192 research outputs found

    Identification of two cracks with different severity in beams and rods from minimal frequency data

    Get PDF
    It has been known for a long time that the problem of identifying two small cracks in a simply supported beam from the first three natural frequencies can be analytically formulated and solved if the two cracks have equal severity. In this paper we extend this result to the case of cracks with different severity. Each crack is simulated by a rotational elastic spring and the inverse problem is solved in terms of the damage-induced changes in the first four natural frequencies. Closed-form expressions of the damage parameters in terms of the measured frequencies are obtained. The results can be extended to the identification of two cracks in a longitudinally vibrating beam based on a suitable set of natural frequency and antiresonant frequency data. Numerical simulations support the theory, and show that if accurate input data are available and the cracks are not too close, then damage identification leads to satisfactory results

    Unique determination of a single crack in a uniform simply supported beam in bending vibration

    Get PDF
    In this paper we consider one of the basic inverse problems in damage detection based on natural frequency data, namely the identification of a single open crack in a uniform simply supported beam from measurement of the first and the second natural frequency. It is commonly accepted in the literature that the knowledge of this set of spectral data allows for the unique determination of the severity and the position (up to symmetry) of the damage. However, in spite of the fact that many numerical evidences are in support of this property, the result is rigorously proved only when the severity of the crack is small. In this paper we definitely show, by means of an original constructive method, that the above result holds true for any level of crack severity. (C) 2016 Elsevier Ltd. All rights reserved

    Point mass identification in rectangular plates from minimal natural frequency data

    Get PDF
    The inverse problem of determining the location and size of a point mass attached on a simply supported, isotropic and homogeneous rectangular plate from minimal natural frequency data is considered in this paper. Under the assumption that the size of the mass is small compared to the total mass of the plate, we show that the problem can be formulated and solved in closed form in terms of point mass-induced changes on the first three natural frequencies. Numerical simulations indicate that the method allows for accurate identification, provided that measurement/modelling errors are smaller than eigenfrequency changes. \ua9 2016 Elsevier Ltd

    A Case of Concurrent Riedel's, Hashimoto's and Acute Suppurative Thyroiditis

    Get PDF
    Riedel's thyroiditis (RT) is a rare form of infiltrative and inflammatory disease of the thyroid, first described by Bernard Riedel in 1896. The concurrent presence of RT and other thyroid diseases has been reported, but, the association of RT with Hashimoto's thyroiditis and acute thyroiditis has not yet been reported. We present a case of concurrent Riedel's, Hashimoto's and acute thyroiditis that occurred in a 45-year-old patient

    The method of fundamental solutions for three-dimensional inverse geometric elasticity problems

    Get PDF
    We investigate the numerical reconstruction of smooth star-shaped voids (rigid inclusions and cavities) which are compactly contained in a three-dimensional isotropic linear elastic medium from a single set of Cauchy data (i.e. nondestructive boundary displacement and traction measurements) on the accessible outer boundary. This inverse geometric problem in three-dimensional elasticity is approximated using the method of fundamental solutions (MFS). The parameters describing the boundary of the unknown void, its centre, and the contraction and dilation factors employed for selecting the fictitious surfaces where the MFS sources are to be positioned, are taken as unknowns of the problem. In this way, the original inverse geometric problem is reduced to finding the minimum of a nonlinear least-squares functional that measures the difference between the given and computed data, penalized with respect to both the MFS constants and the derivative of the radial coordinates describing the position of the star-shaped void. The interior source points are anchored and move with the void during the iterative reconstruction procedure. The feasibility of this new method is illustrated in several numerical examples

    Hybrid III-V/Silicon photonic circuits embedding generation and routing of entangled photon pairs

    Full text link
    The demand for integrated photonic chips combining the generation and manipulation of quantum states of light is steadily increasing, driven by the need for compact and scalable platforms for quantum information technologies. While photonic circuits with diverse functionalities are being developed in different single material platforms, it has become crucial to realize hybrid photonic circuits that harness the advantages of multiple materials while mitigating their respective weaknesses, resulting in enhanced capabilities. Here, we demonstrate a hybrid III-V/Silicon quantum photonic device combining the strong second-order nonlinearity and compliance with electrical pumping of the III-V semiconductor platform with the high maturity and CMOS compatibility of the silicon photonic platform. Our device embeds the spontaneous parametric down-conversion (SPDC) of photon pairs into an AlGaAs source and their subsequent routing to a silicon-on-insulator circuitry, within an evanescent coupling scheme managing both polarization states. This enables the on-chip generation of broadband telecom photons by type 0 and type 2 SPDC from the hybrid device, at room temperature and with internal pair generation rates exceeding 10510^5 s1s^{-1} for both types, while the pump beam is strongly rejected. Two-photon interference with 92% visibility (and up to 99% upon 5 nm spectral filtering) proves the high energy-time entanglement quality characterizing the produced quantum state, thereby enabling a wide range of quantum information applications on-chip, within an hybrid architecture merging the assets of two mature and highly complementary platforms in view of out-of-the-lab deployment of quantum technologies

    The stability for the Cauchy problem for elliptic equations

    Full text link
    We discuss the ill-posed Cauchy problem for elliptic equations, which is pervasive in inverse boundary value problems modeled by elliptic equations. We provide essentially optimal stability results, in wide generality and under substantially minimal assumptions. As a general scheme in our arguments, we show that all such stability results can be derived by the use of a single building brick, the three-spheres inequality.Comment: 57 pages, review articl

    Reconfigurable photon localization by coherent drive and dissipation in photonic lattices

    Get PDF
    7 pags., 4 figs.The engineering of localized modes in photonic structures is one of the main targets of modern photonics. An efficient strategy to design these modes is to use the interplay of constructive and destructive interference in periodic photonic lattices. This mechanism is at the origin of the defect modes in photonic bandgaps, bound states in the continuum, and compact localized states in flat bands. Here, we show that in lattices of lossy resonators, the addition of external optical drives with a controlled phase enlarges the possibilities of manipulating interference effects and allows for the design of novel types of localized modes. Using a honeycomb lattice of coupled micropillars resonantly driven with several laser spots at energies within its photonic bands, we demonstrate the localization of light in at-will geometries down to a single site. These localized modes are fully reconfigurable and have the potentiality of enhancing nonlinear effects and of controlling light-matter interactions with single site resolution.Ministerio de Ciencia, Innovación y Universidades (PGC2018-094792-B-100); Consejo Superior de Investigaciones Científicas (PTI-001); Comunidad de Madrid (CAM 2020 Y2020/TCS-6545); Narodowe Centrum Nauki (DEC-2019/32/T/ST3/00332); Agence Nationale de la Recherche (ANR-11-LABX-0007, ANR-16-CE30-0021, ANR-16-IDEX-0004 ULNE, ANR-QUAN-0003-05); European Research Council (820392, 865151, 949730), Région Hauts-de-France

    Probing the dynamics and coherence of a semiconductor hole spin via acoustic phonon-assisted excitation

    Full text link
    Spins in semiconductor quantum dots are promising local quantum memories to generate polarization-encoded photonic cluster states, as proposed in the pioneering Rudolph-Lindner scheme [1]. However, harnessing the polarization degree of freedom of the optical transitions is hindered by resonant excitation schemes that are widely used to obtain high photon indistinguishability. Here we show that acoustic phonon-assisted excitation, a scheme that preserves high indistinguishability, also allows to fully exploit the polarization selective optical transitions to initialise and measure single spin states. We access the coherence of hole spin systems in a low transverse magnetic field and directly monitor the spin Larmor precession both during the radiative emission process of an excited state or in the quantum dot ground state. We report a spin state detection fidelity of 94.7±0.2%94.7 \pm 0.2 \% granted by the optical selection rules and a 20±520\pm5~ns hole spin coherence time, demonstrating the potential of this scheme and system to generate linear cluster states with a dozen of photonsComment: 3 figure
    corecore