5 research outputs found

    Functional impact and evolution of a novel human polymorphic inversion that disrupts a gene and creates a fusion transcript

    Get PDF
    Since the discovery of chromosomal inversions almost 100 years ago, how they are maintained in natural populations has been a highly debated issue. One of the hypotheses is that inversion breakpoints could affect genes and modify gene expression levels, although evidence of this came only from laboratory mutants. In humans, a few inversions have been shown to associate with expression differences, but in all cases the molecular causes have remained elusive. Here, we have carried out a complete characterization of a new human polymorphic inversion and determined that it is specific to East Asian populations. In addition, we demonstrate that it disrupts the ZNF257 gene and, through the translocation of the first exon and regulatory sequences, creates a previously nonexistent fusion transcript, which together are associated to expression changes in several other genes. Finally, we investigate the potential evolutionary and phenotypic consequences of the inversion, and suggest that it is probably deleterious. This is therefore the first example of a natural polymorphic inversion that has position effects and creates a new chimeric gene, contributing to answer an old question in evolutionary biology

    Recent genomic heritage in Scotland

    Get PDF
    BACKGROUND: The Generation Scotland Scottish Family Health Study (GS:SFHS) includes 23,960 participants from across Scotland with records for many health-related traits and environmental covariates. Genotypes at ~700 K SNPs are currently available for 10,000 participants. The cohort was designed as a resource for genetic and health related research and the study of complex traits. In this study we developed a suite of analyses to disentangle the genomic differentiation within GS:SFHS individuals to describe and optimise the sample and methods for future analyses. RESULTS: We combined the genotypic information of GS:SFHS with 1092 individuals from the 1000 Genomes project and estimated their genomic relationships. Then, we performed Principal Component Analyses of the resulting relationships to investigate the genomic origin of different groups. We characterised two groups of individuals: those with a few sparse rare markers in the genome, and those with several large rare haplotypes which might represent relatively recent exogenous ancestors. We identified some individuals with likely Italian ancestry and a group with some potential African/Asian ancestry. An analysis of homozygosity in the GS:SFHS sample revealed a very similar pattern to other European populations. We also identified an individual carrying a chromosome 1 uniparental disomy. We found evidence of local geographic stratification within the population having impact on the genomic structure. CONCLUSIONS: These findings illuminate the history of the Scottish population and have implications for further analyses such as the study of the contributions of common and rare variants to trait heritabilities and the evaluation of genomic and phenotypic prediction of disease. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1605-2) contains supplementary material, which is available to authorized users

    Population Genomics on the Fly: Recent Advances in Drosophila

    Get PDF
    Drosophila melanogaster, a small dipteran of African origin, represents one of the best-studied model organisms. Early work in this system has uniquely shed light on the basic principles of genetics and resulted in a versatile collection of genetic tools that allow to uncover mechanistic links between genotype and phenotype. Moreover, given its worldwide distribution in diverse habitats and its moderate genome-size, Drosophila has proven very powerful for population genetics inference and was one of the first eukaryotes whose genome was fully sequenced. In this book chapter, we provide a brief historical overview of research in Drosophila and then focus on recent advances during the genomic era. After describing different types and sources of genomic data, we discuss mechanisms of neutral evolution including the demographic history of Drosophila and the effects of recombination and biased gene conversion. Then, we review recent advances in detecting genome-wide signals of selection, such as soft and hard selective sweeps. We further provide a brief introduction to background selection, selection of noncoding DNA and codon usage and focus on the role of structural variants, such as transposable elements and chromosomal inversions, during the adaptive process. Finally, we discuss how genomic data helps to dissect neutral and adaptive evolutionary mechanisms that shape genetic and phenotypic variation in natural populations along environmental gradients. In summary, this book chapter serves as a starting point to Drosophila population genomics and provides an introduction to the system and an overview to data sources, important population genetic concepts and recent advances in the field

    Evolutionary and functional impact of common polymorphic inversions in the human genome

    Get PDF
    Inversions are one type of structural variants linked to phenotypic differences and adaptation in multiple organisms. However, there is still very little information about polymorphic inversions in the human genome due to the difficulty of their detection. Here, we develop a new high-throughput genotyping method based on probe hybridization and amplification, and we perform a complete study of 45 common human inversions of 0.1-415 kb. Most inversions promoted by homologous recombination occur recurrently in humans and great apes and they are not tagged by SNPs. Furthermore, there is an enrichment of inversions showing signatures of positive or balancing selection, diverse functional effects, such as gene disruption and gene-expression changes, or association with phenotypic traits. Therefore, our results indicate that the genome is more dynamic than previously thought and that human inversions have important functional and evolutionary consequences, making possible to determine for the first time their contribution to complex traits.This work was supported by research grants ERC Starting Grant 243212 (INVFEST) from the European Research Council under the European Union Seventh Research Framework Programme (FP7), BFU2013-42649-P and BFU2016-77244-R funded by the Agencia Estatal de Investigación (AEI, Spain) and the European Regional Development Fund (FEDER, EU), and 2014-SGR-1346 and 2017-SGR-1379 from the Generalitat de Catalunya (Spain) to M.C., a PIF PhD fellowship from the Universitat Autònoma de Barcelona (Spain) to C.G.D., a La Caixa Doctoral fellowship to J.L.J., and a FPI PhD fellowship from the Ministerio de Economía y Competitividad (Spain) to M.O. and I.N. M.G.V. was supported in part by POCI-01-0145-FEDER-006821 funded through the Operational Programme for Competitiveness Factors (COMPETE, EU) and UID/BIA/50027/2013 from the Foundation for Science and Technology (FCT, Portugal)
    corecore