10 research outputs found

    In Arabidopsis thaliana codon volatility scores reflect GC3 composition rather than selective pressure

    Get PDF
    Background: Synonymous codon usage bias has typically been correlated with, and attributed to translational efficiency. However, there are other pressures on genomic sequence composition that can affect codon usage patterns such as mutational biases. This study provides an analysis of the codon usage patterns in Arabidopsis thaliana in relation to gene expression levels, codon volatility, mutational biases and selective pressures. Results: We have performed synonymous codon usage and codon volatility analyses for all genes in the A. thaliana genome. In contrast to reports for species from other kingdoms, we find that neither codon usage nor volatility are correlated with selection pressure (as measured by dN/dS), nor with gene expression levels on a genome wide level. Our results show that codon volatility and usage are not synonymous, rather that they are correlated with the abundance of G and C at the third codon position (GC3). Conclusions: Our results indicate that while the A. thaliana genome shows evidence for synonymous codon usage bias, this is not related to the expression levels of its constituent genes. Neither codon volatility nor codon usage are correlated with expression levels or selective pressures but, because they are directly related to the composition of G and C at the third codon position, they are the result of mutational bias. Therefore, in A. thaliana codon volatility and usage do not result from selection for translation efficiency or protein functional shift as measured by positive selection

    Molecular adaptation of telomere associated genes in mammals

    Get PDF
    Background: Placental mammals display a huge range of life history traits, including size, longevity, metabolic rate and germ line generation time. Although a number of general trends have been proposed between these traits, there are exceptions that warrant further investigation. Species such as naked mole rat, human and certain bat species all exhibit extreme longevity with respect to body size. It has long been established that telomeres and telomere maintenance have a clear role in ageing but it has not yet been established whether there is evidence for adaptation in telomere maintenance proteins that could account for increased longevity in these species. Results: Here we carry out a molecular investigation of selective pressure variation, specifically focusing on telomere associated genes across placental mammals. In general we observe a large number of instances of positive selection acting on telomere genes. Although these signatures of selection overall are not significantly correlated with either longevity or body size we do identify positive selection in the microbat species Myotis lucifugus in functionally important regions of the telomere maintenance genes DKC1 and TERT, and in naked mole rat in the DNA repair gene BRCA1. Conclusion: These results demonstrate the multifarious selective pressures acting across the mammal phylogeny driving lineage-specific adaptations of telomere associated genes. Our results show that regardless of the longevity of a species, these proteins have evolved under positive selection thereby removing increased longevity as the single selective force driving this rapid rate of evolution. However, evidence of molecular adaptations specific to naked mole rat and Myotis lucifugus highlight functionally significant regions in genes that may alter the way in which telomeres are regulated and maintained in these longer-lived species

    Paternally expressed imprinted genes under positive Darwinian selection in Arabidopsis thaliana

    Get PDF
    Genomic imprinting is an epigenetic phenomenon where autosomal genes display uniparental expression depending on whether they are maternally or paternally inherited. Genomic imprinting can arise from parental conflicts over resource allocation to the offspring, which could drive imprinted loci to evolve by positive selection. We investigate whether positive selection is associated with genomic imprinting in the inbreeding species Arabidopsis thaliana. Our analysis of 140 genes regulated by genomic imprinting in the A. thaliana seed endosperm demonstrates they are evolving more rapidly than expected. To investigate whether positive selection drives this evolutionary acceleration, we identified orthologs of each imprinted gene across 34 plant species and elucidated their evolutionary trajectories. Increased positive selection was sought by comparing its incidence among imprinted genes with non-imprinted controls. Strikingly, we find a statistically significant enrichment of imprinted paternally expressed genes (iPEGs) evolving under positive selection, 50.6% of the total, but no such enrichment for positive selection among imprinted maternally expressed genes (iMEGs). This suggests that maternally- and paternally-expressed imprinted genes are subject to different selective pressures. Almost all positively selected amino acids were fixed across 80 sequenced A. thaliana accessions, suggestive of selective sweeps in the A. thaliana lineage. The imprinted genes under positive selection are involved in processes important for seed development including auxin biosynthesis and epigenetic regulation. Our findings support a genomic imprinting model for plants where positive selection can affect paternally-expressed genes due to continued conflict with maternal sporophyte tissues, even when parental conflict is reduced in predominantly inbreeding species

    Germline-Focused Analysis of Tumour-Only Sequencing: Recommendations from the ESMO Precision Medicine Working Group.

    Get PDF
    It is increasingly common in oncology practice to perform tumour sequencing using large cancer panels. For pathogenic sequence variants in cancer susceptibility genes identified on tumour-only sequencing, it is often unclear whether they are of somatic or constitutional (germline) origin. There is wide-spread disparity regarding both the extent to which systematic 'germline-focused analysis' is performed upon tumour sequencing data and for which variants follow-up analysis of a germline sample is performed. Here we present analyses of paired sequencing data from 17,152 cancer samples, in which 1494 pathogenic sequence variants were identified across 65 cancer susceptibility genes. From these analyses, the European Society of Medical Oncology Precision Medicine Working Group Germline Subgroup have generated (i) recommendations regarding germline-focused analyses of tumour-only sequencing data, (ii) indications for germline follow-up testing and (iii) guidance on patient information-giving and consent

    AKT Inhibition in Solid Tumors With AKT1 Mutations.

    Get PDF
    Purpose AKT1 E17K mutations are oncogenic and occur in many cancers at a low prevalence. We performed a multihistology basket study of AZD5363, an ATP-competitive pan-AKT kinase inhibitor, to determine the preliminary activity of AKT inhibition in AKT-mutant cancers. Patients and Methods Fifty-eight patients with advanced solid tumors were treated. The primary end point was safety; secondary end points were progression-free survival (PFS) and response according to Response Evaluation Criteria in Solid Tumors (RECIST). Tumor biopsies and plasma cell-free DNA (cfDNA) were collected in the majority of patients to identify predictive biomarkers of response. Results In patients with AKT1 E17K-mutant tumors (n = 52) and a median of five lines of prior therapy, the median PFS was 5.5 months (95% CI, 2.9 to 6.9 months), 6.6 months (95% CI, 1.5 to 8.3 months), and 4.2 months (95% CI, 2.1 to 12.8 months) in patients with estrogen receptor-positive breast, gynecologic, and other solid tumors, respectively. In an exploratory biomarker analysis, imbalance of the AKT1 E17K-mutant allele, most frequently caused by copy-neutral loss-of-heterozygosity targeting the wild-type allele, was associated with longer PFS (hazard ratio [HR], 0.41; P = .04), as was the presence of coincident PI3K pathway hotspot mutations (HR, 0.21; P = .045). Persistent declines in AKT1 E17K in cfDNA were associated with improved PFS (HR, 0.18; P = .004) and response ( P = .025). Responses were not restricted to patients with detectable AKT1 E17K in pretreatment cfDNA. The most common grade ≥ 3 adverse events were hyperglycemia (24%), diarrhea (17%), and rash (15.5%). Conclusion This study provides the first clinical data that AKT1 E17K is a therapeutic target in human cancer. The genomic context of the AKT1 E17K mutation further conditioned response to AZD5363

    Genomic Characterization of Upper-Tract Urothelial Carcinoma in Patients With Lynch Syndrome

    Get PDF
    Purpose: Patients with Lynch syndrome (LS) have a significantly increased risk of developing upper-tract urothelial carcinoma (UTUC). Here, we sought to identify differences in the patterns of mutational changes in LS-associated versus sporadic UTUCs. Patients and Methods: We performed targeted sequencing of 17 UTUCs from patients with documented LS-associated germline mutations (LS-UTUCs) using the Memorial Sloan Kettering Integrated Molecular Profiling of Actionable Cancer Targets targeted exon capture assay and compared the results with those from a recently characterized cohort of 82 patients with sporadic UTUC. Results: Patients with LS-UTUC were significantly younger, had had less exposure to tobacco, and more often presented with a ureteral primary site compared with patients with sporadic UTUC. The median number of mutations per tumor was significantly greater in LS-UTUC tumors than in tumors from the sporadic cohort (58; interquartile range [IQR], 47-101 v 6; IQR, 4-10; P < .001), as was the MSIsensor score (median, 25.1; IQR, 17.9-31.2 v 0.03; IQR, 0-0.44; P < .001). Differences in the genetic landscape were observed between sporadic and LS-associated tumors. Alterations in KMT2D, CREBBP, or ARID1A or in DNA damage response and repair genes were present at a significantly higher frequency in LS-UTUC. CIC, NOTCH1, NOTCH3, RB1, and CDKN1B alterations were almost exclusive to LS-UTUC. Although FGFR3 mutations were identified in both cohorts, the R248C hotspot mutation was highly enriched in LS-UTUC. Conclusion: LSand sporadic UTUCs have overlapping but distinct genetic signatures. LS-UTUC is associated with hypermutation and a significantly higher prevalence of FGFR3 R248C mutation. Prospective molecular characterization of patients to identify those with LS-UTUC may help guide treatment
    corecore