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Abstract  

Reduced graphene oxide - iron oxide quantum dots (QDs) with intrinsic photoluminescent 

and superparamagnetic properties were synthesized through a green, hydrothermal method 

that simultaneously reduced and shattered graphene nanosheets to form the dots. The 

structure, morphology, properties and cell viability of these QDs were investigated. The QDs 

emitted violet light when excited at 320 nm, possessed no residual magnetization upon 

magnetic hysteresis tests, and had low cytotoxicity to healthy cells at low concentrations. The 

suitability of the QDs for fluorescent and magnetic resonance dual-modality imaging was 

shown by in vitro imaging with dermal fibroblast cells and T2 relaxation time. A drug could 

be loaded onto the surface of the QDs, with a loading ratio of drug to QD of 0.31:1. The drug 

achieved a steady but full release from the QDs over 8 h: these drug-loaded QDs could be 

manipulated by an external magnetic stimulation for targeted drug delivery. The potential for 

use as a cancer photothermal therapy was demonstrated by both a rapid, ~50 oC temperature 

increase by a suspension of 100 �g ml-1 of QDs and the photothermal ablation of HeLa cells 

in vitro under near infrared irradiation. The stability of the MGQDs in fetal calf serum was 

shown to improve when an ionic drug was coated on the surface. 
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1. Introduction 

Biomedical technology is undergoing a period of rapid development, and one of the keys to 

this advancement is nanotechnology [1]. Graphene, and its chemically oxidized derivative 

graphene oxide (GO), have been investigated for drug delivery, biosensing, and cancer 

photothermal therapy as they have a large surface area, ample functional groups on the 

surface, photothermal properties and/or low cytotoxicity [2,3]. Iron oxide (IO) nanoparticles 

have also been studied for biomedical purposes [4]. Their superparamagnetic (i.e. they hold 

no residual magnetic force and can be manipulated by external magnetic fields) behavior 

allows for them to be used for targeted therapeutic delivery [5]. They can be imaged in vivo 

by Magnetic Resonance Imaging (M.R.I.), enabling the visualisation of tumors and the 

circulatory system, as well as finding use in magnetic hyperthermia [6,7].  

IO can be deposited onto GO to form GO-IO or reduced graphene oxide (rGO)-IO 

hybrids [8–11] (the chemical deposition may reduce GO to rGO during the synthesis [12]), 

which can combine the interesting aspects of both individual nanoparticles [8–12]. Previous 

work [9,12] has shown that graphene-IO nanoparticles can be used for targeted drug delivery, 

M.R.I., and photothermal therapy; the functional groups of GO or rGO allow for drug loading 

while the superparamagnetic properties of IO enable the hybrids to be used for targeted drug 

delivery using an external magnetic stimulus and M.R.I.. Both graphene [13] and IO [14] 

were shown to absorb near infrared (NIR) light, which was converted into heat for 

photothermal therapy. For instance, GO-IO reduced the cancer cell viability by ~90% by 

using a 2 W cm-2 laser for 5 min [9], and rGO-IO achieved the full ablation of tumours within 

mice within 24 h using a 0.5 W cm-2 laser as the irradiation source [12]. However, no 

intrinsic photoluminescent properties were demonstrated for the graphene – IO nanoparticles 

reported in the literature [11,15,16]. The fluorescent imaging capability of the rGO-IO 

nanoparticles were from dyes (polyfluorene [11] and cyanine [12]) bonded to the nanoparticle 

surface. The photoluminescent properties of the GO-IO were attributed to the bonded 

doxorubicin, which the GO-IO quenched in comparison to free doxorubicin [9]; these 

nanoparticles were approximately 50 – 300 nm in size and did not possess intrinsic 

photoluminescent properties. 

 Quantum dots (QDs) emit a luminescence due to quantum confinement effects [17]. 

Conventionally, QDs were made of compounds like cadmium selenide (CdSe) or cadmium 

telluride (CdTe), but they were found to be cytotoxic during in vitro cell tests due to the 

photolysis release of cadmium ions and the uncoiling of DNA helical strands [18,19]. This 

led to the development of biocompatible carbon-based QDs, with QDs derived from 

carbohydrates [20], nanodiamonds [21], and graphene [22–25]. Graphene QDs (GQDs) can 
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be created by ultrasonication [22], chemical reduction [23], photo-reduction [24], and 

hydrothermal cutting [25]. These carbon QDs emit the same level of luminescence as the 

cadmium QDs, but do not carry the same cytotoxic risk. It has been shown that GQDs could 

enter cells but did not enter the nucleus of stem cells during in vitro tests; they maintained a 

high (80%) viability for neurosphere and pancreas progenitor cells up to 100 µg ml-1 after 72 

h [26], and carboxylated GQDs caused no acute toxicity to rats after 22 days post injection at 

a concentration of 10 mg kg-1 [27]. Carbon QDs can be excreted rapidly from the body after 

being administered through intravenous, intramuscular or subcutaneous injections [28].  

To the authors’ knowledge, biocompatible graphene-based magnetic QDs that are 

intrinsically both superparamagnetic and photoluminescent have not yet been reported. 

Quantum dots with magnetic properties (MQDs) can by synthesized by either doping 

conventional QDs (for example CdSe, or CdTe ) with metal elements like manganese [29], 

nickel [30], or gadolinium [31], or by encasing conventional QDs with IO [32] in silica 

spheres. These MQDs possess the photoluminescent properties of conventional QDs and the 

magnetic properties of the doping agent or the encapsulated IO, but they contain cytotoxic 

compounds such as cadmium selenium or cadmium telluride and are therefore cytotoxic 

without a biocompatible passivation coating [30]. The aim of this work was to synthesize 

magnetic graphene-IO quantum dots (herein MGQDs) as a multifunctional nanosystem for 

fluorescent imaging, M.R.I., targeted drug delivery and photothermal therapy for concurrent 

detection, monitoring and treatment of diseases. The MGQDs were synthesized by depositing 

IO on GO surface, followed by autoclaving to reduce GO into rGO and form the MGQDs. 

Their structure, morphology, cell viability, drug release behavior, fluorescent imaging and 

M.R.I. capabilities and photothermal properties were assessed.  

2. Experimental 

2.1 Materials 

The following chemicals were used as purchased from Sigma Aldrich; sulfuric acid (95-

98%), hydrogen peroxide (29-32% in water), potassium permanganate (97%), sodium nitrate 

(> 99%), ferrous chloride tetrahydrate (> 99%), hydrochloric acid (36.5%), ferric chloride 

hexahydrate (97%), fluorescein sodium, graphite powder (≤ 20 µm), rhodamine B, 

norharmane, lidocaine hydrochloride (> 99%), porcine trypsin (BioReagent), 3-[4,5-

dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) solution (1 mg ml-1 in 

phosphate buffered saline (PBS)), and ethylenediaminetetraacetic acid (EDTA, BioReagent). 

Dulbecco’s modified eagle medium (DMEM, 500 ml, Gibco Invitrogen (Paisley, UK) was 
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used with fetal calf serum (FCS, Advanced Protein Products, Brierley Hill, UK), penicillin 

(100 units ml-1), streptomycin (100 µg ml-1), and fungizone (630 ng ml-1) from Gibco 

Invitrogen (Paisley, UK). Isopropanol alcohol (reagent grade) and PBS tablets (pH = 7.4) 

were acquired from Fisher Scientific UK. 

2.2 Preparation of graphene oxide – iron oxide nanoparticles 

Graphene oxide was synthesized from a modified Hummers method [33] and GO-IO was 

prepared according to methods described in the literature with some modifications [8,34]. 

The freeze-dried GO powder (1 g) was dispersed in 150 ml of distilled water through stirring 

and sonication for 1 h and the pH of the suspension was raised to pH = 8 with the addition of 

ammonium hydroxide NH4OH. Separately, ferrous chloride tetrahydrate FeCl2-4H2O (5.4 g) 

and ferric chloride hexahydrate FeCl3-6H2O (4 g) were dissolved in 135 ml distilled water. 

The GO suspension and the solution of IO precursors were added together, ammonium 

hydroxide was added drop wise until a pH = 10 was reached, and then the mixture was stirred 

for 2 h under a nitrogen atmosphere at ambient temperature. The precipitate, iron oxide 

coated graphene oxide (GO-IO), was washed with distilled water, ethanol and 

dichloromethane to remove residual chemicals, separated from unbound, hydrophobic IO 

precipitate by decanting the GO-IO as the supernatant from an aqueous suspension, before 

being re-dispersed in distilled water (~ 3 mg ml-1) by sonication for 1 h in a Fisherbrand 

sonication bath (230 V, 50-60 Hz). As a control sample, IO was prepared using the same 

method but without the addition of GO. 

2.3 Preparation of reduced graphene oxide-iron oxide quantum dots 

The aqueous GO-IO suspension (~ 3 mg ml-1) was treated in a Parr Series 4000 autoclave at 

200 oC for 10 h (pressure of boiling water at 201 oC = 1.6 MPa) to generate reduced graphene 

oxide-iron oxide quantum dots (namely, MGQDs). The suspension was placed in a dialysis 

bag (Fisher Scientific Biodesign Dialysis tubing, molecular weight cut off = 3.5 kDa) and the 

residual chemicals were allowed to diffuse into the distilled water surrounding the dialysis 

bag [25]. The MGQDs were collected in an aqueous suspension from the dialysis bag and 

lyophilized in a Labconco FreeZone Triad freeze-dryer to be stored as a powder in a 

desiccator. As a control, GO and IO (both with a raised pH of 8) were autoclaved at 200 oC 

for 10 h to produce graphene quantum dots and autoclaved iron oxide (A-IO) for a 

comparison study.  
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2.4 Drug loading onto quantum dots 

Lidocaine hydrochloride (LH) (0.1 mg ml-1) was added to a 100 ml suspension of MGQDs 

(0.1 mg ml-1) under stirring for 48 h. The suspension was centrifuged at 9000 rpm for 1 hour, 

after which the supernatant (containing unbound LH) was removed and the precipitate was 

re-dispersed in water. This process was repeated several times to remove all of the unbound 

LH. The MGQD-LH was then freeze-dried and stored in a desiccator. 

2.5 Characterization  

Transmission electron microscopy (TEM), energy dispersive X-ray spectroscopy (EDS), and 

selected area electron diffraction (SAED) were achieved using a Philips Technai T20 electron 

microscope operating at an accelerating voltage of 200 kV. High resolution TEM (HR-TEM) 

was carried out using a JEOL 2010F field emission gun TEM operating at an accelerating 

voltage of 200 kV. TEM and HR-TEM samples were prepared by evaporating a diluted 

suspension (~ 0.01 mg ml-1) onto a holey amorphous carbon coated copper grid (mesh size = 

400). Electron energy loss spectroscopy (EELS) spectra were acquired on the JEOL 2010F 

using a Gatan image filter in image coupled mode with an energy dispersion of 0.5 eV per 

pixel. Atomic force microscopy (AFM) was carried out on a Veeco Dimension 3100 with 

Olympus AC160TS probes in tapping mode at 0.5 Hz, using a diluted suspension (~ 0.01 mg 

ml-1) evaporated onto a freshly cleaved mica substrate. Dynamic light scattering (DLS) was 

performed on a Brookhaven ZetaPALS (660 nm wavelength), with 3 cycles of 2 min runs on 

suspensions of 1 mg ml-1 MGQD in distilled water.  

X-ray diffraction (XRD) was performed on a Stoe Stadi P with Cu Kα irradiation 

(0.154 nm wavelength), with operating parameters of 40 kV, 35 mA, and a scanning speed of 

1o min-1. Raman spectroscopy between 50-3000 cm-1 with a resolution of 0.5 cm-1 was 

achieved with a Renishaw inVia Raman microscope using a 514.5 nm wavelength laser. 

Fourier transform infrared (FT-IR) spectroscopy between 400-4000 cm-1 with a resolution of 

1 cm-1 was performed on a Perkin Elmer Spectrum 100 with a diamond attenuated total 

reflectance unit. Thermogravimetric analysis (TGA) was implemented on a Perkin Elmer 

Pyris 1 with a nitrogen atmosphere (20 ml min-1) at a heating rate of 5 oC min-1. Inductively 

coupled plasma mass spectrometry (ICP-MS) was carried out using a Spectro-Ciros-Vision 

ICP-Emission Spectrometer. Samples were extracted in 12 ml aqua regia at 150 oC for 30 

min, followed by the addition of 1 ml hydrofluoric acid and stirring at 150 oC for 15 min, and 

were then diluted using distilled water to a total end volume of 50 ml. A Micromeritics 

AccuPyc II 1340 was used to measure the density of the MGQDs, achieved at room 

temperature (24 oC) by using 10 purge cycles and 10 calculation cycles of helium gas.  
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UV-visible light (UV-Vis) spectroscopy of nanoparticle suspensions in distilled water 

(0.3 mg ml-1 concentration) from 200-800 nm with a 1 nm resolution was achieved with a 

Perkin Elmer Lambda 900 spectrometer. Photoluminescence spectroscopy was conducted 

using a Horiba Fluoromax 4 with excitation sources from 300-400 nm and emission readings 

from 360-600 nm with a wavelength resolution of 2 nm. Photoluminescence quantum yield 

measurements used fluorescein sodium in 0.1 NaOH, rhodamine B in ethanol and 0.01% 

HCl, and norharmane in 0.1 M H2SO4 as reference standards. Quantum yield measurements 

were taken by using Equation 1 [35], shown below: 

ɸ
qd

= ɸ
st

× 
Gradqd

Gradst
× 
ηqd 

2

ηst
2

                                                         (1) 

where “ɸ” is the fluorescence quantum yield, “Grad” is the gradient of the curve of emission 

versus absorbance, “η” is the refractive index for the solvent used in the solution, and “qd” 

and “st” are quantum dots and the standards used (fluorescein sodium, rhodamine B and 

norharmane). PL lifetime analysis (time correlated single photon counting) was achieved with 

irradiation from a frequency doubled Mira 900 Ti-Sapphire laser (10 W), a single photon 

counting module (Becker and Hickl SPC-830), an electronic trigger (Becker & Hickl GmbH 

PHD-400-N High Speed Photodiode Module), and the emission was detected by an ID 

Quantique ID100-50 single photon detection module. The magnetic hysteresis loop was 

created using a Quantum Design MPMS-XL 5 superconducting quantum interference device 

(SQUID), operating at 37 oC to simulate in vivo conditions and between +/- 20,000 Oe (2 T) 

in 200 Oe intervals. A Siemens Trio TIM 3 Tesla M.R.I. was used to measure the T2 

relaxation times of the MGQDs, with the echo time, TE = 15.2, 30.4, 45.6, 60.8, 76, 91.2, 

106.4, 121.6, 136.8, 152, 167.2 milliseconds and the relaxation time TR = 3000 milliseconds.  

2.6 Cell viability and imaging 

Human skin was obtained with ethical permission from patients undergoing abdominoplasties 

or breast reductions from the Department of Plastics, Burns and Reconstructive Surgery, 

Sheffield Teaching Hospitals. All tissue was collected and used on an anonymous basis under 

a Human Tissue Authority research bank tissue license number 08/H1308/39. 

Dermal fibroblast cells were isolated and cultured, as described previously [36], in 

DMEM at 37 oC and 5% CO2 environment. When the culture was 50% confluent, the cells 

were collected by treating with a trypsin solution for 10 min and centrifuging the cell 

suspension to form a pellet at 1000 rpm for 5 min using a Hettich Rotafix 32A centrifuge. 

Cells were counted, with cells seeded (10,000 per well) in a 48 well plate. Cells were 

incubated overnight in DMEM to allow for cell reattachment, after which the DMEM 

medium was replaced with MGQD suspensions (20, 50, 100, 200, 500 µg ml-1 in DMEM) for 
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6 and 24 h incubation times (each testing iteration was tested in triplicate). At the end of each 

incubation time, cells were washed with PBS and then incubated in fresh DMEM until 72 h 

post-treatment when cells were assessed by the MTT-assay of metabolic activity. Cells were 

incubated for 40 min at 37 oC, after which the formazan salt was eluded by acidified 

isopropanol. The optical densities of the resultant solutions were measured with a plate reader 

at 540 nm with a reference filter of 630 nm (Bio-Tek ELx800). Control samples of untreated 

cells in DMEM were taken as 100% viable, and the optical densities of the MGQD treated 

cells were compared to these values. 

An Olympus CK40 microscope and a Leica TCS SP8 two-photon confocal 

microscope (excitation source 690 nm, emission filter 360 nm) were used for cell imaging. 

For the two-photon fluorescent imaging, the cells were incubated with either 50 µg ml-1 or 

100 µg ml-1 MGQDs for 12 h before the cells were fixed with glutaraldehyde. 

2.7 Drug release from MGQDs 

A 10 ml PBS suspension (37 oC, pH = 7.4) of MGQD-LH (1 mg ml-1 MGQD-LH) was 

inserted into a Spectrum Labs Float-A-Lyzer G2 dialysis tube with pore sizes between 0.1 – 

0.5 kDa. This dialysis tube was floated vertically in a sealed container of pristine PBS 

solution (550 ml, 37 oC, pH = 7.4), with a float at the top and a weight at the end maintaining 

the buoyancy of the dialysis tube just under the surface of the solution. This container was 

placed within a Stuart SI500 bio-incubator, maintained at 37 oC and agitated at 100 rpm. At 

set time points, 3 ml of PBS solution was taken from the outer container (replaced with 3 ml 

of fresh PBS) and analyzed with a Perkin Elmer Lambda 900 (resolution of 1 nm).  The 

acquired spectra were compared to the absorbance values of free LH of known concentration 

(ranging from 0.06 – 1 mg ml-1) in PBS. 

2.8 Photothermal measurements 

The temperature of aqueous suspensions of MGQDs and GQDs (1.5 ml, concentration of 50 

µg ml-1 and 100 µg ml-1) under irradiation from a near-infrared continuous laser (wavelength: 

808 nm; laser power: 2, 5, 7.5 W cm-2) was measured as a function of time. Distilled water 

was studied as a control.  

 Photothermal experiments on HeLa cells incubated with suspensions of MGQDs and 

GQDs were carried out with a near-infrared continuous laser (wavelength: 808 nm; laser 

power: 2.5 W cm-2). HeLa cells were seeded to a density of 5000 cells per well of a 96 well 

culture plate (BD Falcon, U.S.). Cells were incubated at 37 oC in a 5% CO2 atmosphere for 

24 h to allow for reattachment. After incubation, the cell culture medium was replaced by the 

MGQD or GQD suspension (100 µl of cell medium with a 50 µg ml-1 suspension of MGQD 



9 
 

or GQD). After 4 h incubation with the QDs, the cells were irradiated by a laser for 20 min or 

30 min. After incubation overnight, the QD suspension medium was removed and the cells 

were washed twice with PBS. To test the viability of the cells after irradiation, 100 µl of 

CCK-8 solution was added to each well and the cells were incubated for 2 h. The optical 

density of the cell solution was read on a microplate reader (Varioskan Flash, Thermo 

Scientific), with measurements taken at 450 nm.  

2.9 Biostability 

MGQD and MGQD-LH were dispersed in distilled water, PBS and FCS at a concentration of 

50 µg ml-1. Suspensions were imaged using a digital camera after predetermined intervals.   

2.10 Statistical analysis 

Statistical analysis (p < 0.05) and graphing were completed through MatLab 2012a software. 

Size analysis of TEM images was conducted through ImageJ software, with 60 separate 

samples taken over several images. 

 

3. Results and discussion 

3.1 Structure 

MGQDs were synthesized by coating the surface of GO with IO using the precursors 

of IO, followed by a hydrothermal treatment to simultaneously reduce GO into rGO and 

shatter the nanosheets to form MGQDs. The synthesis procedure is illustrated in Figure 1. 

Figure 2A shows TEM (A-1 and A-2) and AFM (Fig. 2B, Inset) images of MGQDs. The 

synthesized MGQDs have an average diameter of 41.8 (±8.1) nm from the TEM images, and 

an average diameter of 45.2 (±10.3 nm) and a height of 2.3 nm (±0.07 nm) from AFM. DLS 

results (Fig. 2B) show a mean hydrodynamic diameter of 61.4 nm, with a significant count 

within the 45–90 nm range. It is larger than the average diameters obtained from AFM and 

TEM, which can be accounted for by the presence of larger nanoparticles (i.e. agglomerates) 

in the polydisperse MGQD water suspension [37]. The diameter of the MGQDs is larger than 

hydrothermally reduced GQDs (5–25 nm) previously reported by by other groups [25,38,39], 

but these papers use either a longer hydrothermal treatment time (24 h) [38,39] or an 

additional oxidation procedure to further reduce the size of their GO before the hydrothermal 

treatment [25]. The diameter is, however, similar to that of the GQDs (51.9 nm) prepared by 

the same oxidation and hydrothermal treatment method in our group [40]. 
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Figure 1 Synthesis procedure for magnetic graphene quantum dots (MGQDs).  
 

 

 

 
Figure 2 (A) TEM images of MGQDs, showing that the QDs are approximately 40-50 nm in 
diameter, (B) DLS size analysis of MGQD aqueous suspension, showing the majority of MGQDs are 
within the 45-90 nm diameter range; (Inset) AFM image of MGQDs, showing an average height of 
2.3 nm and an average width of 45.2 nm. (C) EDS spectrum of the MGQD presented in Figure 2 (A-
2), showing a composition of carbon, oxygen, and iron; (inset) the SAED pattern of the MGQD, 
confirming the presence of iron oxide. 
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The MGQDs are identifiable in both the conventional and high resolution TEM 

images in dark contrast (Figure 2A1-2A2, 3A) on the amorphous carbon film support due to 

the presence of high density IO (4.9 – 5.2 g cm-3 for magnetite [41]) within the MGQDs as 

well as mass-thickness contrast, similar to the identification of IO on GO-IO reported in the 

literature [9]. Under HR-TEM, a region of magnetite (Fe3O4) within an MGQD (Figure 3B) 

can be identified by the (400) lattice spacing ~0.227 nm [42], with a similar region of 

magnetite in Figure 3C, 3D and 3E identifiable by the (220) lattice spacing of ~0.345 nm 

[42,43]. A region of folded graphene (or rGO) layers can also be seen in Figure 3D and 3E by 

the (002) lattice spacing of ~0.347 nm and the wrinkled structure similar to the literature 

[44,45]. The region of graphene in Figure 3D and 3E contrasts in structure to the amorphous 

carbon support on the TEM grid, shown in Figure S1 of Supplemental Information and also 

present in the upper section of Figure 3C. The region of IO in Figure 3D and 3E appears to be 

on the surface of the graphene region. Figure 3F shows a layer-structured nanoparticle with a 

darker layer on top of a lighter layer, which may be interpreted as a layer of dense IO coated 

on top of a graphene surface. The inset of Figure 3G shows our proposed structure of MGQD, 

with IO coated on top of the folded graphene sheets and with some edges of graphene sheets 

uncovered due to the fracture of IO-graphene during the hydrothermal reduction. As the 

residual IO precursors and IO were removed from GO-IO nanoparticles before hydrothermal 

treatment, we expect the amount of individual A-IO particles present in the MGQDs to be 

minimal, if any. 

As described previously, the average thickness of the MGQDs from AFM is 2.3 nm, 

which is thicker than the reported thickness of graphene (0.37 nm [46]), rGO (~0.8 nm [47]) 

or the GQDs prepared using the same hydrothermal reduction method (1.5 nm [40]). This 

suggests that the IO coating on both sides of the MGQD surface is likely 0.8 – 1.9 nm thick; 

however, we do not exclude the possibility of the presence of some residual thicker 

nanoparticles in the MGQD. IO growth on GO was reported to be smaller than pristine IO 

growth due to the dispersed nucleation of Fe3+ by the oxygen functional groups (C=O) of GO 

[48], and a similar effect may have occurred during the synthesis of the IO on the GO-IO 

followed by reduction of GO into rGO during hydrothermal cutting. 
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Figure 3 (A-F) HR-TEM images of MGQDs, showing (A) a cluster of MGQDs on amorphous carbon 
film support showing distinguishable individual MGQDs, (B) a region of IO on graphene (rGO), (C) a 
region of IO on carbon film support, (D-E) a region of IO on graphene, (F) an example of the layered 
structure of the MGQD, showing a graphene base with IO layer on top; (G) EELS spectrum of 
MGQDs, showing a composition of oxygen and iron, (Inset: Scheme of the proposed structure of the 
MGQDs). 
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Figure 4 (A) XRD traces, (B) Raman spectra (C) FT-IR spectra and (D) TGA curves of GO, IO, GO-
IO, GQDs, A-IO, and MGQDs. 

The composition of the MGQD in Figure 2A-2 can be seen in the EDS spectrum in 

Figure 2C, which confirms the presence of iron (0.72, 6.42, and 7.08 keV) [49,50]. The 

oxygen (0.54 keV) was from the IO and the residual oxygenated groups in the 
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hydrothermally reduced GO while carbon (0.3 keV) was from the rGO and carbon-coated 

copper grids (0.94, 8.06, and 8.92 keV) [49,51]. The SAED pattern (Figure 2C, Inset) has the 

ring patterns associated with (220) and (104) diffraction peaks of magnetite and hematite (α-

Fe2O3) respectively [52,53]. The EELS spectrum of a thin layer-structured nanoparticle 

acquired from HR-TEM (Figure 3G) confirms the presence of IO on the MGQD, as shown by 

the oxygen K-edge peaks at 529, 540, and 561 eV and the iron L2,3 peaks at 708 and 722 eV 

[54]. 

The results from XRD (Figure 4A) confirm that the MGQDs are characterized by 

both rGO and a mixture of magnetite, maghemite (γ-Fe2O3), and hematite. GO has been 

oxidized from graphite and is largely exfoliated (weak (002) peak at 2θ = 10.6o) [33]. IO is 

crystalline, with a (220) peak at 2θ = 30.7o, a strong (311) peak at 2θ = 35.5o, a (400) peak at 

2θ = 43.2o, a (422) peak at 2θ = 57.2o, and a (511) peak at 2θ = 62.5o [53,55–57]. This 

corresponds with the JCPDS 19-0629 card for magnetite, as IO possesses the (311), (220), 

(511) and (422) peaks that are common to both magnetite and maghemite but lacks of the 

characteristic (210), (211) and (213) peaks of maghemite (JCPDS 39-1346) [53,58]. GO-IO 

displays a distinct (311) peak from the IO, with the other peaks at a lower intensity, showing 

that the magnetite is formed before the hydrothermal treatment, as previously reported [8]. 

GQDs are characteristic of rGO ((002) peak at 2θ = 25.4o) [59]. A-IO is a mixture of 

magnetite, maghemite, and hematite (the α- mineral form of maghemite), with the (311), 

(220), and (422) peaks from the IO, maghemite specific peaks (210), (211), (213), and 

hematite characteristic peaks (021), (110), (024) (JCPDS 33-0664) indicated on the curve 

[53,60]. The presence of hematite is caused by the partial topotactic oxidation of magnetite at 

200 oC during autoclaving [61]. The MGQD curve shows a change in structure from both 

GQD and A-IO. rGO can be identified by the weak (002) peak at 2θ = 21.6o. This peak has 

shifted by 3.8o when compared to the GQD curve, which may stem from the reaction of GO 

and IO during autoclaving that may have altered the crystalline structure (vide infra) [62]. 

The effect of rGO within the MGQDs has caused a reduction in intensity of the (311) and 

(511) peaks from IO, a new (440) peak at 2θ = 76.0o common to magnetite and maghemite, 

and the introduction of a (104) peak at 2θ = 38.3o, a (113) peak at 2θ = 45.5o, and a (300) 

peak at 2θ = 78.1o, all from hematite [53]. 

A further analysis of the structure of the MGQDs and the structural change during 

autoclaving was performed through Raman spectroscopy of GO, IO, GO-IO, GQDs, A-IO 

and MGQDs (Figure 4B). GO can be identified by the G band at 1591 cm-1 (E2g mode) and 

the D band at 1322 cm-1 (A1g) [63]. The IO is a mixture of magnetite and maghemite, with the 

maghemite caused by the local extreme heating of the IO powder by the laser source as it was 
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not identified in the XRD analysis [64,65]. The peak at 300 cm-1 and the broad peak at 660 

cm-1 are assigned to magnetite T2g and A1g, while the peaks at 217, 283 and 401 cm-1 are 

attributed to hematite A1g(1), Eg(2 + 3), and E2g(4) [61,64,66]. The GO-IO spectrum is a 

combination of the characteristic peaks of the GO and IO spectra, again showing the 

successful seeding of IO crystals onto the GO nanosheets. The GQDs can be identified by the 

G band at 1594 cm-1 (E2g mode) and the D band at 1359 cm-1 (a1g), with the ratio of the 

intensities of the D peak to the G peak decreasing relative to GO, showing an increase in the 

sp2 carbon structure of pristine graphene and graphite. A-IO is characterized as a mixture of 

magnetite and hematite, with a magnetite peak at 653 cm-1 [64,67] and a hematite peak at 619 

cm-1 [53,64,67], and with additional goethite (α-FeOOH, the hydrated form of hematite) 

peaks at 924 cm-1 and at 1442 cm-1 [68]. MGQDs can be seen to be magnetite (656 cm-1) 

[64,67], maghemite (broad peak at 500 cm-1) [64,67], hematite (peaks at 218, 287, 402, and 

604 cm-1) and rGO (G peak at 1588 cm-1) [63]. The Raman spectrum of the MGQDs is closer 

to GO-IO than to A-IO. Presumably this is because the IO within the MGQD is magnetite, 

like with GO-IO while the A-IO is mainly composed of maghemite and hematite. The IO of 

MGQD is in the form of a film on the surface of the MGQD as previously described, and 

only has one outer surface exposed to the effects of the hydrothermal treatment, unlike the A-

IO particles which have all the surfaces exposed. This reduces the effect of the hydrothermal 

reaction on the IO on graphene surface, leading to a different chemical composition. 

FT-IR spectra of the nanomaterials are shown in Figure 4C. GO has C-O bonds at 

1043 cm-1, C=C bonds at 1621 cm-1 and C=O bonds at 1720 cm-1. On the IO spectrum, a peak 

for the Fe-O bond is present at 551 cm-1 [8]. For the GO-IO, the synthesis procedure of IO on 

the GO has led to the shift of the C=C aromatic bonds of the GO from 1621 cm-1 to 1593 cm-

1 and to the creation of O-C=O bonds at 1415 cm-1 [69]. The Fe-O peak has been maintained 

and is at 527 cm-1. The GQD curve shows a reduction in functional groups in comparison to 

GO, with the peaks barely visible on the curve, confirming the reduction of GO to rGO. A-IO 

possesses 622 and 537 cm-1 peaks attributed to Fe-O peaks [66]. MGQDs have 646, 619 and 

462 cm-1 peaks attributed to Fe-O bonds from magnetite, maghemite and hematite, a C=C 

peak at 1564 cm-1 and O-C=O peak at 1406 cm-1 peak that are similar to GO-IO, and 1086 

and 1012 cm-1 peaks attributed to C-Fe bonds confirming the chemical bonding between rGO 

and IO [66].  

Figure 4D shows the TGA curves of the MGQD and its control samples in a nitrogen 

atmosphere. TGA suggests that GO is oxidized graphene (dissociation of epoxide and 

hydroxyl groups at ~200 oC is 23% of the total dry mass). IO has limited dissociation of ~5% 

(similar to magnetite) as it does not possess any functional groups on the surface to be 
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dissociated [70]. GO-IO is a mixture of GO and IO with a main mass loss (~27% of the dry 

mass) at ~780 oC, attributed to the reaction of IO with carbon from rGO to release CO and 

CO2 gases [71]. The GQDs are rGO (reduced mass loss as compared to GO at ~200 oC, 0.5% 

of the total dry mass). A-IO has a major mass loss between 400 and 500 oC (~19% of the dry 

mass) that is attributable to the phase transformation from maghemite to hematite; this phase 

transformation may be accompanied by other transformations such as conversion of 

maghemite to an intermediate product magnetite [53,71–73]. The MGQDs have a minor mass 

loss step at ~720 oC (~3% of the dry mass), which could be due to the reaction between α-

Fe2O3 and carbon of graphene [73], resulting in the release of CO and CO2. The major mass 

loss at ~780 oC in the curve for GO-IO has moved to ~850 oC (with a loss of ~32% of the dry 

mass), which may be the result of autoclaving that has caused phase transformation of the IO 

and the chemical bonding between IO and rGO. 

ICP-MS analysis calculated the quantity of Fe in the MGQD as 448 g kg-1. 

Theoretically, the amount of Fe in Fe2O3 is 70.0 wt.% and in Fe3O4 is 72.4 wt.%. If the 

amount of Fe in the MGQDs is 447.89 g kg-1 (considering the measurement error as 0.11 g 

kg-1 measured for GQDs using the same process), this allows for the mass percentage of IO 

within the MGQDs to be calculated as between 62 – 64 wt.%, with the remainder being the 

rGO. This suggests that IO is the major component of the MGQDs with graphene as the 

minor component. The density of the MGQDs was measured through pycometry as 3.66 (± 

0.006) g cm-3 for MGQDs. In comparison, the density of GQDs was 1.66 (± 0.006) g cm-3, 

slightly higher than that for chitosan-reduced rGO (1.46 g cm-3) [74] because of the absence 

of chitosan in the GQDs. The increase in density of the MGQDs over the value of GQDs is 

due to the higher density of the IO within the MGQD structure, e.g. 4.9 – 5.2 g cm-3 for 

magnetite [41].  

 

3.2 Photoluminescent and magnetic properties 

The photo-physical properties of the nanoparticles were characterized using steady-state UV-

Vis spectroscopy. As shown in Figure 5A, MGQDs and GQDs have absorbance peaks at 270 

nm and 320 nm, with the MGQDs also exhibiting the characteristic absorbance trait of A-IO 

in the wavelength region 400 to 500 nm. The emission characteristics of the MGQDs are 

presented in Figure 5B. Here, excitation of the MGQDs at 320 nm (corresponding to the peak 

in the excitation spectrum) yields an emission spectrum with a peak at 398 nm. This emission 

value is slightly lower than that (420 nm) observed for the GQDs prepared by the same 

hydrothermal method [40]. Quantum yield measurements (using Equation 1) gave a value of 

7.9% for the MGQDs, similar to the published literature for GQDs (5.5-14%) prepared by 
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other groups [20,23,24,75] and slightly lower than the GQDs prepared using the same method 

(9.4%) [40]. These suggest the presence of IO slightly quenches the luminescence of GQDs. 

The photos in the inset confirm the photoluminescence (PL) properties of the MGQDs (right), 

in contrast to the control sample of PBS solution. MGQDs, in a 1 mg ml-1 aqueous 

suspension, have a PL lifetime of 1.9 ns (Figure 5C), similar to GQDs and conventional QDs 

in the literature (range of 1-10 ns) [76–79], and slightly lower than the GQDs prepared using 

the same method (2.3 ns) [40]. 

 

 
 

Figure 5 (A) UV-Vis spectra for GO, IO, GO-IO, GQDs, A-IO and MGQDs (0.3 mg ml-1 
concentration in distilled water); (B) Photoluminescence spectra of MGQDs showing the excitation 
wavelengths versus emission wavelengths; (Inset) Photoluminescent imaging of (left) PBS and (right) 
MGQDs in PBS under 360 nm light; (C) PL lifetime data for MGQDs in an aqueous suspension (1 
mg ml-1). 
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Previously reported GQDs with attached IO (GQD-IOs) did not possess PL properties 

as they synthesized GQDs first and then attached IO [15]. Coating of IO onto the GQDs 

quenched the fluorescence of GQDs, which is similar to the quenching behavior of gold 

nanoparticles bonded to semiconductor QDs [80]. It was theorized that a QD would have its 

fluorescence quenched by a non-radiative energy dissipation process from the bonded 

nanoparticles, and not explicitly through a decrease in the radiative (PL) properties of the QD 

itself [80,81]. In our process the GO-IO was synthesized first and then reduced to MGQDs; 

the reduction procedure broke the GO-IO into small QDs (Figure 2), with the edges of the 

core-GQD within the MGQD now exposed. These edges have a zigzag structure that contain 

triple carbenes [82] which are linked to the electron orbital transition at 320 nm [25], and so 

the PL properties of GQDs are preserved. 

 
Figure 6 (A) Magnetic hysteresis loop of MGQDs and (Inset) digital images of the effect of 
external magnetic stimulation upon MGQD powder, (left) before and (right) after a magnet is 
placed beside it. (B) T2 relaxation time of MGQDs from M.R.I. and (Inset) digital images of 
MGQDs as contrast agents, as a function of increasing Fe concentration. 

The magnetic hysteresis loop of MGQDs (Figure 6A), determined with a SQUID, 

illustrate that they possess no residual magnetization and are superparamagnetic. The 

saturation magnetization of the MGQDs was 7.31 emu g-1, comparable to other magnetic 

nanoparticles (4.62 emu g-1) [8]. As demonstrated in Figure 6A (Inset), the MGQDs can be 

drawn towards a magnet from a resting position. Figure 6B is the T2 relaxation time of 
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MGQDs from M.R.I., with the slope of the relaxation time determined as 4.16 mM-1 s-

1. In comparison, the slope of the relaxation time of magnetite can vary from 35.48  to 

114 mM-1 s-1 [14,83], maghemite had a slope of 43.3 mM-1 S-1 [84], and gadolinium-doped 

graphene and a GO-IO-manganese oxide nanoparticle had slopes of 108 mM-1 s-1 [85], and 

65.9 − 103 mM-1 s-1 [86], respectively. The relaxation time slopes of nanoparticles that 

contain IO vary due to the different Fe concentrations of the nanoparticles used [14,83,86]. 

Figure 6B (Inset) shows digital images of MGQDs as contrast agents as a function of 

increasing Fe concentration. The results of the PL and magnetic properties tests 

confirm that the MGQDs can potentially be used for dual-modality fluorescent and 

M.R.I. applications. 

 

3.3 Cell viability and imaging 

MGQDs were found to have limited cytotoxicity up to a concentration of 50 µg ml-1 

in MTT cell viability tests (Figure 7A). Suspensions of MGQDs of 20 and 50 µg ml-1 in 

DMEM gave cell viability levels of  70 – 75% compared to cell culture on tissue culture 

plastic at an initial 6 h and 24 h incubation times, suggesting that they have a low 

cytotoxicity. The cell viability values for MGQDs are similar to those recorded for pristine 

IO nanoparticles used for M.R.I. (80% for 50 µg ml-1) [87] and other GQDs reported before 

that are used for fluorescent imaging (70-80%) [20,24,26,27]. There is a dose dependent 

cytotoxic effect with a steep decrease in cell viability from 50 µg ml-1 to 500 µg ml-1. The 

visual effects of acute exposure (6 h incubation) to MGQDs shown in Figures 7B-1 – 7B-6 

for cells which were subsequently cultured for a further 72 h. Cells which had encountered 20 

and 50 µg ml-1 MGQDs grew well showing no long term adverse effects while cells which 

were exposed to concentrations of 100, 200 and 500 µg ml-1 did not recover and increase in 

number over the 72 h (Figures 7B-4 – 7B-6). Many of these cells are seen as the compact, 

white, and circular nodes: an appearance that was previously reported to indicate apoptosis 

[88]. 

The cell viability of nanoparticles at higher concentrations can be improved upon by 

passivation with a coating of a biocompatible organic compound, with amine functionalized 

GQDs [23] and IO functionalized by pullulan [87] significantly improving the cell viability 

of the respective nanoparticles. Chitosan could also act as a passivation agent as previous 

work has shown that chitosan functionalized rGO was more stable in simulated body fluids 

than pristine GO [89], and that chitosan functionalized graphene nanosheets are 

biocompatible and do promote the proliferation of cells [90]. 
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Figure 7 MTT cell viability results for MGQDs treated fibroblast cells. Concentrations used were 20, 
50, 100, 200, and 500 µg ml-1 in DMEM medium and the initial incubation times were 6 h and 24 h. 
Cells were then washed and cultured for a further 72 h before viability was assessed. Bars with the 
same symbols (*, +, -) were statistically similar to each other (p < 0.05). Optical microscopy images 
of the cells were taken 72 h after an initial 6 h incubation with MGQDs. Concentrations used were (B-
1) 0 (control), (B-2) 20, (B-3) 50, (B-4) 100, (B-5) 200, and (B-6) 500 µg ml-1. 
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Figure 8 Optical microscopy images of fibroblast cells after an initial 12 h incubation with MGQDs. 
Concentrations used were (A-C) 50 µg ml-1 and (D-F) 100 µg ml-1. (A) and (D) are the fibroblast cells 
under normal light, and (B) and (E) are under fluorescent light. (C) and (F) are an overlay of the white 
and fluorescent light images. 

Figure 8 shows fibroblast cells under 345 nm irradiation that have been treated with 

(A-C) 50 µg ml-1 and (D-F) 100 µg ml-1 of MGQDs for 12 h. Figure 8 C and F are overlaid 

white light (Figure 8 A and D) and fluorescent light (Figure 8 B and E) images, showing that 

the emission of fluorescent light is from within the cells which suggests that the MGQDs 

entered the cells for both suspension concentrations. The emission is concentration 

dependent, with the emission from the cells stronger when treated with 100 µg ml-1 of 

MGQDs than with 50 µg ml-1; the higher concentration of MGQDs in the suspension allowed 

for more MGQDs to be internalized into the cells, but higher concentrations have been shown 

to be cytotoxic after a long period of incubation (Figure 7A). Nevertheless, at 50 µg ml-1 it is 

still possible to image the nanoparticles. When surface-treated with a passivation agent, 

MGQDs at a higher concentration such as 100 µg ml-1 may also be used without incurring 

toxicity to cells. 

 

3.4 Drug delivery 

The physical bonding of the anesthetic lidocaine hydrochloride (LH) (Figure 9A, inset) onto 

MGQDs to form MGQD-LH is mainly through π-π stacking between the aromatic rings of 

the MGQDs and LH [91]. Figure S2 shows the transposing of LH peaks onto MGQD in FT-

IR (S2A) and Raman (S2B) spectra, showing that the LH is adsorbed to the surface of the 
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MGQDs. A comparison of TGA curves of MGQD-LH with LH and MGQD (Figure 9A) 

allows for the quantity of the drug in MGQD-LH to be estimated as 24 wt.%, giving an 

estimated loading ratio of LH:MGQD of 0.31:1. The drug release profile (Figure 9B) 

determined that the release of LH from MGQD-LH into the PBS achieved ~100% (106.9 ± 

13.1%) of the total drug available, or 5.09 (± 0.63) mg ml-1, at 8 h, after which the test was 

terminated.  
   

 
 

 

 
 

 
Figure 9 (A) TGA curves for MGQD, MGQD-LH and LH (Inset: chemical structure of LH). (B) The 
release of LH from MGQD-LH over the course of 8 h. 

To determine if the diffusion of LH from the MGQD follows Fickian law, Equation 2 

was used [92]: 

��

��
� � � ��																																																																					
2� 

in which Qt is the amount of drug released at the time “t”, QT is the total amount of drug 

released during the experiment, K is the diffusion coefficient and n is the diffusion release 

exponent. It was found that the values of 0.56 µg s-1 and 0.55 for K and n best fit the 

experimental data presented in Figure 9B. This shows that the diffusion of the LH from the 

MGQD was not Fickian but anomalous [93] at pH = 7.4, similar to the diffusion of 

doxorubicin from GO [94] and rhodamine B from GO into a solution of pH = 4.5 [95]. These 

results indicate that a drug can be bonded to the surface of MGQDs and then be gradually 

released from the MGQDs into the body. It has been previously shown in the literature that 
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similar nanoparticles like carbon QDs [28], GO [96] and IO [6] can be extracted from the 

blood and collect in the spleen/bladder to be excreted from the body through urine.  

 

3.5 Photothermal properties 

 
 

 
Figure 10 Temperature increase differential between (A) MGQD suspensions and (B) GQD 
suspensions, and distilled water (control) under NIR 808 nm laser irradiation with varying power. (C) 
CCK-8 cell viability of HeLa cells incubated with 50 µg ml-1 MGQD or GQD suspensions and 
irradiated with a  2.5 W cm-2 NIR laser (wavelength: 808 nm) for 0 min, 20 min, or 30 min. Control 
cells were pristine HeLa cells without QD treatment. 

There is a possibility of using the MGQDs for cancer photothermal therapy, where the 

MGQDs absorb NIR light and convert it to heat that can be used to kill cancer cells locally 

[97]. To assess their potential for this application, suspensions of MGQDs in distilled water, 

together with GQD suspensions and distilled water control sample, were irradiated with a 2, 
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5, and 7.5 W cm-2 NIR laser (wavelength: 808 nm) for a period of time. The results (Figure 

10) show that the temperature of the QD suspension increases with increasing laser power as 

well as QD concentration. After 20 min under 5 W cm-2 irradiation power, it can be seen that 

the temperature of the 50 µg ml-1 MGQD suspension increases by 32.6 oC, compared to 8.9 oC 

for the water control sample and 8.4 oC for the 50 µg ml-1 GQD suspension. This can be 

attributed to the higher absorption of the MGQDs in the NIR range (700-800 nm, Figure 5A) 

than the GQDs; this higher absorption is due to the presence of IO on the MGQDs. After 20 

min, the suspension of 50 µg ml-1 MGQDs at 7.5 W cm-2 achieved a temperature increase of 

46.3 oC; this is comparable to the increase of the 100 µg ml-1MGQD suspension (49.4 oC) 

after 16 min at 5 W cm-2 irradiation. This concentration and laser power dependent result 

shows that the MGQDs can be used as an effective photothermal ablation agent at a low 

concentration that was determined to have low cytotoxicity (Figure 7). The differences in 

suspension concentration, irradiation time, and irradiation power make direct comparisons 

between previously reported photothermal therapy agents difficult. But, generally MGQDs 

compare well to other nanoparticles that are structurally and elementally similar, in particular 

GO-poly(ethylene glycol) (PEG) [13], rGO-PEG [13], GO-IO [9], and IO [14]. MQGDs also 

compare well to other photothermal agents such as carbon nanotubes [98] and gold 

nanoparticles [99].  

The photothermal therapy results suggest that the MGQDs could be potentially used 

for the ablation of tumours, where the presence of MGQDs within the tumour will raise the 

temperature and kill tumour cells locally [97]. MGQDs and GQDs were incubated for 4 h 

with HeLa cells for in vitro photothermal ablation studies (Figure 10C). Under 2.5 W cm-2 

NIR laser irradiation, untreated HeLa cells can be seen to have a similar cell viability, with 

statistical insignificance, to the untreated, non-irradiated cells. This shows that laser 

irradiation alone at this power density will not reduce the viability of the HeLa cells. The 

presence of MGQDs, without irradiation, reduced the cell viability of HeLa cells to 68%, 

compared to 84% for GQDs. These two values are lower than the values for fibroblast cells 

(Figure 7A) due to the different types of cell and incubation conditions used. There are two 

possible causes of this cell-specific susceptibility. MGQDs could have a higher cytotoxic 

effect on HeLa cells than on dermal fibroblast cells because of a higher susceptibility of 

HeLa cells to reactive oxide species than for the fibroblast cells, similar to the differing cell 

viability results for IO when incubated with mesothelioma cells and mice fibroblast that was 

attributed to reactive oxide species damage [100]. This difference may be due also to the rate 

of uptake of the MGQDs into the differing cells [100]; for example, a previous report [101] 

shows the differing rates of uptake for uncoated IO into mouse macrophage and human breast 
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cancer cells. Coating the IO with a biocompatible polymer such as PEG can lower the 

reactive oxide species effect on cells and affect the rate of uptake into cells [101], which may 

increase the cell viability of HeLa cells treated with MGQDs if desired. There is a time 

dependent decrease in cell viability, with a more substantial decrease in cell viability 

occurring when the HeLa cells that were treated with MGQDs were irradiated for 30 min 

than for 20 min (cell viability of 41% versus 62%, respectively). GQDs, under irradiation, did 

not reduce the cell viability of the HeLa cells by as much, achieving a reduction to 83% and 

74% for 20 min and 30 min irradiation time, respectively. This difference between the GQDs 

and the MGQDs is in accordance with the temperature increases from the photothermal 

measurement.  

Previously, QDs such as CuS [102,103] were used as photothermal ablation agents 

under irradiation with a 808 nm laser, with the QDs reducing the viability of HeLa cells [102] 

and of U87 glioblastoma cells [103]. When irradiated for 5 min with a 12 W cm-2 NIR laser, 

around ~65% of the tumour tissue in mice treated with CuS QDs showed signs of necrosis 

[103]. rGO-IO nanosheets achieved the full ablation of 4T1 tumours in mice that were treated 

with a 5 min exposure of 0.5 W cm-2 near-infrared laser irradiation [12]. In comparison to 

these results, our MGQDs are not as efficient as photothermal ablation agents under the laser 

irradiation conditions that we use, but they do offer bimodal imaging, with intrinsic M.R.I 

and fluorescent imaging capability. Also by increasing the laser power density (but still 

within the safe-use range), the photothermal ablation effect of the MGQDs may be improved. 

 

3.5 Biostability 

The stability of the MGQDs in biological fluids, including water, PBS and FCS, was assessed 

and the results are shown in Figure 11. It can be seen that pristine MGQDs partially 

aggregate in distilled water and PBS (pH = 7.4) within 2 h, with larger particles falling to the 

bottom of the container, but the remaining particles remained stable in suspension as the 

quantity of aggregates did not increase with time up to 24 h. The IO on the surface of MGQD 

is hydrophobic [104] and aggregates in water and in PBS. MGQDs in FCS aggregated 

significantly within 2 h, presumably due to the crosslinking of MGQDs by hydrogen bonding 

of the proteins in the FCS with the remaining –COOH groups on MGQD edges [105]. The 

coating of LH onto the MGQD surface has reduced this crosslinking effect and greatly 

improved the biostability of the MGQD over 10 days (Figure 11E), with minimal further 

aggregation of the MGQD-LH after the initial 2 h. In solution, LH maintains a positive ionic 

charge [106], and in FCS the LH coating prevents the MGQDs from aggregating through 

electrostatic repulsion. Coating the MGQDs with another ionic biopolymer, such as chitosan, 
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may also improve the stability of the MGQDs, similar to the improvement afforded to 

chitosan-coated rGO [89], as well as decreasing the cytotoxicity of the MGQDs [90]. 

 
Figure 11 The biostability of (A-C) MGQDs and (D) MGQD-LH suspensions in solutions of (A) 
distilled water, (B) PBS (pH=7.4), (C-D) FCS. (E) MGQD-LH biostability in FCS over 10 days, 
showing that the drug coated MGQD is relatively stable in biological fluid over the test period of 
time. 

4. Conclusions 

The synthesis of MGQDs through the hydrothermal reduction of a water suspension of GO-

IO nanoparticles was shown. The MGQDs were found to be around 45 nm in diameter and 

2.3 nm high from TEM and AFM, with a composition of carbon, oxygen, and iron identified 

from EDS and EELS. Iron oxide was coated onto the graphene surface as a thin film and 

maybe also as individual particles within the bulk MGQDs. A mixture of iron oxides 

(magnetite, maghemite, and hematite) and rGO was formed during the hydrothermal 

reduction process, as determined from XRD, Raman spectroscopy, FT-IR and TGA. MGQDs 

emitted violet light with a wavelength of 398 nm when excited at 320 nm, showing excellent 

photoluminescent properties. They were also superparamagnetic, as determined by magnetic 

hysteresis analysis, and could act as a T2 contrast agent in M.R.I. applications.  
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A safe dosage level of 50 µg ml-1 was determined through cell viability testing with 

dermal fibroblasts for 24 h. Cells which had encountered a concentration of 50 µg ml-1 or 

lower of MGQDs grew well and showed no long term adverse effects. The MGQDs (50 µg 

ml-1 or 100 µg ml-1) entered the cells after incubation for 12 h and could be detected by 

fluorescent imaging. A model drug was successfully bonded to the MGQDs, with a loading 

ratio of 0.31:1 (LH:MGQD), as characterized by FT-IR, Raman spectroscopy and TGA. The 

full release of the drug from the MGQD surface was achieved within 8 h. MGQDs, under 

NIR irradiation, generated a higher temperature than GQDs or distilled water due to the 

presence of iron oxide which is a more effective NIR absorber, and could achieve more 

significant temperature increases at a low concentration and laser power. This higher NIR 

absorption allowed for the MGQDs to reduce the cell viability of cancer cells during in vitro 

laser ablation experiments by a greater amount than was possible with GQDs. Ionic drug 

coated MGQDs were shown to have a better stability in FCS than uncoated MGQDs, which 

showed the coated MGQDs were relatively stable in FCS over the test period (10 days). 

 These results demonstrate that the MGQDs have a low cytotoxicity and they retained 

the photoluminescent properties of GQDs which, in conjunction with the superparamagnetic 

properties from IO nanoparticles, would allow for fluorescent and M.R.I. dual-modality 

imaging in biomedical applications without the need to use an additional fluorescent dye. 

Meanwhile, the MGQDs could be used as a targeted drug carrier via the physical bonding of 

a therapeutic to the MGQDs and the subsequent release of the therapeutic at the desired site 

by external magnetic stimulation, and as an effective potential agent for cancer photothermal 

therapy.  
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