72 research outputs found

    The Roles of Guanine Nucleotide Binding Proteins in Health and Disease

    Get PDF
    G-proteins are important mediators of cellular and tissue functions and are characterised by a recognition site for Guanine Triphosphate (GTP), Guanine Diphosphate (GDP) and possess intrinsic GTPase activity. They play important roles in signal transduction responsible for cytoskeletal remodelling, cellular differentiation and vesicular transport. They are made up of three types namely, the small G-proteins, the sensors and the heterotrimeric G-proteins. The G-protein heterotrimers consist of G-alpha (G), G-beta (G)andG−gamma(G()subunits.EachheterotrimericG−proteinhavedifferentsubunitsandthecombinationofthesesubunitsdefinethespecificroleofeachG−protein.TheactivationofGsubunitsregulatestheactivityofeffectorenzymesandionchannelswhileG) and G-gamma (G() subunits. Each heterotrimeric G-protein have different subunits and the combination of these subunits define the specific role of each G-protein. The activation of G subunits regulates the activity of effector enzymes and ion channels while G( subunits function in the regulation of mitogen-activated protein kinase (MAP-kinase) pathway. The G-protein-mediated signal transduction is important in the regulation of a cells morphological and physiological response to external stimuli. MAPKs are involved in the phosphorylation of transcription factors that stimulate gene transcription. Gs stimulates adenylate cyclase, thereby increasing cyclic adenosine monophosphate (cAMP) leading to the phosphorylation and subsequent activation of Ca_+ channels. G proteins are involved in disease pathology through several mechanisms which interfere with the G protein activity. Other disease pathologies associated with abnormal mutations in G proteins can interfere with signal transduction pathways which may involve signal transmission that is either excessive, by augmentation of G protein function, or insufficient, via inactivation of G proteins.sch_dieBenians, A., M. Nobles, S. Hosny and A. Tinker, 2005. Regulators of G-protein signalling form a quaternary complex with the agonist, receptor, and G-protein. A novel explanation for the acceleration of signalling activation kinetics. J. Biol. Chem., 280(14): 13383-13394. Berman, D.M. and A.G. Gilman, 1998. Mammalian RGS proteins: barbarians at the gate. J Biol. Chem., 273(3): 1269-1272. Berridge, M.J., 2006. Cell Signalling Biology. Portland Press Ltd. Retrieved from: www.cellsignalling biology.org. Berridge, M.J., M.D. Bootman and H.L. Roderick, 2003. Calcium signalling: Dynamics, homeostasis and remodelling. Nat. Rev. Mol. Cell Biol., 4(7): 517-529. Blackmer, T., E.C. Larsen, M. Takahashi, T.F.J. Martin, S. Alford and H.E. Hamm, 2001. G protein ( subunit-mediated presynaptic inhibition: Regulation of exocytotic fusion downstream of Ca2+ entry. Science, 292(5515): 293-297. Blaukat, A., A. Barac, M.J. Cross, S. Offermanns and I. Dikic, 2000. G protein-coupled receptor-mediated mitogen-activated protein kinase activation through cooperation of Galpha(q) and Galpha(i) signals. Mol Cell Biol., 20(18): 6837-6848 Burgoyne, R.D., 2007. Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat. Rev. Neurosci., 8: 182-193. Cabrera-Vera, T.M., J. Vanhauwe, T.O. Thomas, M. Medkova, A. Preininger, M.R. Mazzoni and H.E. Hamm, 2003. Insights into G protein structure, function, and regulation. Endocr Rev., 24(6): 765-781. Clapham, D.E., 1996. Intracellular signalling: More jobs for G beta gamma. Curr. Biol., 6(7): 814-816. Danner, S. and M.J. Lohse, 1996. Phosducin is a ubiquitous G-protein regulator. Proc. Natl. Acad. Sci. U.S.A., 93(19): 10145-10150. Dhanasekaran, N. and M.V. Prasad, 1998. G protein subunits and cell proliferation. Biol Signals Recept., 7(2): 109-117. Dignard, D., D. Andr and M. Whiteway, 2008. Heterotrimeric G protein subunit function in Candida albicans: both the {} and {} subunits of the pheromone response G protein are required for mating. Eukaryot Cell, 7(9): 1591-1599. Dohlman, H.G. and J. Thorner, 1997. RGS proteins and signaling by heterotrimeric G proteins. J Biol Chem., 272(7): 3871-3874. Dolphin, A.C., 1990. G protein modulation of calcium currents in neurons. Ann. Rev. Physiol., 52: 243-255. Dolphin, A.C., 1996. Facilitation of Ca2+ current in excitable cells. Trends Neurosci., 19(1): 35-43. Durchnkov, D., J. Novotn_ and P. Svoboda, 2008. The time-course of agonist-induced solubilization of trimeric G(q)/G(11) proteins resolved by twodimensional electrophoresis. Physiol Res., 57(2): 195-203. Farfel, Z., H.R. Bourne and T. Iiri, 1999. The expanding spectrum of G protein diseases.N. Engl. J. Med., 340(13): 1012-1020. Flavahan, N.A. and P.M. Vanhoutte, 1990. G-proteins and endothelial responses. Blood Vessels, 27(2-5): 218-229. Fromm, C., O.A. Coso, S. Montaner, N. Xu and J.S. Gutkind, 1997. The small GTP-binding protein Rho links G protein-coupled receptors and Galpha12 to the serum response element and to cellular transformation. Proc. Natl. Acad. Sci. USA, 94(19): 10098-10103. Hamm, H.E. and A. Gilchrist, 1996. Heterotrimeric G proteins. Curr. Opin. Cell Biol., 8(2): 189-196. Hepler, J.R. and A.G. Gilman, 1992. G proteins. Trend. Biochem. Sci., 17(10): 383-387. Howe, L.R. and C.J. Marshall, 1993. Lysophosphatidic acid stimulates mitogen-activated protein kinase activation via a G-protein-coupled pathway requiring p21ras and p74raf-1. J. Biol. Chem., 268(28): 20717-20720. Jiang, M., M.S. Gold, G. Boulay, K. Spicher, M. Peyton, P. Brabet, Y. Srinivasan, U. Rudolph, G. Ellison and L. Birnbaumer, 1998. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc. Natl. Acad. Sci. USA, 95(6): 3269-3274. Kaziro, Y., H. Itoh, T. Kozasa, M. Nakafuku and T. Satoh, 1991. Structure and function of signaltransducing GTP-binding proteins. Annu. Rev. Biochem., 60: 349-400. Kitanaka, N., J. Kitanaka, F.S. Hall, T. Tatsuta, Y. Morita, M. Takemura, X.B. Wang and G.R. Uhl, 2008. Alterations in the levels of heterotrimeric G protein subunits induced by psychostimulants, opiates, barbiturates, and ethanol: Implications for drug dependence, tolerance, and withdrawal. Synapse, 62(9): 689-699. Kolch, W., G. Heidecker, G. Kochs, R. Hummel, H. Vahidi, H. Mischak, G. Finkenzeller, D. Marme and U.R. Rapp, 1993. Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature, 364(6434): 249-252. Levitzki, A., 1990. GTP-GDP exchange proteins. Science, 248(4957): 794. Lorenz, S., R. Frenzel, R. Paschke, G.E. Breitwieser and S.U. Miedlich, 2007. Functional desensitization of the extracellular calcium-sensing receptor is regulated via distinct mechanisms: Role of G proteincoupled receptor kinases, protein kinase C and {$}- arrestins. Endocrinology, 148(5): 2398-2404. Lowes, V.L., N.Y. Ip and Y.H. Wong, 2002. Integration of signals from receptor tyrosine kinases and g protein-coupled receptors. Neurosignals, 11(1): 5-19. Luttrell, L.M., Y. Daaka, G.J. Della Rocca and R.J. Lefkowitz, 1997. G protein-coupled receptors mediate two functionally distinct pathways of tyrosine phosphorylation in rat 1a fibroblasts. Shc phosphorylation and receptor endocytosis correlate with activation of ERK kinases. J. Biol. Chem., 272(50): 31648-31656. Milligan, G., D.A. Groarke, A. McLean, R. Ward, C.W. Fong, A. Cavalli and T. Drmota, 1999. Diversity in the signalling and regulation of Gprotein- coupled receptors. Biochem. Soc. Trans., 27(2): 149-154. Milligan, G., I. Mullaney and F.R. McKenzie, 1990. Specificity of interactions of receptors and effectors with GTP-binding proteins in native membranes. Biochem. Soc Symp., 56: 21-34. Morris, A.J. and C.C. Malbon, 2000. Physiological regulation of G protein-linked signalling. Physiol. Rev., 79(4): 1373-1430. Mullaney, I., 1999. Signal transduction: A practical approach. Milligan G., 5: 73-90. Muller, S. and M.J. Lohse, 1995. The role of G-protein beta gamma subunits in signal transduction. Biochem. Soc. Trans., 23(1): 141-148. Murray, A.J. and D.A. Shewan, 2008. Epac mediates cyclic AMP-dependent axon growth, guidance and regeneration. Mol. Cell Neurosci., 38(4): 578-588. Neer, E.J., 1995. Heterotrimeric G proteins: organizers of transmembrane signals. Cell, 80(2): 249-257. Novotny, J. and P. Svoboda, 1998. The long (Gs()-L) and short (Gs()-S) variants of the stimulatory guanine nucleotide-binding protein. Do they behave in an identical way? J. Mol. Endocrinol., 20(2): 163-173. Nunn, C., H. Mao, P. Chidiac and P.R. Albert, 2006. RGS17/RGSZ2 and the RZ/A family of regulators of G-protein signaling. Semin Cell Dev. Biol., 17(3): 390-399. Ohkubo, S. and N. Nakahata, 2007. Role of lipid rafts in trimeric G protein-mediated signal transduction. Yakugaku Zasshi, 127(1): 27-40. Oldham, W.M. and H.E. Hamm, 2006. Structural basis of function in heterotrimeric G proteins. Q. Rev. Biophys., 39(2): 117-166. Schneider, T., P. Igelmund and J. Hescheler, 1997. G protein interaction with K+ and Ca2+ channels. Trend. Pharmacol. Sci., 18(1): 8-11. Schrder, S. and M.J. Lohse, 1996. Inhibition of Gprotein betagamma-subunit functions by phosducinlike protein. Proc. Natl. Acad. Sci. USA, 93(5): 2100- 2104. Siegel, G.J., B.W. Agranoff, R.W. Albers, S.K. Fisher and M.D. Uhler, 1999. Basic Neurochemistry; Molecular, Cellular and Medical Aspects. 6th Edn., Lippincott Williams and Wilkins, Philadelphia, pp: 1023-1120. Siegel, G.J., R.W. Albers, S.T. Brady and D.L. Price, 2006. Basic Neurochemistry: Molecular, Cellular and Medical Aspects. 7th Edn., Elsevier Academic Press, San Diego, pp: 339-346. Slessareva, J.E., H. Ma, K.M. Depree, L.A. Flood, H. Bae, T.M. Cabrera-Vera, H.E. Hamm and S.G. Graber 2003. Closely related G-protein-coupled receptors use multiple and distinct domains on Gprotein alpha-subunits for selective coupling. J. Biol. Chem., 278(50): 50530-50536. Sprang, S.R., 1997. G proteins, effectors and GAPs: structure and mechanism.Curr. Opin. Struct. Biol., 7(6): 849-856. Straiker, A.J., C.R. Borden and J.M. Sullivan, 2002. GProtein subunit isoforms couple differentially to receptors that mediate presynaptic inhibition at rat hippocampal synapses. J. Neurosci., 22(7): 2460-2468. Wang, L., 1999. Multi-associative neural networks and their applications to learning and retrieving complex spatio-temporal sequences. IEEE Trans. Syst. Man. Cybern B Cybern, 29(1): 73-82. Walter, L. and N. Stella, 2004. Cannabinoids and neuroinflammation. Br. J. Pharmcl., 141(5): 775-785. Walter, L., A. Franklin, A. Witting, C. Wade, Y. Xie, G. Kunos, K. Mackie and N. Stella, 2003. Nonpsychotropic cannabinoid receptors regulate microglial cell migration. J. Neurosci., 23(4): 1398-1405. Wettschureck, N. and S. Offermanns, 2005. Mammalian G proteins and their cell type specific functions. Physiol. Rev., 85(4): 1159-1204. Wickman, K.D. and D.E. Clapham, 1995. G-protein regulation of ion channels. Curr. Opin. Neurobiol., 5(3): 278-285. Xie, G.X. and PP. Palmer 2007. How regulators of G protein signaling achieve selective regulation. J. Mol. Biol., 366(2): 349-365. Zhong, M., M. Yang and BM. Sanborn, 2003. Extracellular signal-regulated kinase 1/2 activation by myometrial oxytocin receptor involves Galpha(q)Gbetagamma and epidermal growth factor receptor tyrosine kinase activation. Endocrinology, 144(7): 2947-2956.2pub2712pub

    The Importance of Consistent Global Forest Aboveground Biomass Product Validation

    Get PDF
    Several upcoming satellite missions have core science requirements to produce data for accurate forest aboveground biomass mapping. Largely because of these mission datasets, the number of available biomass products is expected to greatly increase over the coming decade. Despite the recognized importance of biomass mapping for a wide range of science, policy and management applications, there remains no community accepted standard for satellite-based biomass map validation. The Committee on Earth Observing Satellites (CEOS) is developing a protocol to fill this need in advance of the next generation of biomass-relevant satellites, and this paper presents a review of biomass validation practices from a CEOS perspective. We outline the wide range of anticipated user requirements for product accuracy assessment and provide recommendations for the validation of biomass products. These recommendations include the collection of new, high-quality in situ data and the use of airborne lidar biomass maps as tools toward transparent multi-resolution validation. Adoption of community-vetted validation standards and practices will facilitate the uptake of the next generation of biomass products

    Prospects for China's environmental industries

    No full text

    Globalisation and environmental standards

    No full text

    Trade promotion in transitional economies

    No full text

    Export promotion in the Czech Republic: can it help?

    No full text
    Summar

    Prospects for China's environmental industries

    No full text

    Change and Challenge in the World Economy.

    No full text
    • …
    corecore