244 research outputs found

    О передаче энергии ударом через упругое звено

    Get PDF

    Long non-coding RNA SNHG1 promotes bladder cancer progression by upregulating EZH2 and repressing KLF2 transcription

    Get PDF
    Objective: Long Non-Coding RNAs (LncRNAs) act as an indispensable role in cancer development. The study aimed to investigate the role and mechanism of lncRNA Small Nucleolar RNA Host Gene 1 (SNHG1) in Bladder Cancer (BC) progression. Method: The expression, prognostic value, diagnostic value, and correlation of SNHG1, Enhancer of Zeste 2 polycomb repressive complex 2 subunit (EZH2), and Kruppel Like Factor 2 (KLF2) were analyzed through bioinformatics analysis. The expression was also validated in BC tissues and cell lines. Besides, their regulation and binding were tested via qPCR, Western blot, Dual-Luciferase Reporter Assay (DLRA), Argonaute RISC catalytic component 2-RNA Immunoprecipitation (AGO2-RIP), and Chromatin Immunoprecipitation (ChIP). A xenograft model in nude mice was also established. Results: SNHG1 was significantly overexpressed in BC tissues and cells. Importantly, SNHG1 was associated with poor survival, and ROC curves revealed high diagnostic values. Moreover, by CCK8, wound healing, transwell, and Western blot analysis, SNHG1 knockdown significantly inhibited the proliferation, migration, invasion, and epithelial-mesenchymal transition of BC cells. Additionally, in vivo experiments showed that silencing SNHG1 hindered tumorigenesis and tumor growth. Regarding mechanism, the results of AGO2-RIP, ChIP or DLRA showed that SNHG1 played different roles at diverse subcellular sites. In the cytoplasm, SNHG1 acted as a competing endogenous RNA for miR-137-3p to promote EZH2 expression. In the nucleus, SNHG1 could interact with EZH2 to inhibit KLF2 transcription. Conclusion: Our study elucidated that SNHG1 formed a regulatory network and played an oncogenic role in BC, which provided a novel therapeutic target for BC treatment

    Информационная система учета и анализа деятельности участка производства пищевой упаковки ООО "Сибирская фабрика "Комус-упаковка""

    Get PDF
    Объект исследования – документооборот производственных процессов. Предмет исследования – учет и анализ документооборота ООО Сибирская фабрика "Комус-упаковка". Целью данной работы является проектирование информационной системы учета и анализа деятельности участка производства пищевой упаковки ООО "Сибирская фабрика "Комус-упаковка"". В результате разработана информационная система, реализующая следующие функции: учет произведенной продукции и израсходованного сырья; оценка критериев качества произведенной продукции; анализ расхода сырья; анализ качества продукции.Object of research – workflow production processes. Subject of research – accounting and analysis workflow the Siberian factory "Komus-Upakovka". The aim of this work is the design of the information system of accounting and analysis activities of the production area of food packaging LLC "Siberian factory "Komus-Upakovka"". The developed information system implements the following functions: accounting of goods produced and consumed raw materials; evaluation criteria of quality of manufactured products; analysis of consumption of raw materials; analysis of product quality

    Analyzing urban traffic demand distribution and the correlation between traffic flow and the built environment based on detector data and POIs

    Get PDF
    Purpose This paper aims to determine the urban traffic flow spatiotemporal characteristics and correlation with the built environment using SCATS (Sydney Coordinated Adaptive Traffic System) and POIs (Point of Interests) data of Shenyang, China. Methods A standard analysis framework based on these data is proposed in the paper. The study analyzes the traffic volume spatiotemporal distributions and built environment influence factors determined by the geographical detector. An improved gravity model using simple structural parameters (lanes number and road length) is proposed to estimate the traffic flows of day and peak hour scales for specific flow ranges. Results The results show that the peak hours of different intersections and roads are heterogeneous and reveal trip time flexibility. The correlation between peak hour flows and day flows is significant in the multidimensional analysis. Based on the investigation of lanes, more interesting conclusions are found. In this case, when the numbers of lanes of intersections and roads are more than 14 and 4 respectively, the lane resources are wasted to a great extent. There is also a certain correlation between these factors. Proposed gravity model establishes the connection between structure and function of urban roads. Conclusions Flexible work time and places will be effective methods to reduce traffic congestion. The day flows could be estimated via a traffic survey on peak hour flows, especially in developing cities. The traffic flow mainly concentrates in a relatively small part of city roads. The maximum service traffic volumes exhibit segmentation, we should reconsider the maximum optimal lanes number of intersections and roads under better performance and utilization rate of the network. The effect of lanes number on the service traffic volumes is found to be more significant compared with the other factors. Our conclusions will be helpful for policy-makers and sustainable urban planning. Document type: Articl

    Evaluating the importation of yellow fever cases into China in 2016 and strategies used to prevent and control the spread of the disease

    Get PDF
    During the yellow fever epidemic in Angola in 2016, cases of yellow fever were reported in China for the first time. The 11 cases, all Chinese nationals returning from Angola, were identified in March and April 2016, one to two weeks after the peak of the Angolan epidemic. One patient died; the other 10 cases recovered after treatment. This paper reviews the epidemiological characteristics of the 11 yellow fever cases imported into China. It examines case detection and disease control and surveillance, and presents recommendations for further action to prevent additional importation of yellow fever into China

    Rapid, Specific Detection of Alphaviruses from Tissue Cultures Using a Replicon-Defective Reporter Gene Assay

    Get PDF
    We established a rapid, specific technique for detecting alphaviruses using a replicon-defective reporter gene assay derived from the Sindbis virus XJ-160. The pVaXJ expression vector containing the XJ-160 genome was engineered to form the expression vectors pVaXJ-EGFP expressing enhanced green fluorescence protein (EGFP) or pVaXJ-GLuc expressing Gaussia luciferase (GLuc). The replicon-defective reporter plasmids pVaXJ-EGFPΔnsp4 and pVaXJ-GLucΔnsp4 were constructed by deleting 1139 bp in the non-structural protein 4 (nsP4) gene. The deletion in the nsP4 gene prevented the defective replicons from replicating and expressing reporter genes in transfected BHK-21 cells. However, when these transfected cells were infected with an alphavirus, the non-structural proteins expressed by the alphavirus could act on the defective replicons in trans and induce the expression of the reporter genes. The replicon-defective plasmids were used to visualize the presence of alphavirus qualitatively or detect it quantitatively. Specificity tests showed that this assay could detect a variety of alphaviruses from tissue cultures, while other RNA viruses, such as Japanese encephalitis virus and Tahyna virus, gave negative results with this system. Sensitivity tests showed that the limit of detection (LOD) of this replicon-defective assay is between 1 and 10 PFU for Sindbis viruses. These results indicate that, with the help of the replicon-defective alphavirus detection technique, we can specifically, sensitively, and rapidly detect alphaviruses in tissue cultures. The detection technique constructed here may be well suited for use in clinical examination and epidemiological surveillance, as well as for rapid screening of potential viral biological warfare agents

    Biocompatible Nanocomplexes for Molecular Targeted MRI Contrast Agent

    Get PDF
    Accurate diagnosis in early stage is vital for the treatment of Hepatocellular carcinoma. The aim of this study was to investigate the potential of poly lactic acid–polyethylene glycol/gadolinium–diethylenetriamine-pentaacetic acid (PLA–PEG/Gd–DTPA) nanocomplexes using as biocompatible molecular magnetic resonance imaging (MRI) contrast agent. The PLA–PEG/Gd–DTPA nanocomplexes were obtained using self-assembly nanotechnology by incubation of PLA–PEG nanoparticles and the commercial contrast agent, Gd–DTPA. The physicochemical properties of nanocomplexes were measured by atomic force microscopy and photon correlation spectroscopy. The T1-weighted MR images of the nanocomplexes were obtained in a 3.0 T clinical MR imager. The stability study was carried out in human plasma and the distribution in vivo was investigated in rats. The mean size of the PLA–PEG/Gd–DTPA nanocomplexes was 187.9 ± 2.30 nm, and the polydispersity index was 0.108, and the zeta potential was −12.36 ± 3.58 mV. The results of MRI test confirmed that the PLA–PEG/Gd–DTPA nanocomplexes possessed the ability of MRI, and the direct correlation between the MRI imaging intensities and the nano-complex concentrations was observed (r = 0.987). The signal intensity was still stable within 2 h after incubation of the nanocomplexes in human plasma. The nanocomplexes gave much better image contrast effects and longer stagnation time than that of commercial contrast agent in rat liver. A dose of 0.04 mmol of gadolinium per kilogram of body weight was sufficient to increase the MRI imaging intensities in rat livers by five-fold compared with the commercial Gd–DTPA. PLA–PEG/Gd–DTPA nanocomplexes could be prepared easily with small particle sizes. The nanocomplexes had high plasma stability, better image contrast effect, and liver targeting property. These results indicated that the PLA–PEG/Gd–DTPA nanocomplexes might be potential as molecular targeted imaging contrast agent

    Photoluminescent and superparamagnetic reduced graphene oxide-iron oxide quantum dots for dual-modality imaging, drug delivery and photothermal therapy

    Get PDF
    Reduced graphene oxide–iron oxide quantum dots (QDs) with intrinsic photoluminescent and superparamagnetic properties were synthesized through a green, hydrothermal method that simultaneously reduced and shattered graphene nanosheets to form the dots. The structure, morphology, properties and cell viability of these QDs were investigated. The QDs emitted violet light when excited at 320 nm, possessed no residual magnetization upon magnetic hysteresis tests, and had low cytotoxicity to healthy cells at low concentrations. The suitability of the QDs for fluorescent and magnetic resonance dual-modality imaging was shown by in vitro imaging with dermal fibroblast cells and T2 relaxation time. A drug could be loaded onto the surface of the QDs, with a loading ratio of drug to QD of 0.31:1. The drug achieved a steady but full release from the QDs over 8 h: these drug-loaded QDs could be manipulated by an external magnetic stimulation for targeted drug delivery. The potential for use as a cancer photothermal therapy was demonstrated by both a rapid, ∼50 °C temperature increase by a suspension of 100 μg ml−1 of QDs and the photothermal ablation of HeLa cells in vitro under near infrared irradiation. The stability of the MGQDs in fetal calf serum was shown to improve when an ionic drug was coated on the surface

    Generation, Characterization and Epitope Mapping of Two Neutralizing and Protective Human Recombinant Antibodies against Influenza A H5N1 Viruses

    Get PDF
    The development of new therapeutic targets and strategies to control highly pathogenic avian influenza (HPAI) H5N1 virus infection in humans is urgently needed. Broadly cross-neutralizing recombinant human antibodies obtained from the survivors of H5N1 avian influenza provide an important role in immunotherapy for human H5N1 virus infection and definition of the critical epitopes for vaccine development.We have characterized two recombinant baculovirus-expressed human antibodies (rhAbs), AVFluIgG01 and AVFluIgG03, generated by screening a Fab antibody phage library derived from a patient recovered from infection with a highly pathogenic avian influenza A H5N1 clade 2.3 virus. AVFluIgG01 cross-neutralized the most of clade 0, clade 1, and clade 2 viruses tested, in contrast, AVFluIgG03 only neutralized clade 2 viruses. Passive immunization of mice with either AVFluIgG01 or AVFluIgG03 antibody resulted in protection from a lethal H5N1 clade 2.3 virus infection. Furthermore, through epitope mapping, we identify two distinct epitopes on H5 HA molecule recognized by these rhAbs and demonstrate their potential to protect against a lethal H5N1 virus infection in a mouse model.Importantly, localization of the epitopes recognized by these two neutralizing and protective antibodies has provided, for the first time, insight into the human antibody responses to H5N1 viruses which contribute to the H5 immunity in the recovered patient. These results highlight the potential of a rhAbs treatment strategy for human H5N1 virus infection and provide new insight for the development of effective H5N1 pandemic vaccines
    corecore