94 research outputs found

    Target Region Selection Is a Critical Determinant of Community Fingerprints Generated by 16S Pyrosequencing

    Get PDF
    Pyrosequencing of 16S rRNA genes allows for in-depth characterization of complex microbial communities. Although it is known that primer selection can influence the profile of a community generated by sequencing, the extent and severity of this bias on deep-sequencing methodologies is not well elucidated. We tested the hypothesis that the hypervariable region targeted for sequencing and primer degeneracy play important roles in influencing the composition of 16S pyrotag communities. Subgingival plaque from deep sites of current smokers with chronic periodontitis was analyzed using Sanger sequencing and pyrosequencing using 4 primer pairs. Greater numbers of species were detected by pyrosequencing than by Sanger sequencing. Rare taxa constituted nearly 6% of each pyrotag community and less than 1% of the Sanger sequencing community. However, the different target regions selected for pyrosequencing did not demonstrate a significant difference in the number of rare and abundant taxa detected. The genera Prevotella, Fusobacterium, Streptococcus, Granulicatella, Bacteroides, Porphyromonas and Treponema were abundant when the V1–V3 region was targeted, while Streptococcus, Treponema, Prevotella, Eubacterium, Porphyromonas, Campylobacer and Enterococcus predominated in the community generated by V4–V6 primers, and the most numerous genera in the V7–V9 community were Veillonella, Streptococcus, Eubacterium, Enterococcus, Treponema, Catonella and Selenomonas. Targeting the V4–V6 region failed to detect the genus Fusobacterium, while the taxa Selenomonas, TM7 and Mycoplasma were not detected by the V7–V9 primer pairs. The communities generated by degenerate and non-degenerate primers did not demonstrate significant differences. Averaging the community fingerprints generated by V1–V3 and V7–V9 primers providesd results similar to Sanger sequencing, while allowing a significantly greater depth of coverage than is possible with Sanger sequencing. It is therefore important to use primers targeted to these two regions of the 16S rRNA gene in all deep-sequencing efforts to obtain representational characterization of complex microbial communities

    Modelled ocean changes at the Plio-Pleistocene transition driven by Antarctic ice advance

    Get PDF
    The Earth underwent a major transition from the warm climates of the Pliocene to the Pleistocene ice ages between 3.2 and 2.6 million years ago. The intensification of Northern Hemisphere Glaciation is the most obvious result of the Plio-Pleistocene transition. However, recent data show that the ocean also underwent a significant change, with the convergence of deep water mass properties in the North Pacific and North Atlantic Ocean. Here we show that the lack of coastal ice in the Pacific sector of Antarctica leads to major reductions in Pacific Ocean overturning and the loss of the modern North Pacific Deep Water (NPDW) mass in climate models of the warmest periods of the Pliocene. These results potentially explain the convergence of global deep water mass properties at the Plio-Pleistocene transition, as Circumpolar Deep Water (CDW) became the common source

    Characterizing the pathotype of neonatal meningitis causing <i>Escherichia coli</i> (NMEC)

    Get PDF
    Background Neonatal meningitis-causing Escherichia coli (NMEC) is the predominant Gram-negative bacterial pathogen associated with meningitis in newborn infants. High levels of heterogeneity and diversity have been observed in the repertoire of virulence traits and other characteristics among strains of NMEC making it difficult to define the NMEC pathotype. The objective of the present study was to identify genotypic and phenotypic characteristics of NMEC that can be used to distinguish them from commensal E. coli. Methods A total of 53 isolates of NMEC obtained from neonates with meningitis and 48 isolates of fecal E. coli obtained from healthy individuals (HFEC) were comparatively evaluated using five phenotypic (serotyping, serum bactericidal assay, biofilm assay, antimicorbial susceptibility testing, and in vitro cell invasion assay) and three genotypic (phylogrouping, virulence genotyping, and pulsed-field gel electrophoresis) methods. Results A majority (67.92 %) of NMEC belonged to B2 phylogenetic group whereas 59 % of HFEC belonged to groups A and D. Serotyping revealed that the most common O and H types present in NMEC tested were O1 (15 %), O8 (11.3 %), O18 (13.2 %), and H7 (25.3 %). In contrast, none of the HFEC tested belonged to O1 or O18 serogroups. The most common serogroup identified in HFEC was O8 (6.25 %). The virulence genotyping reflected that more than 70 % of NMEC carried kpsII, K1, neuC, iucC, sitA, and vat genes with only less than 27 % of HFEC possessing these genes. All NMEC and 79 % of HFEC tested were able to invade human cerebral microvascular endothelial cells. No statistically significant difference was observed in the serum resistance phenotype between NMEC and HFEC. The NMEC strains demonstrated a greater ability to form biofilms in Luria Bertani broth medium than did HFEC (79.2 % vs 39.9 %). Conclusion The results of our study demonstrated that virulence genotyping and phylogrouping may assist in defining the potential NMEC pathotype

    How patients understand depression associated with chronic physical disease - A systematic review

    Get PDF
    Background: Clinicians are encouraged to screen people with chronic physical illness for depression. Screening alone may not improve outcomes, especially if the process is incompatible with patient beliefs. The aim of this research is to understand peoples beliefs about depression, particularly in the presence of chronic physical disease. Methods: A mixed method systematic review involving a thematic analysis of qualitative studies and quantitative studies of beliefs held by people with current depressive symptoms. MEDLINE, EMBASE, PSYCHINFO, CINAHL, BIOSIS, Web of Science, The Cochrane Library, UKCRN portfolio, National Research Register Archive, Clinicaltrials.gov and OpenSIGLE were searched from database inception to 31st December 2010. A narrative synthesis of qualitative and quantitative data, based initially upon illness representations and extended to include other themes not compatible with that framework. Results: A range of clinically relevant beliefs was identified from 65 studies including the difficulty in labeling depression, complex causal factors instead of the biological model, the roles of different treatments and negative views about the consequences of depression. We found other important themes less related to ideas about illness: the existence of a self-sustaining depression spiral; depression as an existential state; the ambiguous status of suicidal thinking; and the role of stigma and blame in depression. Conclusions: Approaches to detection of depression in physical illness need to be receptive to the range of beliefs held by patients. Patient beliefs have implications for engagement with depression screening

    Boron isotopes in foraminifera : systematics, biomineralisation, and CO2 reconstruction

    Get PDF
    Funding: Fellowship from University of St Andrews, $100 (pending) from Richard Zeebe, UK NERC grants NE/N003861/1 and NE/N011716/1.The boron isotope composition of foraminifera provides a powerful tracer for CO2 change over geological time. This proxy is based on the equilibrium of boron and its isotopes in seawater, which is a function of pH. However while the chemical principles underlying this proxy are well understood, its reliability has previously been questioned, due to the difficulty of boron isotope (δ11B) analysis on foraminferal samples and questions regarding calibrations between δ11B and pH. This chapter reviews the current state of the δ11B-pH proxy in foraminfera, including the pioneering studies that established this proxy’s potential, and the recent work that has improved understanding of boron isotope systematics in foraminifera and applied this tracer to the geological record. The theoretical background of the δ11B-pH proxy is introduced, including an accurate formulation of the boron isotope mass balance equations. Sample preparation and analysis procedures are then reviewed, with discussion of sample cleaning, the potential influence of diagenesis, and the strengths and weaknesses of boron purification by column chromatography versus microsublimation, and analysis by NTIMS versus MC-ICPMS. The systematics of boron isotopes in foraminifera are discussed in detail, including results from benthic and planktic taxa, and models of boron incorporation, fractionation, and biomineralisation. Benthic taxa from the deep ocean have δ11B within error of borate ion at seawater pH. This is most easily explained by simple incorporation of borate ion at the pH of seawater. Planktic foraminifera have δ11B close to borate ion, but with minor offsets. These may be driven by physiological influences on the foraminiferal microenvironment; a novel explanation is also suggested for the reduced δ11B-pH sensitivities observed in culture, based on variable calcification rates. Biomineralisation influences on boron isotopes are then explored, addressing the apparently contradictory observations that foraminifera manipulate pH during chamber formation yet their δ11B appears to record the pH of ambient seawater. Potential solutions include the influences of magnesium-removal and carbon concentration, and the possibility that pH elevation is most pronounced during initial chamber formation under favourable environmental conditions. The steps required to reconstruct pH and pCO2 from δ11B are then reviewed, including the influence of seawater chemistry on boron equilibrium, the evolution of seawater δ11B, and the influence of second carbonate system parameters on δ11B-based reconstructions of pCO2. Applications of foraminiferal δ11B to the geological record are highlighted, including studies that trace CO2 storage and release during recent ice ages, and reconstructions of pCO2 over the Cenozoic. Relevant computer codes and data associated with this article are made available online.Publisher PDFPeer reviewe

    Pubertal high fat diet: effects on mammary cancer development

    Get PDF
    INTRODUCTION: Epidemiological studies linking dietary fat intake and obesity to breast cancer risk have produced inconsistent results. This may be due to the difficulty of dissociating fat intake from obesity, and/or the lack of defined periods of exposure in these studies. The pubertal mammary gland is highly sensitive to cancer-causing agents. We assessed how high fat diet (HFD) affects inflammation, proliferative, and developmental events in the pubertal gland, since dysregulation of these can promote mammary tumorigenesis. To test the effect of HFD initiated during puberty on tumorigenesis, we utilized BALB/c mice, for which HFD neither induces obesity nor metabolic syndrome, allowing dissociation of HFD effects from other conditions associated with HFD. METHODS: Pubertal BALB/c mice were fed a low fat diet (12% kcal fat) or a HFD (60% kcal fat), and subjected to carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)-induced tumorigenesis. RESULTS: HFD elevated mammary gland expression of inflammatory and growth factor genes at 3 and 4 weeks of diet. Receptor activator of nuclear factor kappa-B ligand (RANKL), robustly induced at 4 weeks, has direct mitogenic activity in mammary epithelial cells and, as a potent inducer of NF-κB activity, may induce inflammatory genes. Three weeks of HFD induced a transient influx of eosinophils into the mammary gland, consistent with elevated inflammatory factors. At 10 weeks, prior to the appearance of palpable tumors, there were increased numbers of abnormal mammary epithelial lesions, enhanced cellular proliferation, increased growth factors, chemokines associated with immune-suppressive regulatory T cells, increased vascularization, and elevated M2 macrophages. HFD dramatically reduced tumor latency. Early developing tumors were more proliferative and were associated with increased levels of tumor-related growth factors, including increased plasma levels of HGF in tumor-bearing animals. Early HFD tumors also had increased vascularization, and more intra-tumor and stromal M2 macrophages. CONCLUSIONS: Taken together in this non-obesogenic context, HFD promotion of inflammatory processes, as well as local and systemically increased growth factor expression, are likely responsible for the enhanced tumorigenesis. It is noteworthy that although DMBA mutagenesis is virtually random in its targeting of genes in tumorigenesis, the short latency tumors arising in animals on HFD showed a unique gene expression profile, highlighting the potent overarching influence of HFD

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Assessing the Microbial Community and Functional Genes in a Vertical Soil Profile with Long-Term Arsenic Contamination

    Get PDF
    Conceived and designed the experiments: GW. Performed the experiments: JX GL. Analyzed the data: JX JZ GW. Contributed reagents/materials/analysis tools: ST JZ GW. Wrote the paper: JX ZH JDVN JZ GW.Arsenic (As) contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m) after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0) technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069) and carbon cycling genes (p = 0.073), and significant correlation with nitrogen fixation genes (p = 0.024). The combination of C/N, NO3− and P showed the highest correlation (r = 0.779, p = 0.062) with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management.Yeshttp://www.plosone.org/static/editorial#pee
    corecore