

SSE ¼
Xn
i¼1

ðŷi � yiÞ2
(38)

where n is the number of data points, y
_

i is the ith estimated
value, yi is the corresponding ith actual value from process
model.
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The RMSE is defined by

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðŷi � yiÞ2

n

vuuut
(39)

that is, the average difference between estimated and actual
target variables (specific growth rate, biomass, and substrate),
where y

_

i and yi are the estimated and true value for the ith data
point; n is the total number of data points. Alternatively,

calculation of the MRE is also carried out to examine the
‘‘goodness-of-estimation.’’

MRE ¼ 1

n

Xn
i¼1

ðŷi � yiÞj j
yi

(40)

The sum of squared noise sensitivity accounts for the continuous
variation of l estimations and it is defined as follows

SSNS ¼
Xn�1

i¼1

ðl_iþ1 � l
_

iÞ2
(41)

Root mean squared noise sensitivity (RMNS) is then
calculated as the average differences between consecutive
estimated specific growth rate values l

_

iþ1 and l
_

i from i ¼ 1 to
n�1 data points.

RMNS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn�1

i¼1

ðl_iþ1 � l
_

iÞ2

n� 1

vuuut
(42)

In addition, overall performance indicators: root mean overall
performance index (RMOPI) and combined mean relative error
(CMRE), which consider some former single metrics, were used.

RMOPI ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wl RMSE2

l þ wx RMSE2
x þ ws RMSE2

s þ wnsRMNS2
q

ð43Þ

wk is the weighting factors of the single metrics, selected
to bring the terms within the same order of magnitude but
with lower contribution for errors on S. wl ¼ 0.40 ��105, wx

¼ 0.19, ws ¼ 0.01, wns ¼ 0.40 ��105.

CMRE ¼ wclMREl þ wcxMREx (44)

wk is the weighting factors of the MRE for l and X, wcl ¼
0.50, wcx ¼ 0.50.

ITAE weight errors that exist after long time are much
more heavy than those at the start of the estimation. Its eval-
uation is of interest in batch and fed-batch processes, where
the need to have rapidly reliable estimates is a crucial
issue,15 because it can be taken as an indicator for speed of
convergence.

ITAE ¼
Z

t e dt (45)

with e is the absolute error between l estimations and actual
values jðl_ � lÞj, t is the time of the process. ITAE is
computed over the simulated period using the trapezium rule
to approximate the integral.

Moreover, RT is defined at the time taken for the estima-
tor response to first reach 95% of the change on specific
growth rate. The lower RT is the faster response the estima-
tion system has.

Another point that has to be noted is the different effect,
which tuning parameters and estimator initialization values
can be produced on the estimator’s global performance. So,
sensitivity of RMOPI and CMRE functions were examined
through variations of their nominal values.

Simulation Results

The simulated system accounts for the cultivation of the

Mutþ phenotype of P. pastoris under pAOX for the ROL

production. To study the performance of the different esti-

mators, a process model was developed considering mass

balances (X, S, O2, and CO2) and CKR expression for car-

bon dioxide, oxygen, and substrate (CPR, OUR, and SUR)

as stated in Eqs. 6 and 7.
NLOBE, two sorts of AO-SODE and RLS-VFF estimation

algorithms were studied. First, NLOBE and RLS-VFF estima-
tion were carried out from CPR measures. Second, the esti-
mation was made using substrate concentration (methanol)
for the first of the AO-SODE’s. Third, the AO-SODE estima-
tion performance, for the second AO-SODE estimator, was
obtained from oxygen balance, in which the main variables
are the dissolved oxygen concentration and the OTR. Thus,
it is necessary to include growth kinetics (l(S)) and also the
OTR model for the AO-SODE simulations. The specific
growth rate is approximated by the ‘‘Monod’’ equation. The
OTR is computed as OTR ¼ KLa (O2,sat � O2), where KLa
is the global mass-transfer coefficient and O2,sat is the satura-
tion concentration of dissolved oxygen.44

For the simulation, and after a batch phase on glycerol, an
induction phase in fed-batch mode was started by an expo-
nential addition of methanol as substrate

FinðtÞ ¼
lset½Xð0Þ Vð0Þ�

Y�
X=S S0

exp½lset ½t� tð0Þ�� (46)

Thus, the substrate feeding rate depends on the specific growth
rate set-point, lset ¼ 0.02 h�1; the initial volume, V(0); the

Table 2. Simulation Conditions in Batch and Fed-batch P.
pastoris Process Under PAOX1 (Mut

1
) for ROL Production

Process Variables Units Batch Fed-batch

Substrate (S) [g�L�1] Glycerol Methanol
Initial concentration (S(0)) [g�L�1] 40 0
Inlet concentration (S0) [g�L�1] – 790
Process time (t) [h] 14.7 60.3
Initial volume (V(0)) [L] 3.5 3.5
Initial Biomass (X(0)) [g�L�1] 0.50 20
Specific growth rate

set-point (lset)
[h�1] – 0.02

Initial specific growth rate (l(0)) [h�1] 0.00 0.00
Sampling time (T) [h] 0.055 0.055
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initial biomass concentration, X(0); the substrate concentration
in the feed, S0; and the biomass to substrate overall yield, Y�X=S
¼ Y��1

S=X .
The CTR (CPR) and OTR (OUR) simulated data were

corrupted by an additive Gaussian noise of mean zero and
relative standard deviation of 2%, considered as a typical
value after data filtering. Noise applied to substrate measure-
ments was 6%.

Initial conditions for the simulations are given in Table 2.
Initial estimates are taken as same as the system model and
are representative of the real process: (X

_

ð0Þ, l̂ð0Þ, S
_

ð0Þ ¼ X(0),
l(0), S(0)).

In general, tuning parameters and some initialization vari-
ables were determined empirically considering the conver-
gence speed and noise sensitivity,19 which are tightly related
to the deviation between estimations and real data. Weighted
average of mean square deviations can be used as part of the
objective function.

In this sense, the RMOPI indicator described before was
used as cost criterion to be minimized. Depending on the
sensitivity of this RMOPI on parameters and initialization
values, nominal values were rounded to one or two signifi-
cant digits. In some cases, restrictions related to stability and
convergence properties were applied to get preliminary val-
ues. Conversely, sometimes these values can be obtained
straightforwardly attending to the particular structure of the
estimator. Details related to each estimator are specified sep-
arately.

Tuning parameters and initialization variables

In the NLOBE estimator, initial guesses for d, ẑ10, ẑ20, and
ẑ30 were selected according to the structure of the estimator: d
� 1/T; ẑ10 � CPRmax; ẑ20 \ ((lmax/T)/l) for the maximal
value of dl/dt; ẑ30 ¼ 10� ẑ20. Initial guesses and nominal val-
ues, obtained by RMOPI minimization, are listed in Table 3.
Reinitialization of the estimator parameters is needed when
the operational mode is switched from batch to fed-batch,
when protein production is induced. Because of different sys-
tem dynamics during batch and fed-batch culture, the estima-
tor is not able to overcome the change on feeding rate (D [
0), if a similar estimation quality is required.

Two parameters must be tuned in the AO-SODE algo-
rithm: f is the damping coefficient and s is the time constant
of a second-order dynamic response of estimated to the true
values. The damping coefficient, f, was preliminary fixed at
1 according to a common engineering rule of thumb.25 Tun-
ing rules for discrete time implementation28 were applied to
determine preliminary value of s according to 0 \ T \ 2fs,
thus, setting s to 0.05. Nominal values were finally obtained

by minimization of the cost criterion function RMOPI and
they are shown in Table 3 for the two AO-SODE methods
tested.

The tuning of the RLS-VFF estimator starts with the assig-
nation of first trials to the tuning parameter R0 and the initial
value y0.

R0 has to be set to manage slow or moderate variations of
l by the VFF. So, R0 initial settings were fixed to be the
same order of magnitude that square deviations in Eq. 37.
For the initial value y0, according to the inner structure of
the RLS estimator, a preliminary value y0 � 2Tl can be
assigned.

Initial and nominal values, obtained by RMOPI minimiza-
tion, for R0 and y0 can be found in Table 3. In contrast with
NLOBE estimator, retuning of the estimator parameters was
not necessary, when the operational mode was changed. The
RLS-VFF method was able to cope up with the different dy-
namics of the operational modes, batch and fed-batch process.

Initial value for the covariance matrix P0 was set at 1,
because simulations with high and low P0 showed that it
converges quickly, and weakly influence, to the estimation.

Estimators performance

The estimation results for NLOBE, AO-SODE, and RLS-
VFF methods are illustrated in Figure 1, Figure 2, and Fig-
ure 3, respectively. The performance of the estimators at
their nominal values for the tuning parameters and initializa-
tion variables are presented in Table 4. The goodness of esti-
mation for NLOBE and RLS-VFF methods is nearly as satis-
factory as for AO-SODE, which shows the higher values for
the single metrics (SSE, RMSE, and MRE) for l values.
However, all l and X estimations were conducted properly
with deviations lower than 1% (MRE) and with similar val-
ues of the overall performance indexes (RMOPI and
CMRE). At this point, it is remarkable to emphasize that
substrate estimations have a large MRE [ 1, due to substrate
low values, which is confirmed by its RMSE. Terms in sub-
strate balance corresponding to inlet and uptake rate are
quite similar and so, computed substrate concentration is
very sensitive to the estimation of l.

The speed of convergence, indirectly measured by ITAE
and RT, is also satisfactory for all estimators. Fast enough
response to the change on the substrate feeding strategy is
considered for RT appeared to be shorter than 1 h, being the
longest time for both AO-SODE estimators. Nonetheless,
ITAE values are slightly better for AO-SODE estimators. In
addition, all estimators showed that dynamics of conver-
gence are time varying and becoming faster, when the bio-
process approaches the end.

Table 3. Initial Guesses, Nominal Values, and Acceptable Ranges for Tuning Parameters and Initialization Estimator
Variables

Algorithm Parameters and Estimator Variables Units Initial Guesses Nominal Value Acceptable Range

NLOBE d [h�1] 20 51 �1
ẑ10 [mol�L�1�h�1] 0.5 4.0 �0.3
ẑ20 [h�1] 5.0 2.0 �0.1
ẑ30 [h�2] 50 100 �3

AO-SODE (Methanol) f [�] 1.0 0.70 �0.40
s [h�1] 0.05 0.20 �0.11

AO-SODE f [�] 1.0 0.70 �0.40
s [h�1] 0.05 0.20 �0.11

RLS-VFF R0 [h�2] 5.0 � 10�8 1.0 � 10�8 �0.9 � 10�8

y0 [�] 2.0 � 10�3 1.5 � 10�2 �0.5 � 10�2
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Finally, the noise sensitivity of the estimators was quanti-
fied by the RMNS index and displayed in Table 4. The
NLOBE estimator is almost as sensitive as others but it pro-
vides the higher time-varying dynamics. However, NLOBE
estimator gives the lowest estimation error RMSE. In con-
trast, AO-SODE methods present the highest RMSE values
with low RMNS. These facts are a consequence of the tun-
ing procedure applied to obtain nominal values, which are a
compromise between estimation error and noise sensitivity
evaluated through the RMOPI.

Sensitivity analysis

To make a thorough sensitivity analysis, first, NLOBE’s
simulations were carried out to study the effect of the tuning
parameter d and the initial value of some variables on the
estimation results. The effect of d, ẑ10,ẑ20, and ẑ30 on the
estimation of the specific growth rate from CPR measure-
ments is visualized in Figure 1. Regarding the effects of the
tuning parameter, high values of d provoke a typical over-
shoot at the start-up of the fed-batch phase. Moreover, a
high variation on overall performance is observed for low to
moderate d variations as displayed in Figures 1 and 4. In
spite of having only one tuning parameter, the extremely
sensitivity of the RMOPI to d is the main drawback of the
NLOBE. Equally, the results obtained for the initialization

variables were presented in Figures 1 and 4. Results pre-

sented in Figure 4 shows more clearly the largest sensitive

response. RMOPI is less sensitive to ẑ10 and ẑ20 than ẑ30, but

the last one is no harder sensitive than d. These results were

somewhat expected because z3 was defined as the z2’s time

derivative, which is supposed to be unknown and bounded.

The dynamics of z3 introduces some type of integral action,

which eliminates any static error when estimating z2.41

Second, the effect of AO-SODE tuning parameters f and s
on the dynamics of convergence can be assessed from the

plots in Figure 2. Figures 2a,b illustrate that specific growth

rate values are in agreement with typical second-order

dynamic responses. It is shown that decreasing s, the

response becomes faster and decreasing f produces more os-

cillatory responses. With regard to stability conditions, the

range allowed for the integration step T, set equal to the

sampling time, is bounded and conditioned by the choice of

f and s. These facts allow searching and selecting the tuning

parameters with intuitive basis, simplifying the search for

optimum.28

As it is shown in Figure 2, X estimations are quite sensi-
tive to deviations of the specific growth rate. When the esti-
mation started, long time was taken to reach the specific
growth rate for s values rather far from nominal values. This
initial X offset remained quite stable through the bioprocess,
whenever l estimation was well-fitted to the simulated sys-
tem response. Finally, to calculate the sensitivity of the tun-
ing parameters f and s, the RMOPI combined metrics was
explored. In contrast to Figure 2, it can be observed in Fig-
ure 4 that the effect of f is not different than those of s.
This fact can be explained due to the tuning parameter s in
Figure 2 was tested in a wider range than f, with the aim to
easily appreciate the overall estimation behavior.

Third, in the second case of AO-SODE, Figures 2e–j,
based on dissolved O2 and OUR data, the dynamics of con-
vergence for tuning parameters f and s were very similar to
those illustrated for the methanol case. No significant differ-
ences on X and l estimations were shown for all AO-SODE
estimators tested (Methanol, O2 and OUR, CO2 and CPR).
Nevertheless, AO-SODE estimators using gas measures also
allowed computing substrate concentration. This estimation
was performed by applying the substrate balance, using X
and l estimation, as indicated in Eqs. 18–26. Thereupon, it
can be observed in Figures 2i,j, substrate estimations are
more sensitive to deviations of the specific growth rate and

Figure 1. NLOBE estimator.

Effect of tuning and initial parameters on l estimation: (a) d, (b) ẑ10, (c) ẑ20, and (d) ẑ30. Solid line stands for model data and dot-

ted lines stands for estimation from CPR simulated data.
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biomass concentration than in their f and s nominal values,
as commented in the previous section. In addition, for the
cases where the specific growth rate is estimated using gas

measures (O2 or CO2 and OTR or CTR), the effect of the

dissolved concentration in the AO-SODE algorithm is negli-

gible compared with the gaseous transfer rates.
Finally, the study of RLS-VFF was focused on the effect

of the initial value y0 and the tuning parameter R0. Their
effect on l, X, and S estimation, using CPR measurements,
is presented in Figures 3 and 4. As it can be observed, the

performance of the estimation algorithm is more sensitive to

y0 values than for R0. In Figures 3c,d, the tuning parameter

R0 for biomass calculations seems to have a stronger effect

than the initial value of y0 due to the wide range explored

for R0. From Figure 3, if a low R0 value is introduced in the

estimation of l, it gives robustness to the overall procedure,

providing a very satisfactory state estimation. These results

clearly highlight the practical implementation of the pro-

posed algorithm. With suboptimal y0 values, a good conver-

gence speed of the estimator is not attained, as can be seen

in Figure 3 at the beginning of the fed-batch process, and,

consequently, large deviations of substrate estimations are

produced.

Selection of the estimator

Estimations showed similar good agreement with their

actual values for the specific growth rate, biomass, and sub-

strate concentrations for all estimators tested. This goodness

of estimation has been evaluated by overall performance

indexes RMOPI and CMRE presented in Table 4. However,

significant differences were observed concerning the range

of application for tuning parameters and initialization varia-

bles, speed of convergence, number of tuning parameters

needed and requirements for system model.
The acceptable ranges of tuning parameters were shown in

Table 3. These ranges were calculated according to the sen-
sitivity analysis on CMRE indicator to obtain variations
always lower than 5%, except in the cases of f, s, and R0

with 1.5% maximal CMRE variation. This is justified due to
stability criteria used for AO-SODE, which imposes setting
bounds on tuning parameters (f, s) and the far low sensitiv-
ity of CMRE to f, s, and R0.

From results given in Table 3 and Figure 4, it can be con-

cluded that tuning parameters and initial values for the

NLOBE have stronger influence on the overall estimator per-

formance than the AO and RLS methods. Furthermore, there is

no much difference on influence between AO and RLS meth-

ods, although the RLS showed more dependence on the y0 ini-

tial value.

Speed of convergence indicated in Table 4 by the RT was

similar to all three estimators studied (\1 h), but presenting

a rather sluggish initial response for the AO-SODE. It is not

clearly reflected in the ITAE value because it weights initial

errors less heavily than those which persist on time.
The number of critical initialization variables is greater in

the NLOBE estimator, with some of them having high influ-
ence on the RMOPI (Figure 4). It has to be pointed out the
effect of d, ẑ10, ẑ20, and ẑ30, which a variation of 2, 8, 5, and
3%, respectively, provides an 5% increase on CMRE as can
be straightforwardly obtained from Table 3.

Observer-based estimators (NLOBE, AO) are not recom-

mended in a preliminary choice with poorly known kinetic

parameters because of their fundamentals relies on an accurate

knowledge of yields and maintenance equations. However,

Figure 2. AO-SODE estimator.

Effect of tuning parameters on l estimation from substrate measurements: (a) f, (b) s; and on reconstructed biomass: (c) f, (d) s.
Effect of tuning parameters on l estimation from pO2 and OTR: (e) f, (f) s; on reconstructed biomass: (g) f, (h) s; and on recon-

structed substrate: (i) f, (j) s. Solid line stands for model data and dotted lines stands for estimation from simulated data.
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their stability, dynamics of convergence, and parameter tuning

can be improved using a variable gain-structure-like AO-
SODE estimators. With this kind of variable gain observers,

moderate to rapid changes in the specific growth rate can be

anticipated properly. They allow higher identification fre-

quency and reveal good adaptive behavior to process changes

with high speed of convergence. As its main disadvantage, its

application in the batch mode is not recommended due to

expected poor performance and weak stability.
Making use of RLS-VFF methods allows decreasing the

knowledge requirements about the system, not only in quan-

titative terms but also in a qualitative or schematic system
description. Among other advantages, the use of linear equa-
tions instead of differential equations can be pointed out.
Finally, a reduced number of tuning parameters gives an
added value to this kind of estimators. The adaptive compu-
tation of the forgetting factor in the RLS method makes pos-
sible that moderate changes in the system, such as in sub-

strates, state variable concentrations, and operational condi-
tions, can be processed to conduct a satisfactory tracking of

the specific growth rate. This approach allows that, when the

operational mode is switched from batch to fed-batch, reini-

tialization of estimator variables is not necessary.

On the whole, taking into account, simulation studies

RLS-VFF methods and AO-SODE estimators are the most

promising ones. The main advantage for both is their tuning

simplicity compared to the NLOBE tested. In addition, RLS-
VFF does not require kinetic coefficients and AO-SODE
presents good stability within a wide range of tuning param-

eter values. Thereupon, in the next section, experimental val-

idation is carried out for both estimators.

Experimental Validation

The RLS-VFF method was applied to experimental data
from both P. pastoris PAOX1- and PFLD1-based systems.
Experimental data for the specific growth rate were obtained
from off-line biomass measurements using suitable smooth-
ing spline functions.37

First, the cultivation of the Mutþ phenotype of P. pastoris
under PAOX1 for the ROL production was studied. After

batch cultivation on glycerol and transition phase, an induc-

tion phase in fed-batch mode was started by a preprog-

rammed exponential feeding of methanol.

As it can be seen in Figure 5, l estimation and computed
biomass estimation were carried out properly to the system

Figure 2. Continued
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response and a rapid convergence was obtained for the l
estimation during the batch phase. When the batch phase
was completed, as found at 20 h, unbiased l and X estima-
tions to substrate changes were also shown. This fast adjust-
ment is again confirmed, as in previous section, during the
fed-batch mode. First, growth slowdown is observed, the
growth was almost practically stopped mainly due to the reg-
ulation of the microorganism to the new conditions. After
that, an increase in the growth rate is obtained. The estima-
tor performance allows adapting to growth variations and,
then, estimating the computed biomass successfully.

With the aim to validate the estimation algorithms in other
systems with different promoters and process dynamics, ex-
perimental data from P. pastoris PFLD1-based system was
processed. In PFLD1 system, a comparable experimental
strategy than for the PAOX1 system was used, but now using
sorbitol and methylamine instead of methanol and ammo-
nium hydroxide as carbon and nitrogen sources, respectively.
Variable substrate feeding was performed, with a nonauto-
matic substrate control procedure, attempting to keep the
substrate concentration at 8 g�L�1.

With the goal to make a comparison among estimation
methods, single metrics: RMSE and MRE were used to eval-
uate the goodness-of-estimation for the state variables, such
as biomass and substrate, when they can be measured
directly but they are not used as online measurement. A
summary is presented in Table 5.

Results for the RLS-VFF algorithm are shown in Figure 6
and Table 5. Once the specific growth rate was properly esti-
mated, biomass and substrate can be calculated through the
use of their corresponding mass balances. Biomass and sub-
strate were estimated successfully with an estimation error
	5%, although slight deviations were detected for substrate.
From Figure 6, it was observed that the estimated substrate
concentration and specific consumption rates are in good
agreement with those obtained through substrate balancing
with off-line specific growth rate data.

The estimation procedure showed suitable capacity of
adjustment during the bioprocess, especially when switching
from batch phase to fed-batch mode with different substrate
types and changing concentration. Interestingly, the quality
of the estimation was nonpermanently affected by

Figure 3. RLS-VFF estimator.

Effect of tuning parameters on l estimation: (a) R0, (b) y0; on reconstructed biomass: (c) R0, (d) y0; and on reconstructed sub-

strate: (e) R0, (f) y0. Solid line stands for model data and dotted lines stands for estimation from CPR simulated data.
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operational problems caused by aeration and foaming shift-
up at 68 h.

Furthermore, the performance of the AO-SODE observer
was also tested in the P. pastoris PFLD1-based system for vali-
dation and, finally, compared with the RLS-VFF estimator.

Results from specific growth rate and biomass estimation
using substrate or oxygen measurements are displayed in
Figures 7a–c. Computed biomass estimation was achieved
with an estimation error 	5%, although performance was
better when gaseous measurements were used instead of sub-
strate measurements as presented in Table 5. The low accu-
racy of the values of the overall yield coefficients used could
explain the differences in biomass estimations.29

As previously described, apart from X and l estimations
using gaseous measurements, substrate estimation was per-
formed from the substrate balance and SUR estimation. Sim-
ilarly, the substrate concentration was reconstructed using
off-line X and l data with the aim of comparing the accu-
racy of computed estimates. Although slight deviations in
the computed substrate were detected, reconstructed substrate
has a similar precision than the estimated one.

Notably, when the AO-SODE method was applied to O2

and OUR data or CO2 and CPR measurements, similar
results were observed. However, AO-SODE (O2, OUR) was
evaluated achieving the least deviation error (RMSE and
MRE) of state variables, as detailed in Table 5.

Finally, all estimation methods could follow substrate evo-
lution with less deviation error than that obtained in simula-
tion results, as presented in Tables 4 and 5.

Conclusions

Simulation results obtained for the nonlinear OBE’s

showed adequate global performance, but an optimal tuning

cannot be easily derived. Despite of their stability, dynamics

of convergence and parameter tuning could be improved

using a variable gain-structure, it is necessary to know with

high accuracy the yield and maintenance coefficients of the

bioprocess model. However, these values can be different,

depending on the carbon source and environmental condi-

tions. So, when complex nutrients are consumed in a signifi-

cant quantity, these parameters may also vary during the fer-

mentation process. Thus, errors on model coefficients may

produce inaccurate results in estimation of l and, conse-

quently, the error is propagated and amplified on X and S
estimation. Hence, these observers are not recommended for

processes with poorly known parameters in a preliminary

selection. In addition, NLOBE was established as the most

tuning sensitive, being rather dependent on their tuning pa-

rameters and initial values.
The use of RLS methods to identify the specific growth

rate allows diminishing requirements about the knowledge of
the system, besides providing other important advantages.
Among them are: low mathematical complexity because it is
only necessary to solve linear equations instead of differen-
tial equations like in OBE’s, increase of identification fre-
quency, high adaptation capacity to process changes, short

Figure 4. Absolute variation in the RMOPI of the esti-
mation procedure on variation in the estima-
tor parameters by 20%.

Table 4. Single and Combined Performance Metrics for NLOBE, AO-SODE, and RLS-VFF Estimators
l [h21]; X [g�L21]; S [g�L21]

Algorithm Variable SSE RMSE MRE RMNS RT ITAE RMOPI CMRE

NLOBE l 1.2 � 10�4 3.4 � 10�4 5.0 � 10�3 6.5 � 10�4 0.27 0.11 0.17 0.004
X 24 0.15 3.1 � 10�3

S 370 0.59 [1
AO-SODE (Methanol) l 1.3 � 10�3 1.1 � 10�3 7.2 � 10�3 2.2 � 10�4 0.50 0.06 0.24 0.006

X 46 0.20 5.4 � 10�3

S – – –
AO-SODE l 1.8 � 10�3 1.3 � 10�3 1.0 � 10�2 1.8 � 10�4 0.72 0.12 0.27 0.006

X 1.6 3.8 � 10�2 1.2 � 10�3

S 510 0.68 [1
RLS-VFF l 2.3 � 10�4 4.6 � 10�4 9.1 � 10�3 3.5 � 10�5 0.10 0.18 0.11 0.006

X 7.3 0.08 2.3 � 10�3

S 170 0.40 [1

Figure 5. Specific growth rate and biomass estimation
using CPR experimental data for the P. pasto-
ris PAOX1-based system (Mut1) obtained
with the RLS-VFF method.

Symbols correspond to real values and lines stand for

estimation.
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response times, and reduced number of both tuning and initiali-
zation variables. The implementation of the RLS-VFF method
allows that the whole estimation system is fairly dependent on
the tuning parameters applied. Furthermore, the VFF allows
that a minimal excitation of the estimator is maintained through
the bioprocess preventing a constant reduction of the covariance
matrix. In the cases studied, this is a great advantage, since
there is a continuous addition of substrate in a relatively long
process with a low specific growth rate. Moreover, it includes
phases where the carbon source has to be replaced and also
operational perturbations often appear. This method was able to
make a suitable identification of the specific growth rate both in
batch and fed-batch processes, whenever slow variation of the
specific growth rate is presented.

AOs as well as RLS methods can be applied to correctly
estimate the specific growth rate. Concretely, AO-SODE per-
formed better than the RLS-VFF, when moderate to rapid
changes of the specific growth rate appeared because model
parameters were well-known. Conversely, when slow changes

on the specific growth rate were presented in the bioprocess,
for instance, in a substrate control operation, RLS-VFF comes
up as the best option, because of its reduced requirements. In
addition, biomass and substrate were also satisfactorily pre-
dicted, solving their corresponding mass balances once the
specific growth rate had been estimated.

To conclude the method, which was resulted especially ef-
ficient for the proposed system was the AO-SODE (O2,
OUR) and was evaluated achieving the least deviation error.
The overall methodology presented in this article can be
used to improve the global performance of the process in
terms of productivity, yields, and reproducibility in the heter-
ologous protein production by P. pastoris and for real-time
monitoring of the key fermentation variables. This will rep-
resent a significant contribution through a more efficient pro-
cess of heterologous protein production by P. pastoris.

Figure 6. RLS-VFF validation from CPR experimental
data for the P. pastoris PFLD1-based system.

(a) Biomass and substrate estimation; (b) specific rates esti-

mation. Symbols correspond to process values, solid lines

stand for estimation, and dashed lines obtained through

substrate balance with off-line specific growth rate data.

Table 5. Errors of the Estimation Algorithms for Estimated
State Variables in the P. pastoris PFLD1-Based System

During the Fed-batch Mode

Algorithm Estimated Variable RMSE MRE

RLS-VFF (CPR) Biomass [g�L�1] 1.2 0.036
Substrate [g�L�1] 1.3 0.16

AO-SODE (CO2, CPR) Biomass [g�L�1] 1.0 0.026
Substrate [g�L�1] 1.5 0.19

AO-SODE (O2, OUR) Biomass [g�L�1] 0.9 0.025
Substrate [g�L�1] 1.4 0.18

AO-SODE (Sorbitol) Biomass [g�L�1] 2.0 0.051

Figure 7. AO-SODE validation from experimental data
for the P. pastoris PFLD1-based system.

(a) Specific growth rate and biomass estimation using S
measurements; (b) specific growth rate estimation and

specific consumption rate using O2 and OTR; (c) biomass

estimation and reconstructed substrate using O2 and

OTR. Symbols correspond to real values, solid lines stand

for estimation and dashed lines were obtained through

substrate balance with off-line specific growth rate data.
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In a future approach, the chosen estimation procedure will
allow the implementation of a ‘‘true’’ specific growth rate con-
troller. This would represent an improvement regarding those
based either on preprogrammed exponential feeding or an indi-
rect l-control, keeping constant the substrate concentration.
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of sorbitol in Pichia pastoris cultivation applying sequential injec-
tion analysis. Biochem Eng J. 2008;42:77–83.

37. Cos O, Serrano A, Montesinos JL, Ferrer P, Cregg JM, Valero F.
Combined effect of the methanol utilization (Mut) phenotype and
gene dosage on recombinant protein production in Pichia pastoris
fed-batch cultures. J Biotechnol. 2005;116:321–335.

38. Cos O. Monitoritzacio i control del procés de producció de proteı̈nes
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