10 research outputs found

    Spatial statistical modelling of capillary non-perfusion in the retina

    Get PDF
    Manual grading of lesions in retinal images is relevant to clinical management and clinical trials, but it is time-consuming and expensive. Furthermore, it collects only limited information - such as lesion size or frequency. The spatial distribution of lesions is ignored, even though it may contribute to the overall clinical assessment of disease severity, and correspond to microvascular and physiological topography. Capillary non-perfusion (CNP) lesions are central to the pathogenesis of major causes of vision loss. Here we propose a novel method to analyse CNP using spatial statistical modelling. This quantifies the percentage of CNP-pixels in each of 48 sectors and then characterises the spatial distribution with goniometric functions. We applied our spatial approach to a set of images from patients with malarial retinopathy, and found it compares favourably with the raw percentage of CNP-pixels and also with manual grading. Furthermore, we were able to quantify a biological characteristic of macular CNP in malaria that had previously only been described subjectively: clustering at the temporal raphe. Microvascular location is likely to be biologically relevant to many diseases, and so our spatial approach may be applicable to a diverse range of pathological features in the retina and other organs

    How Does Blood-Retinal Barrier Breakdown Relate to Death and Disability in Pediatric Cerebral Malaria?

    Get PDF
    BACKGROUND: In cerebral malaria, the retina can be used to understand disease pathogenesis. The mechanisms linking sequestration, brain swelling and death remain poorly understood. We hypothesized that retinal vascular leakage would be associated with brain swelling. METHODS: We used retinal angiography to study blood-retinal barrier integrity. We analyzed retinal leakage, histopathology, brain MRI, and associations with death and neurological disability in prospective cohorts of Malawian children with cerebral malaria. RESULTS: Three types of retinal leakage were seen: Large focal leak (LFL), punctate leak (PL) and vessel leak. LFL and PL were associated with death (OR 13.20, 95%CI 5.21-33.78 and 8.58, 2.56-29.08 respectively), and brain swelling (p<0.05). Vessel leak and macular non-perfusion were associated with neurological disability (3.71, 1.26-11.02 and 9.06, 1.79-45.90). LFL was observed as an evolving retinal hemorrhage. A core of fibrinogen and monocytes was found in 39 (93%) white-centered hemorrhages. CONCLUSIONS: Blood-retina barrier breakdown occurs in three patterns in cerebral malaria. Associations between LFL, brain swelling, and death suggest that the rapid accumulation of cerebral hemorrhages, with accompanying fluid egress, may cause fatal brain swelling. Vessel leak from barrier dysfunction, and non-perfusion were not associated with severe brain swelling, but with neurological deficits, suggesting hypoxic injury in survivors

    Accurate, fast, data efficient and interpretable glaucoma diagnosis with automated spatial analysis of the whole cup to disc profile

    Get PDF
    Background: Glaucoma is the leading cause of irreversible blindness worldwide. It is a heterogeneous group of conditions with a common optic neuropathy and associated loss of peripheral vision. Both over and under-diagnosis carry high costs in terms of healthcare spending and preventable blindness. The characteristic clinical feature of glaucoma is asymmetrical optic nerve rim narrowing, which is difficult for humans to quantify reliably. Strategies to improve and automate optic disc assessment are therefore needed to prevent sight loss. Methods: We developed a novel glaucoma detection algorithm that segments and analyses colour photographs to quantify optic nerve rim consistency around the whole disc at 15-degree intervals. This provides a profile of the cup/disc ratio, in contrast to the vertical cup/disc ratio in common use. We introduce a spatial probabilistic model, to account for the optic nerve shape, we then use this model to derive a disc deformation index and a decision rule for glaucoma. We tested our algorithm on two separate image datasets (ORIGA and RIM-ONE). Results: The spatial algorithm accurately distinguished glaucomatous and healthy discs on internal and external validation (AUROC 99.6% and 91.0% respectively). It achieves this using a dataset 100-times smaller than that required for deep learning algorithms, is flexible to the type of cup and disc segmentation (automated or semi-automated), utilises images with missing data, and is correlated with the disc size (p = 0.02) and the rim-to-disc at the narrowest rim (p<0.001, in external validation). Discussion: The spatial probabilistic algorithm is highly accurate, highly data efficient and it extends to any imaging hardware in which the boundaries of cup and disc can be segmented, thus making the algorithm particularly applicable to research into disease mechanisms, and also glaucoma screening in low resource settings

    Grading fluorescein angiograms in malarial retinopathy

    Get PDF
    This work was funded by The Wellcome Trust (IJCM, SPH, NAVB, MEM, DP, SoL: Grant No. 092668/Z/10/Z; Core Grant No. 084679/Z/08/Z).Background: Malarial retinopathy is an important finding in Plasmodium falciparum cerebral malaria, since it strengthens diagnostic accuracy, predicts clinical outcome and appears to parallel cerebral disease processes. Several angiographic features of malarial retinopathy have been described, but observations in different populations can only be reliably compared if consistent methodology is used to capture and grade retinal images. Currently no grading scheme exists for fluorescein angiographic features of malarial retinopathy. Methods: A grading scheme for fluorescein angiographic images was devised based on consensus opinion of clinicians and researchers experienced in malarial retinopathy in children and adults. Dual grading were performed with adjudication of admission fluorescein images from a large cohort of children with cerebral malaria. Results: A grading scheme is described and standard images are provided to facilitate future grading studies. Inter-grader agreement was >70 % for most variables. Intravascular filling defects are difficult to grade and tended to have lower inter-grader agreement (>57 %) compared to other features. Conclusions: This grading scheme provides a consistent way to describe retinal vascular damage in paediatric cerebral malaria, and can facilitate comparisons of angiographic features of malarial retinopathy between different patient groups, and analysis against clinical outcomes. Inter-grader agreement is reasonable for the majority of angiographic signs. Dual grading with expert adjudication should be used to maximize accuracy.Publisher PDFPeer reviewe

    A proposed theoretical framework for retinal biomarkers

    Get PDF
    Objective Propose a theoretical framework for retinal biomarkers of Alzheimer's disease (AD). Background The retina and brain share important biological features that are relevant to AD. Developing retinal biomarkers of AD is a strategic priority but as yet none have been validated for clinical use. Part of the reason may be that fundamental inferential assumptions have been overlooked. Failing to recognize these assumptions will disadvantage biomarker discovery and validation, but incorporating them into analyses could facilitate translation. New theory The biological assumption that a disease causes analogous effects in the brain and retina can be expressed within a Bayesian network. This allows inferences about abstract theory and individual events, and provides an opportunity to falsify the foundational hypothesis of retina–brain analogy. Graphical representation of the relationships between variables simplifies comparison between studies and facilitates judgements about whether key assumptions are valid given the current state of knowledge. Major challenges The framework provides a visual approach to retinal biomarkers and may help to rationalize analysis of future studies. It suggests possible reasons for inconsistent results in existing literature on AD biomarkers. Linkage to other theories The framework can be modified to describe alternative theories of retinal biomarker biology, such as retrograde degeneration resulting from brain disease, and can incorporate confounding factors such as co-existent glaucoma or macular degeneration. Parallels with analogue confirmation theory and surrogate marker validation suggest strengths and weaknesses of the framework that can be anticipated when developing analysis plans

    What happens to intraocular pressure at high altitude?

    No full text

    Linking EPCR-Binding PfEMP1 to Brain Swelling in Pediatric Cerebral Malaria

    Full text link
    © 2017 Elsevier Inc. Brain swelling is a major predictor of mortality in pediatric cerebral malaria (CM). However, the mechanisms leading to swelling remain poorly defined. Here, we combined neuroimaging, parasite transcript profiling, and laboratory blood profiles to develop machine-learning models of malarial retinopathy and brain swelling. We found that parasite var transcripts encoding endothelial protein C receptor (EPCR)-binding domains, in combination with high parasite biomass and low platelet levels, are strong indicators of CM cases with malarial retinopathy. Swelling cases presented low platelet levels and increased transcript abundance of parasite PfEMP1 DC8 and group A EPCR-binding domains. Remarkably, the dominant transcript in 50% of swelling cases encoded PfEMP1 group A CIDRα1.7 domains. Furthermore, a recombinant CIDRα1.7 domain from a pediatric CM brain autopsy inhibited the barrier-protective properties of EPCR in human brain endothelial cells in vitro. Together, these findings suggest a detrimental role for EPCR-binding CIDRα1 domains in brain swelling. Brain swelling is associated with cerebral malaria mortality, but the parasite and host factors responsible for development of brain swelling are unknown. Kessler et al. demonstrate an association of low platelet count and EPCR-binding PfEMP1 with brain swelling in children with cerebral malaria
    corecore