56 research outputs found

    Effects of Transmitters and Amyloid-Beta Peptide on Calcium Signals in Rat Cortical Astrocytes: Fura-2AM Measurements and Stochastic Model Simulations

    Get PDF
    BACKGROUND: To better understand the complex molecular level interactions seen in the pathogenesis of Alzheimer's disease, the results of the wet-lab and clinical studies can be complemented by mathematical models. Astrocytes are known to become reactive in Alzheimer's disease and their ionic equilibrium can be disturbed by interaction of the released and accumulated transmitters, such as serotonin, and peptides, including amyloid- peptides (A). We have here studied the effects of small amounts of A25-35 fragments on the transmitter-induced calcium signals in astrocytes by Fura-2AM fluorescence measurements and running simulations of the detected calcium signals. METHODOLOGY/PRINCIPAL FINDINGS: Intracellular calcium signals were measured in cultured rat cortical astrocytes following additions of serotonin and glutamate, or either of these transmitters together with A25-35. A25-35 increased the number of astrocytes responding to glutamate and exceedingly increased the magnitude of the serotonin-induced calcium signals. In addition to A25-35-induced effects, the contribution of intracellular calcium stores to calcium signaling was tested. When using higher stimulus frequency, the subsequent calcium peaks after the initial peak were of lower amplitude. This may indicate inadequate filling of the intracellular calcium stores between the stimuli. In order to reproduce the experimental findings, a stochastic computational model was introduced. The model takes into account the major mechanisms known to be involved in calcium signaling in astrocytes. Model simulations confirm the principal experimental findings and show the variability typical for experimental measurements. CONCLUSIONS/SIGNIFICANCE: Nanomolar A25-35 alone does not cause persistent change in the basal level of calcium in astrocytes. However, even small amounts of A25-35, together with transmitters, can have substantial synergistic effects on intracellular calcium signals. Computational modeling further helps in understanding the mechanisms associated with intracellular calcium oscillations. Modeling the mechanisms is important, as astrocytes have an essential role in regulating the neuronal microenvironment of the central nervous system

    Children's vomiting following posterior fossa surgery: A retrospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nausea and vomiting is a problem for children after neurosurgery and those requiring posterior fossa procedures appear to have a high incidence. This clinical observation has not been quantified nor have risk factors unique to this group of children been elucidated.</p> <p>Methods</p> <p>A six year retrospective chart audit at two Canadian children's hospitals was conducted. The incidence of nausea and vomiting was extracted. Hierarchical multivariable logistic regression was used to quantify risk and protective factors at 120 hours after surgery and early vs. late vomiting.</p> <p>Results</p> <p>The incidence of vomiting over a ten day postoperative period was 76.7%. Documented vomiting ranged from single events to greater than 20 over the same period. In the final multivariable model: adolescents (age 12 to <17) were less likely to vomit by 120 hours after surgery than other age groups; those who received desflurane, when compared to all other volatile anesthetics, were more likely to vomit, yet the use of ondansetron with desflurane decre kelihood. Children who had intraoperative ondansetron were more likely to vomit in the final multivariable model (perhaps because of its use, in the clinical judgment of the anesthesiologist, for children considered at risk). Children who started vomiting in the first 24 hours were more likely to be school age (groups 4 to <7 and 7 to <12) and receive desflurane. Nausea was not well documented and was therefore not analyzed.</p> <p>Conclusion</p> <p>The incidence of vomiting in children after posterior fossa surgery is sufficient to consider all children requiring these procedures to be at high risk for POV. Nausea requires better assessment and documentation.</p

    HIV-1 Vpr Triggers Mitochondrial Destruction by Impairing Mfn2-Mediated ER-Mitochondria Interaction

    Get PDF
    Human immunodeficiency virus 1 (HIV-1) viral protein R (Vpr) has been shown to induce host cell death by increasing the permeability of mitochondrial outer membrane (MOM). The mechanism underlying the damage to the mitochondria by Vpr, however, is not clearly illustrated. In this study, Vpr that is introduced, via transient transfection or lentivirus infection, into the human embryonic kidney cell line HEK293, human CD4+ T lymphoblast cell line SupT1, or human primary CD4+ T cells serves as the model system to study the molecular mechanism of Vpr-mediated HIV-1 pathogenesis. The results show that Vpr injures MOM and causes a loss in membrane potential (MMP) by posttranscriptionally reducing the expression of mitofusin 2 (Mfn2) via VprBP-DDB1-CUL4A ubiquitin ligase complex, gradually weakening MOM, and increasing mitochondrial deformation. Vpr also markedly decreases cytoplasmic levels of dynamin-related protein 1 (DRP1) and increases bulging in mitochondria-associated membranes (MAM), the specific regions of endoplasmic reticulum (ER) which form physical contacts with the mitochondria. Overexpression of Mfn2 and DRP1 significantly decreased the loss of MMP and apoptotic cell death caused by Vpr. Furthermore, by employing time-lapse confocal fluorescence microscopy, we identify the transport of Vpr protein from the ER, via MAM to the mitochondria. Taken together, our results suggest that Vpr-mediated cellular damage may occur on an alternative protein transport pathway from the ER, via MAM to the mitochondria, which are modulated by Mfn2 and DRP1

    Monitoring the newly qualified nurses in Sweden: the Longitudinal Analysis of Nursing Education (LANE) study

    Get PDF
    BACKGROUND: The Longitudinal Analysis of Nursing Education (LANE) study was initiated in 2002, with the aim of longitudinally examining a wide variety of individual and work-related variables related to psychological and physical health, as well as rates of employee and occupational turnover, and professional development among nursing students in the process of becoming registered nurses and entering working life. The aim of this paper is to present the LANE study, to estimate representativeness and analyse response rates over time, and also to describe common career pathways and life transitions during the first years of working life. METHODS: Three Swedish national cohorts of nursing students on university degree programmes were recruited to constitute the cohorts. Of 6138 students who were eligible for participation, a total of 4316 consented to participate and responded at baseline (response rate 70%). The cohorts will be followed prospectively for at least three years of their working life. RESULTS: Sociodemographic data in the cohorts were found to be close to population data, as point estimates only differed by 0-3% from population values. Response rates were found to decline somewhat across time, and this decrease was present in all analysed subgroups. During the first year after graduation, nearly all participants had qualified as nurses and had later also held nursing positions. The most common reason for not working was due to maternity leave. About 10% of the cohorts who graduated in 2002 and 2004 intended to leave the profession one year after graduating, and among those who graduated in 2006 the figure was almost twice as high. Intention to leave the profession was more common among young nurses. In the cohort who graduated in 2002, nearly every fifth registered nurse continued to further higher educational training within the health professions. Moreover, in this cohort, about 2% of the participants had left the nursing profession five years after graduating. CONCLUSION: Both high response rates and professional retention imply a potential for a thorough analysis of professional practice and occupational health

    Molecular dynamics simulations of non-equilibrium systems

    Get PDF
    Peer reviewe

    Measurement report: Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiälä boreal forest

    Get PDF
    The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiälä, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (µL-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the Tobo et al. (2013) parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA

    The role of ions in new particle formation in the CLOUD chamber

    Get PDF
    The formation of secondary particles in the atmosphere accounts for more than half of global cloud condensation nuclei. Experiments at the CERN CLOUD (Cosmics Leaving OUtdoor Droplets) chamber have underlined the importance of ions for new particle formation, but quantifying their effect in the atmosphere remains challenging. By using a novel instrument setup consisting of two nanoparticle counters, one of them equipped with an ion filter, we were able to further investigate the ion-related mechanisms of new particle formation. In autumn 2015, we carried out experiments at CLOUD on four systems of different chemical compositions involving monoterpenes, sulfuric acid, nitrogen oxides, and ammonia. We measured the influence of ions on the nucleation rates under precisely controlled and atmospherically relevant conditions. Our results indicate that ions enhance the nucleation process when the charge is necessary to stabilize newly formed clusters, i.e., in conditions in which neutral clusters are unstable. For charged clusters that were formed by ion-induced nucleation, we were able to measure, for the first time, their progressive neutralization due to recombination with oppositely charged ions. A large fraction of the clusters carried a charge at 1.5 nm diameter. However, depending on particle growth rates and ion concentrations, charged clusters were largely neutralized by ion–ion recombination before they grew to 2.5 nm. At this size, more than 90 % of particles were neutral. In other words, particles may originate from ion-induced nucleation, although they are neutral upon detection at diameters larger than 2.5 nm. Observations at Hyytiälä, Finland, showed lower ion concentrations and a lower contribution of ion-induced nucleation than measured at CLOUD under similar conditions. Although this can be partly explained by the observation that ion-induced fractions decrease towards lower ion concentrations, further investigations are needed to resolve the origin of the discrepancy

    "One for Sorrow, Two for Joy?": American embryo transfer guideline recommendations, practices and outcomes for gestational surrogate patients

    Get PDF
    In January 2016, Melissa Cook, a California gestational surrogate experiencing a multiple birth pregnancy following the in vitro fertilization (IVF) transfer of three embryos comprised of donor eggs and sperm provided by the intended father went to the media when the intended father requested that she undergo a fetal reduction because twins were less expensive to raise than triplets. Much of the legal interest in this case to date has centered on the enforceability of surrogacy contracts. However, the Cook case also raises troubling issues about fertility treatment practices involving gestational surrogates, twin preference, and third-party reproduction medical decision-making. This paper focuses on multipleembryo transfers in the context of U.S. surrogacy arrangements. Offering an original analysis of data obtained from the U.S. national assisted reproduction registry, it examines single- and multiple-embryo transfer trends over an eleven-year period (2003 to 2014). Findings reveal that recommended guidelines were followed in less than 42% of cases in 2014. The paper argues that ensuring equitable medical treatment for all recipients of IVF requires the adoption of treatment guidelines tailored to, and offering protections for, specific patient groups, and that, once in place, guidelines must be robustly implemente
    corecore