6,041 research outputs found

    Examining leptogenesis with lepton flavor violation and the dark matter abundance

    Full text link
    Within a supersymmetric (SUSY) type-I seesaw framework with flavor-blind universal boundary conditions, we study the consequences of requiring that the observed baryon asymmetry of the Universe be explained by either thermal or non-thermal leptogenesis. In the former case, we find that the parameter space is very constrained. In the bulk and stop-coannihilation regions of mSUGRA parameter space (that are consistent with the measured dark matter abundance), lepton flavor-violating (LFV) processes are accessible at MEG and future experiments. However, the very high reheat temperature of the Universe needed after inflation (of about 10^{12} GeV) leads to a severe gravitino problem, which disfavors either thermal leptogenesis or neutralino dark matter. Non-thermal leptogenesis in the preheating phase from SUSY flat directions relaxes the gravitino problem by lowering the required reheat temperature. The baryon asymmetry can then be explained while preserving neutralino dark matter, and for the bulk or stop-coannihilation regions LFV processes should be observed in current or future experiments.Comment: 20 pages, 5 figures, 1 tabl

    Re A (A Child) and the United Kingdom Code of Practice for the Diagnosis and Confirmation of Death: Should a Secular Construct of Death Override Religious Values in a Pluralistic Society?

    Get PDF
    The determination of death by neurological criteria remains controversial scientifically, culturally, and legally, worldwide. In the United Kingdom, although the determination of death by neurological criteria is not legally codified, the Code of Practice of the Academy of Medical Royal Colleges is customarily used for neurological (brainstem) death determination and treatment withdrawal. Unlike some states in the US, however, there are no provisions under the law requiring accommodation of and respect for residents’ religious rights and commitments when secular conceptions of death based on medical codes and practices conflict with a traditional concept well-grounded in religious and cultural values and practices. In this article, we analyse the medical, ethical, and legal issues that were generated by the recent judgement of the High Court of England and Wales in Re: A (A Child) [2015] EWHC 443 (Fam). Mechanical ventilation was withdrawn in this case despite parental religious objection to a determination of death based on the code of practice. We outline contemporary evidence that has refuted the reliability of tests of brainstem function to ascertain the two conjunctive clinical criteria for the determination of death that are stipulated in the code of practice: irreversible loss of capacity for consciousness and somatic integration of bodily biological functions

    Imaging of acute appendicitis in children: EU versus US ... or US versus CT? A European perspective

    Get PDF
    There is substantial evidence that imaging may reduce the negative appendectomy rate, also in children. However, controversy exists about the preferred method: US or CT, and the choice appears to be determined by the side of the Atlantic Ocean. This review brings forth several arguments in favour of U

    On the Integrand-Reduction Method for Two-Loop Scattering Amplitudes

    Full text link
    We propose a first implementation of the integrand-reduction method for two-loop scattering amplitudes. We show that the residues of the amplitudes on multi-particle cuts are polynomials in the irreducible scalar products involving the loop momenta, and that the reduction of the amplitudes in terms of master integrals can be realized through polynomial fitting of the integrand, without any apriori knowledge of the integral basis. We discuss how the polynomial shapes of the residues determine the basis of master integrals appearing in the final result. We present a four-dimensional constructive algorithm that we apply to planar and non-planar contributions to the 4- and 5-point MHV amplitudes in N=4 SYM. The technique hereby discussed extends the well-established analogous method holding for one-loop amplitudes, and can be considered a preliminary study towards the systematic reduction at the integrand-level of two-loop amplitudes in any gauge theory, suitable for their automated semianalytic evaluation.Comment: 26 pages, 11 figure

    A Bi-Functional Anti-Thrombosis Protein Containing Both Direct-Acting Fibrin(ogen)olytic and Plasminogen-Activating Activities

    Get PDF
    Direct-acting fibrin(ogen)olytic agents such as plasmin have been proved to contain effective and safety thrombolytic potential. Unfortunately, plasmin is ineffective when administered by the intravenous route because it was neutralized by plasma antiplasmin. Direct-acting fibrin(ogen)olytic agents with resistance against antiplasmin will brighten the prospect of anti-thrombosis. As reported in ‘Compendium of Materia Medica’, the insect of Eupolyphaga sinensis Walker has been used as traditional anti-thrombosis medicine without bleeding risk for several hundreds years. Currently, we have identified a fibrin(ogen)olytic protein (Eupolytin1) containing both fibrin(ogen)olytic and plasminogen-activating (PA) activities from the beetle, E. sinensis. Objectives: To investigate the role of native and recombinant eupolytin1 in fibrin(ogen)olytic and plasminogen-activating processes. Methods and Results: Using thrombus animal model, eupolytin1 was proved to contain strong and rapid thrombolytic ability and safety in vivo, which are better than that of urokinase. Most importantly, no bleeding complications were appeared even the intravenous dose up to 0.12 µmol/kg body weight (3 times of tested dose which could completely lyse experimental thrombi) in rabbits. It is the first report of thrombolytic agents containing both direct-acting fibrin(ogen)olytic and plasminogen-activating activities. Conclusions: The study identified novel thrombolytic agent with prospecting clinical potential because of its bi-functional merits containing both plasmin- and PA-like activities and unique pharmacological kinetics in vivo

    Etching and Narrowing of Graphene from the Edges

    Full text link
    Large scale graphene electronics desires lithographic patterning of narrow graphene nanoribbons (GNRs) for device integration. However, conventional lithography can only reliably pattern ~20nm wide GNR arrays limited by lithography resolution, while sub-5nm GNRs are desirable for high on/off ratio field-effect transistors (FETs) at room temperature. Here, we devised a gas phase chemical approach to etch graphene from the edges without damaging its basal plane. The reaction involved high temperature oxidation of graphene in a slightly reducing environment to afford controlled etch rate (\leq ~1nm/min). We fabricated ~20-30nm wide GNR arrays lithographically, and used the gas phase etching chemistry to narrow the ribbons down to <10nm. For the first time, high on/off ratio up to ~10^4 was achieved at room temperature for FETs built with sub-5nm wide GNR semiconductors derived from lithographic patterning and narrowing. Our controlled etching method opens up a chemical way to control the size of various graphene nano-structures beyond the capability of top-down lithography.Comment: 18 pages, 4 figures, to appear in Nature Chemistr

    A Markov blanket-based method for detecting causal SNPs in GWAS

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Detecting epistatic interactions associated with complex and common diseases can help to improve prevention, diagnosis and treatment of these diseases. With the development of genome-wide association studies (GWAS), designing powerful and robust computational method for identifying epistatic interactions associated with common diseases becomes a great challenge to bioinformatics society, because the study of epistatic interactions often deals with the large size of the genotyped data and the huge amount of combinations of all the possible genetic factors. Most existing computational detection methods are based on the classification capacity of SNP sets, which may fail to identify SNP sets that are strongly associated with the diseases and introduce a lot of false positives. In addition, most methods are not suitable for genome-wide scale studies due to their computational complexity.</p> <p>Results</p> <p>We propose a new Markov Blanket-based method, DASSO-MB (Detection of ASSOciations using Markov Blanket) to detect epistatic interactions in case-control GWAS. Markov blanket of a target variable T can completely shield T from all other variables. Thus, we can guarantee that the SNP set detected by DASSO-MB has a strong association with diseases and contains fewest false positives. Furthermore, DASSO-MB uses a heuristic search strategy by calculating the association between variables to avoid the time-consuming training process as in other machine-learning methods. We apply our algorithm to simulated datasets and a real case-control dataset. We compare DASSO-MB to other commonly-used methods and show that our method significantly outperforms other methods and is capable of finding SNPs strongly associated with diseases.</p> <p>Conclusions</p> <p>Our study shows that DASSO-MB can identify a minimal set of causal SNPs associated with diseases, which contains less false positives compared to other existing methods. Given the huge size of genomic dataset produced by GWAS, this is critical in saving the potential costs of biological experiments and being an efficient guideline for pathogenesis research.</p

    Properties of Graphene: A Theoretical Perspective

    Full text link
    In this review, we provide an in-depth description of the physics of monolayer and bilayer graphene from a theorist's perspective. We discuss the physical properties of graphene in an external magnetic field, reflecting the chiral nature of the quasiparticles near the Dirac point with a Landau level at zero energy. We address the unique integer quantum Hall effects, the role of electron correlations, and the recent observation of the fractional quantum Hall effect in the monolayer graphene. The quantum Hall effect in bilayer graphene is fundamentally different from that of a monolayer, reflecting the unique band structure of this system. The theory of transport in the absence of an external magnetic field is discussed in detail, along with the role of disorder studied in various theoretical models. We highlight the differences and similarities between monolayer and bilayer graphene, and focus on thermodynamic properties such as the compressibility, the plasmon spectra, the weak localization correction, quantum Hall effect, and optical properties. Confinement of electrons in graphene is nontrivial due to Klein tunneling. We review various theoretical and experimental studies of quantum confined structures made from graphene. The band structure of graphene nanoribbons and the role of the sublattice symmetry, edge geometry and the size of the nanoribbon on the electronic and magnetic properties are very active areas of research, and a detailed review of these topics is presented. Also, the effects of substrate interactions, adsorbed atoms, lattice defects and doping on the band structure of finite-sized graphene systems are discussed. We also include a brief description of graphane -- gapped material obtained from graphene by attaching hydrogen atoms to each carbon atom in the lattice.Comment: 189 pages. submitted in Advances in Physic

    ARID1B is a specific vulnerability in ARID1A-mutant cancers

    Get PDF
    Summary Recent studies have revealed that ARID1A is frequently mutated across a wide variety of human cancers and also has bona fide tumor suppressor properties. Consequently, identification of vulnerabilities conferred by ARID1A mutation would have major relevance for human cancer. Here, using a broad screening approach, we identify ARID1B, a related but mutually exclusive homolog of ARID1A in the SWI/SNF chromatin remodeling complex, as the number one gene preferentially required for the survival of ARID1A-mutant cancer cell lines. We show that loss of ARID1B in ARID1A-deficient backgrounds destabilizes SWI/SNF and impairs proliferation. Intriguingly, we also find that ARID1A and ARID1B are frequently co-mutated in cancer, but that ARID1A-deficient cancers retain at least one ARID1B allele. These results suggest that loss of ARID1A and ARID1B alleles cooperatively promotes cancer formation but also results in a unique functional dependence. The results further identify ARID1B as a potential therapeutic target for ARID1A-mutant cancers

    Measurements of branching fraction ratios and CP-asymmetries in suppressed B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^- decays

    Get PDF
    We report the first reconstruction in hadron collisions of the suppressed decays B^- -> D(-> K^+ pi^-)K^- and B^- -> D(-> K^+ pi^-)pi^-, sensitive to the CKM phase gamma, using data from 7 fb^-1 of integrated luminosity collected by the CDF II detector at the Tevatron collider. We reconstruct a signal for the B^- -> D(-> K^+ pi^-)K^- suppressed mode with a significance of 3.2 standard deviations, and measure the ratios of the suppressed to favored branching fractions R(K) = [22.0 \pm 8.6(stat)\pm 2.6(syst)]\times 10^-3, R^+(K) = [42.6\pm 13.7(stat)\pm 2.8(syst)]\times 10^-3, R^-(K)= [3.8\pm 10.3(stat)\pm 2.7(syst]\times 10^-3, as well as the direct CP-violating asymmetry A(K) = -0.82\pm 0.44(stat)\pm 0.09(syst) of this mode. Corresponding quantities for B^- -> D(-> K^+ pi^-)pi^- decay are also reported.Comment: 8 pages, 1 figure, accepted by Phys.Rev.D Rapid Communications for Publicatio
    corecore