531 research outputs found

    Habitat fragmentation and species diversity in competitive communities

    Get PDF
    Habitat loss is one of the key drivers of the ongoing decline of biodiversity. However, ecologists still argue about how fragmentation of habitat (independent of habitat loss) affects species richness. The recently proposed habitat amount hypothesis posits that species richness only depends on the total amount of habitat in a local landscape. In contrast, empirical studies report contrasting patterns: some find positive and others negative effects of fragmentation per se on species richness. To explain this apparent disparity, we devise a stochastic, spatially explicit model of competitive species communities in heterogeneous habitats. The model shows that habitat loss and fragmentation have complex effects on species diversity in competitive communities. When the total amount of habitat is large, fragmentation per se tends to increase species diversity, but if the total amount of habitat is small, the situation is reversed: fragmentation per se decreases species diversity.Peer reviewe

    Thermal barriers constrain microbial elevational range size via climate variability

    Get PDF
    Range size is invariably limited and understanding range size variation is an important objective in ecology. However, microbial range size across geographical gradients remains understudied, especially on mountainsides. Here, the patterns of range size of stream microbes (i.e., bacteria and diatoms) and macroorganisms (i.e., macroinvertebrates) along elevational gradients in Asia and Europe were examined. In bacteria, elevational range size showed non-significant phylogenetic signals. In all taxa, there was a positive relationship between niche breadth and species elevational range size, driven by local environmental and climatic variables. No taxa followed the elevational Rapoport's rule. Climate variability explained the most variation in microbial mean elevational range size, whereas local environmental variables were more important for macroinvertebrates. Seasonal and annual climate variation showed negative effects, while daily climate variation had positive effects on community mean elevational range size for all taxa. The negative correlation between range size and species richness suggests that understanding the drivers of range is key for revealing the processes underlying diversity. The results advance the understanding of microbial species thermal barriers by revealing the importance of seasonal and diurnal climate variation, and highlight that aquatic and terrestrial biota may differ in their response to short- and long-term climate variability.Peer reviewe

    Biodiversity loss underlies the dilution effect of biodiversity

    Get PDF
    The dilution effect predicts increasing biodiversity to reduce the risk of infection, but the generality of this effect remains unresolved. Because biodiversity loss generates predictable changes in host community competence, we hypothesised that biodiversity loss might drive the dilution effect. We tested this hypothesis by reanalysing four previously published meta-analyses that came to contradictory conclusions regarding generality of the dilution effect. In the context of biodiversity loss, our analyses revealed a unifying pattern: dilution effects were inconsistently observed for natural biodiversity gradients, but were commonly observed for biodiversity gradients generated by disturbances causing losses of biodiversity. Incorporating biodiversity loss into tests of generality of the dilution effect further indicated that scale-dependency may strengthen the dilution effect only when biodiversity gradients are driven by biodiversity loss. Together, these results help to resolve one of the most contentious issues in disease ecology: the generality of the dilution effect.Non peer reviewe

    Assembling a species–area curve through colonization, speciation and human‐mediated introduction

    Full text link
    AimThe fundamental biogeographical processes of colonization, speciation and extinction shape island biotas in space–time. On oceanic islands, area and isolation affect these processes and resulting biodiversity patterns. In the Anthropocene, a new human‐mediated colonization dynamic is altering insular ecosystems world‐wide. Here, we test predictions about the roles of archipelago area and isolation in structuring ant diversity patterns through effects on both natural and anthropogenic biogeographical processes.LocationTropical Pacific islands.MethodsWe compiled a comprehensive data set of ant faunal compositions across tropical Pacific archipelagos. Using regression analysis we evaluated the bivariate and interactive effects of area and isolation on the number of colonizing lineages, native species, endemic species, exotic species and total richness in the archipelago.ResultsThere is a strong species–area effect and a much more modest isolation effect on total ant species richness across the Pacific archipelagos. The number of colonizing lineages of each archipelago is strongly driven by the isolation of the archipelago. Endemic species are present in large archipelagos of low and intermediate isolation. The most remote archipelagos are nearly devoid of endemic lineages and their ant faunas are largely composed of Pacific Tramp species and exotics brought from outside the Pacific region.Main conclusionsThe prominent species–area curve in Pacific ants emerged over time through multiple processes. The colonization of lineages is determined primarily by isolation, with few or no lineages reaching remote archipelagos. Cladogenesis mediates the isolation effect and increases the area effect through the differential radiation of lineages in large archipelagos. In the Anthropocene, the assembly of the species–area relationship has accelerated dramatically through human‐mediated colonization. Overall, our results support a view that species–area curves reflect regulating limits on species richness that scale with area, but that multiple biogeographical processes can occur to achieve these limits.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/136723/1/jbi12884.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/136723/2/jbi12884_am.pd

    Genetic diversity within and genetic differentiation between blooms of a microalgal species

    Get PDF
    The field of genetic diversity in protists, particularly phytoplankton, is under expansion. However, little is known regarding variation in genetic diversity within populations over time. The aim of our study was to investigate intrapopulation genetic diversity and genetic differentiation in the freshwater bloom-forming microalga Gonyostomum semen (Raphidophyceae). The study covered a 2-year period including all phases of the bloom. Amplified fragment length polymorphism (AFLP) was used to determine the genetic structure and diversity of the population. Our results showed a significant differentiation between samples collected during the two blooms from consecutive years. Also, an increase of gene diversity and a loss of differentiation among sampling dates were observed over time within a single bloom. The latter observations may reflect the continuous germination of cysts from the sediment. The life cycle characteristics of G. semen, particularly reproduction and recruitment, most likely explain a high proportion of the observed variation. This study highlights the importance of the life cycle for the intraspecific genetic diversity of microbial species, which alternates between sexual and asexual reproduction.Postprin

    New directions in island biogeography

    Get PDF
    Aim: Much of our current understanding of ecological and evolutionary processes comes from island research. With the increasing availability of data on distributions and phylogenetic relationships and new analytical approaches to understanding the processes that shape species distributions and interactions, a re-evaluation of this ever-interesting topic is timely. Location: Islands globally. Methods: We start by arguing that the reasons why island research has achieved so much in the past also apply to the future. We then critically assess the current state of island biogeography, focusing on recent changes in emphasis, including research featured in this special issue of Global Ecology and Biogeography. Finally, we suggest promising themes for the future. We cover both ecological and evolutionary topics, although the greater emphasis on island ecology reflects our own backgrounds and interests. Results: Much ecological theory has been directly or indirectly influenced by research on island biotas. Currently, island biogeography is renascent, with research focusing on, among other things, patterns and processes underlying species interaction networks, species coexistence and the assembly of island communities through ecological and evolutionary time. Continuing island research should provide additional insight into biological invasions and other impacts of human activities, functional diversity and ecosystem functioning, extinction and diversification, species pools and more. Deeper understanding of the similarities and differences between island and mainland systems will aid transferability of island theory to continental regions. Main conclusions: As research in biogeography and related fields expands in new directions, islands continue to provide opportunities for developing insights, both as natural laboratories for ecology and evolution and because of the exceptions islands often present to the usual ‘rules’ of ecology. New data collection initiatives are needed on islands world-wide and should be directed towards filling gaps in our knowledge of within-island distributions of species, as well as the functional traits and phylogenetic relationships of island species

    Equilibrium and non-equilibrium dynamics simultaneously operate in the GalĂĄpagos islands

    Get PDF
    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galapagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galapagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms

    Polyploid plants have faster rates of multivariate niche differentiation than their diploid relatives

    Full text link
    Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids. We found that polyploids are often more climatically differentiated from their diploid parents than the diploids are from each other. Consistent with this pattern, we estimated that polyploid species generally have higher rates of multivariate niche differentiation than their diploid relatives. In contrast to recent analyses, our results confirm that ecological niche differentiation is an important component of polyploid speciation and that niche differentiation is often significantly faster in polyploids.Polyploid speciation entails substantial and rapid postzygotic reproductive isolation of nascent species that are initially sympatric with one or both parents. Despite strong postzygotic isolation, ecological niche differentiation has long been thought to be important for polyploid success. Using biogeographic data from across vascular plants, we tested whether the climatic niches of polyploid species are more differentiated than their diploid relatives and if the climatic niches of polyploid species differentiated faster than those of related diploids.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/1/ele13402-sup-0001-TableS1.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/2/ele13402_am.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/3/ele13402-sup-0007-TableS7.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/4/ele13402-sup-0003-TableS3.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/5/ele13402-sup-0005-TableS5.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/6/ele13402.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/7/ele13402-sup-0006-TableS6.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/8/ele13402-sup-0002-TableS2.pdfhttps://deepblue.lib.umich.edu/bitstream/2027.42/153074/9/ele13402-sup-0004-TableS4.pd

    Effects of large-scale heathland management on thermal regimes and predation on adders Vipera berus

    Get PDF
    Management prescriptions for species of conservation concern often focus on creating appropriate habitat conditions, but the spatial scales over which these actions are applied can potentially impact their success. In Northwestern Europe, preventing further loss of lowland heathland through successional changes often involves the mechanical removal of vegetation, creating large blocks of open homogenous habitat. We investigate the influence of this broad-scale habitat management on a heathland specialist, the adder Vipera berus. By deploying temperature loggers and Plasticine adder models in heathland areas with and without complex vegetation cover, we show that (1) cleared areas lack both the temperature variation adders need to thermoregulate effectively and suitable refuges from dangerously high summer temperatures, and (2) attacks by dogs and trampling by grazing livestock are significantly more frequent in cleared areas and closer to footpaths. Habitat management strategies that retain some structural complexity of vegetation within cleared areas, and diverting footpaths away from cleared areas and/or strategic placement of barrier hedging around these areas could potentially reduce the exposure of adders to high predation risk and thermal extremes
    • 

    corecore