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Abstract

We investigate the numerical reconstruction of smooth star-shaped voids (rigid inclusions and cavities) which

are compactly contained in a three-dimensional isotropic linear elastic medium from a single set of Cauchy

data (i.e. nondestructive boundary displacement and traction measurements) on the accessible outer bound-

ary. This inverse geometric problem in three-dimensional elasticity is approximated using the method of

fundamental solutions (MFS). The parameters describing the boundary of the unknown void, its centre, and

the contraction and dilation factors employed for selecting the fictitious surfaces where the MFS sources are

to be positioned, are taken as unknowns of the problem. In this way, the original inverse geometric problem is

reduced to finding the minimum of a nonlinear least-squares functional that measures the difference between

the given and computed data, penalized with respect to both the MFS constants and the derivative of the

radial coordinates describing the position of the star-shaped void. The interior source points are anchored

and move with the void during the iterative reconstruction procedure. The feasibility of this new method is

illustrated in several numerical examples.
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1 Introduction

In direct problems in solid mechanics, one has to determine the response of a system when the governing partial

differential equations (equilibrium equations), the constitutive and kinematics equations, the initial and boundary

conditions for the displacement and/or traction vectors and the geometry of the domain occupied by the solid are

all known. However, if at least one of the above conditions is partially or entirely lacking, then one has a so-called

inverse problem. Moreover, it is well-known that inverse problems are in general unstable, in the sense that small

measurement errors in the input data may amplify significantly the errors in the solution, see e.g. [16]. Such

inverse problems have been extensively studied, both theoretically and numerically, over the last three decades

and an overview of these developments can be found in [10].

In the case of inverse geometric problems in solid mechanics, which represent an important subclass of inverse

problems, the geometry of the domain occupied by the solid is not entirely known, however some additional

information is available. More specifically, part of the boundary of the solution domain is not known but either

the displacements or the tractions are known on this portion, whilst the remaining boundary is known and both

displacement and traction measurements are available on it. The inverse geometric problems described above

can be further subdivided into two subclasses, depending on the location of the unknown boundary, namely

(i) identification of an unknown boundary or corrosion-type problems (the unknown boundary is a part of the

outer boundary of the solution domain), see e.g. [27–29], and (ii) identification of voids, i.e. cavities and rigid

inclusions (the unknown boundary is an inner boundary), see e.g. [12, 21–23].

There are important studies that are devoted to the latter subclass of inverse geometric problems in elasticity.

Alessandrini et al. [1, 2] proved that the volume (size) of a rigid inclusion in an elastic isotropic body can

be estimated by an easily expressed quantity related to work, depending only on the boundary traction and

displacement. Morassi and Rosset [33] provided upper and lower bounds on the size of unknown defects, such

as cavities or rigid inclusions, in an elastic body, from boundary measurements of tractions and displacements.

Later, they considered the inverse problem of determining a rigid inclusion inside an isotropic elastic body from

a single set of Cauchy data on the outer boundary and proved its uniqueness and conditional stability [34]. The
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issue of uniqueness in determining cavities in a heterogeneous isotropic elastic medium in two dimensions was

investigated by Ang et al. [4], who used the unique continuation for the isotropic Lamé system and geometric

considerations. Ben Ameur et al. [8] developed a rather general approach for identifiability and local Lipschitz

stability of cavities in two and three spatial dimensions in linear elasticity and thermo-elasticity. Ikehata and

Itou [19] considered the reconstruction problem of an unknown polygonal cavity in a homogeneous isotropic

elastic body and provided an extraction formula of the convex hull of the cavity using the enclosure method.

With respect to the numerical identification of voids in elasticity, most of the studies available in the literature

are devoted to the two-dimensional case. A regularized boundary integral formulation for the detection of flaws

in planar structural membranes from the displacement measurements given at some boundary locations and

the applied loading was proposed in [9]. Hsieh and Mura [18] developed a combined boundary element method

(BEM)-nonlinear optimization algorithm for the detection of both the location and the shape of an unknown

cavity in an elastic medium. Mellings and Aliabadi [30] presented a dual boundary element formulation for the

identification of the location and size of internal flaws in two-dimensional structures. Kassab et al. [24] and Ulrich

et al. [37] investigated the non-destructive detection of internal cavities in the inverse elastostatic problem using

the BEM. The level set method and a regularization technique related to the perimeter of the unknown inclusion

were employed by Ben Ameur et al. [7] for the numerical reconstruction of a void from a single Cauchy data. We

finally mention that some three-dimensional elastodynamic inverse problems have been solved using the BEM in

[6, 11].

In recent years the method of fundamental solutions (MFS), originally proposed by Kupradze and Alek-

sidze [26] and introduced as a numerical method by Mathon and Johnston [31], has been used extensively for

the numerical solution of inverse and related problems primarily due to its ease of implementation. An extensive

survey of the applications of the MFS to inverse problems is provided in [20]. It appears that the MFS was used

for the first time for the solution of inverse geometric problems in linear elasticity by Alves and Martins [3], who

adapted to the detection of rigid inclusions or cavities in an elastic body the method of Kirsch and Kress [25].

The method of [3] decomposes the inverse problem into a linear and ill-posed part in which a Cauchy problem is

solved using the MFS and a nonlinear part in which the unknown boundary of the void is sought as a zero level

set for a rigid inclusion (or computed iteratively, in an optimization scheme for a class of approximating shapes,

for a cavity). In contrast to this, Karageorghis et al. [21] adopted a fully nonlinear MFS in which the nonlinear

and ill-posed parts are dealt with simultaneously using a nonlinear regularized minimization. The reconstructions
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obtained using this latter method are more accurate than those obtained by decomposition methods, see e.g. [36].

The purpose of this paper is to extend to three-dimensional elasticity the two-dimensional analysis of [21], the

same way we have done for the harmonic scalar case in [22, 23]. In particular, we extend the work of [23] to three-

dimensional inverse geometric problems, see also [12]. The paper is organized as follows: Section 2 is devoted

to the mathematical formulation of the inverse geometric problem investigated. The MFS discretization for this

problem is described in Section 3, while the implementational details are given in Section 4. In Section 5, we

investigate four examples. Finally, some concluding remarks and possible future work are provided in Section 6.

2 The Cauchy-Navier equations of elasticity

2.1 The problem

We consider the boundary value problem in a bounded domain Ω ⊂ R
3 for the Cauchy–Navier system of elasticity

for the displacement u in the form (see e.g. [17])

µ∆u+
µ

1− 2ν
∇ · ∇u = 0 in Ω, (1a)

where µ > 0 is the shear modulus and ν ∈ (0, 1/2) is the Poisson ratio, subject to the Dirichlet boundary

conditions

u = f on ∂Ω2, (1b)

and the homogeneous boundary conditions

αu+ (1− α)t = 0 on ∂Ω1, (1c)

where α is 0 or 1. The inverse problem we are concerned with consists of determining not only the displacement

u, but also the unknown inclusion Ω1 so that u satisfies the Cauchy-Navier equations (1a), given the Dirichlet

data f in (1b), the homogeneous boundary condition (1c) and the Neumann traction measurements

t = g on ∂Ω2 . (1d)

In the above, Ω = Ω2\Ω1, where Ω1 ⊂ Ω2, is a bounded annular domain with boundary ∂Ω = ∂Ω1 ∪ ∂Ω2.

The void Ω1 may have many connected components, but Ω should be connected. Equation (1c), covers both
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homogeneous Dirichlet (α = 1, i.e. Ω1 is a rigid inclusion) and Neumann (α = 0, i.e. Ω1 is a cavity) boundary

conditions on ∂Ω1. In (1c), t represents the traction defined by

t = σn on ∂Ω2. (2)

In (2), the outward normal unit vector to the boundary at the point (x1, x2, x3) is denoted by n(x1, x2, x3) =

(nx1
, nx2

, nx3
), whilst σ is the stress tensor given, in terms of the strain tensor ε =

(
∇u+(∇u)

T
)
/2, by Hooke’s

law [17], namely

σ = 2µ

[
ε+

ν

1− 2ν
tr(ε)I

]
in Ω, (3)

where I is the 3× 3 identity matrix.

If the Dirichlet and Neumann data (1b) and (1d) are not identically zero, then the uniqueness of the solution

pair (u,Ω1) of the inverse problem (1a)-(1d) holds, see [3].

3 The method of fundamental solutions (MFS)

In the application of the MFS to (1), we seek an approximation to the solution of the three-dimensional Cauchy-

Navier equations of elasticity as a linear combination of fundamental solutions in the form [35]

uNM (a1,a2, b1, b2, c1, c2, ξ1, ξ2;x) =
2∑

s=1

N∑

n=1

M∑

m=1

G(ξsn,m,x)
[
asn,m bsn,m csn,m

]T
, (4)

where G(ξ,x) =
[
Gij(ξ,x)

]
1≤i,j≤3

is the fundamental solution matrix for the displacement vector in three-

dimensional isotropic linear elasticity given by

G(ξ,x) =
1

16πµ(1− ν)

1

|x− ξ|

[
(3− 4ν)I +

x− ξ

|x− ξ| ⊗
x− ξ

|x− ξ|

]
, (5)

and the vectors as =
[
as1,1, a

s
1,2, . . . , a

s
N,M

]
, bs =

[
bs1,1, b

s
1,2, . . . , b

s
N,M

]
and cs =

[
cs1,1, c

s
1,2, . . . , c

s
N,M

]
, s = 1, 2,

contain the unknown MFS coefficients. Similarly, from (2), (4) and (5), the tractions are approximated by [5]

tNM (a1,a2, b1, b2, c1, c2, ξ1, ξ2;x) =

2∑

s=1

N∑

n=1

M∑

m=1

T (ξsn,m,x)
[
asn,m bsn,m csn,m

]T
(6)

where T (ξ,x) =
[
Tij(ξ,x)

]
1≤i,j≤3

is the fundamental solution matrix for the traction vector in three-dimensional

isotropic linear elasticity, whose components are given by

T1j(ξ,x) =
2µ

1− 2ν

[
(1− ν)

∂G1j

∂x1

(ξ,x) + ν

(
∂G2j

∂x2

(ξ,x) +
∂G3j

∂x3

(ξ,x)

)]
nx1

(x)

+ µ

[
∂G1j

∂x2

(ξ,x) +
∂G2j

∂x1

(ξ,x)

]
nx2

(x) + µ

[
∂G1j

∂x3

(ξ,x) +
∂G3j

∂x1

(ξ,x)

]
nx3

(x), j = 1, 2, 3,

(7a)
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T2j(ξ,x) =
2µ

1− 2ν

[
(1− ν)

∂G2j

∂x2

(ξ,x) + ν

(
∂G3j

∂x3

(ξ,x) +
∂G1j

∂x1

(ξ,x)

)]
nx2

(x)

+ µ

[
∂G2j

∂x3

(ξ,x) +
∂G3j

∂x2

(ξ,x)

]
nx3

(x) + µ

[
∂G2j

∂x1

(ξ,x) +
∂G1j

∂x2

(ξ,x)

]
nx1

(x), j = 1, 2, 3,

(7b)

T3j(ξ,x) =
2µ

1− 2ν

[
(1− ν)

∂G3j

∂x3

(ξ,x) + ν

(
∂G1j

∂x1

(ξ,x) +
∂G2j

∂x2

(ξ,x)

)]
nx3

(x)

+ µ

[
∂G3j

∂x1

(ξ,x) +
∂G1j

∂x3

(ξ,x)

]
nx1

(x) + µ

[
∂G3j

∂x2

(ξ,x) +
∂G2j

∂x3

(ξ,x)

]
nx2

(x), j = 1, 2, 3.

(7c)

The sources (ξsn,m)n=1,N,m=1,M,s=1,2 are located outside the solution domain Ω, i.e. in Ω1∪
(
R

3\Ω̄2

)
. In par-

ticular, the sources (ξ1n,m)n=1,N,m=1,M ∈ Ω1 are placed on a (moving) pseudo-boundary ∂Ω′
1 similar (contraction)

to ∂Ω1, while the sources (ξ2n,m)n=1,N,m=1,M ∈ R
3\Ω2 are placed on a pseudo-boundary ∂Ω′

2 similar (dilation)

to ∂Ω2. In the MFS, taking the pseudo-boundary similar to the boundary yields, in general, improved results as

has been demonstrated by Gorzelańczyk and Kołodziej [15]. In (4), the singularities (ξ2n,m)n=1,N,m=1,M are not

preassigned. Also, the sources (ξ1n,m)n=1,N,m=1,M move with ∂Ω1, as will be described in the iterative process

presented in the sequel. The fact that the locations of the pseudo-boundaries ∂Ω′
1 and ∂Ω′

2 are determined as

part of the solution takes care of the inherent problem of optimally locating the sources in the MFS.

Without loss of generality, we shall assume that the (known) fixed exterior boundary ∂Ω2 is a sphere of radius

R. As a result, the outer boundary collocation and source points are chosen as

x2
k,ℓ = R

(
sin ϑ̃k cos ϕ̃ℓ, sin ϑ̃k sin ϕ̃ℓ, cos ϑ̃k

)
, k = 1, Ñ , ℓ = 1, M̃ , (8)

ξ2n,m = ηext R (sinϑn cosϕm, sinϑn sinϕm, cosϑn) , n = 1, N, m = 1,M, (9)

respectively, where

ϑ̃k =
πk

Ñ + 1
, k = 1, Ñ , ϕ̃ℓ =

2π(ℓ− 1)

M̃
, ℓ = 1, M̃ ,

and

ϑn =
πn

N + 1
, n = 1, N, ϕm =

2π(m− 1)

M
, m = 1,M,

and the (unknown) dilation parameter ηext ∈ (1, S), with S > 1 prescribed.

We further assume that the unknown boundary ∂Ω1 is a smooth, star-like surface with respect to its centre

which has unknown coordinates (X,Y, Z). This means that its equation in spherical coordinates can be written

as

x = X+r(ϑ, ϕ) sinϑ cosϕ, y = Y +r(ϑ, ϕ) sinϑ sinϕ, z = Z+r(ϑ, ϕ) cosϑ, ϑ ∈ (0, π), ϕ ∈ [0, 2π), (10)
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where r is a smooth function with values in (0, R). The discretised form of (10) for ∂Ω1 becomes

rn,m = r(ϑn, ϕm), n = 1, N, m = 1,M, (11)

and we choose the inner boundary collocation and source points as

x1
n,m = (X,Y, Z) + rn,m (sinϑn cosϕm, sinϑn sinϕm, cosϑn) n = 1, N, m = 1,M, (12)

ξ1m,n = (X,Y, Z) + ηint rn,m (sinϑn cosϕm, sinϑn sinϕm, cosϑn) , n = 1, N, m = 1,M, (13)

where the (unknown) contraction parameter ηint ∈ (0, 1).

4 Implementational details

The coefficients a1 =
(
a1n,m

)
n=1,N,m=1,M

, a2 =
(
a2n,m

)
n=1,N,m=1,M

, b1 =
(
b1n,m

)
n=1,N,m=1,M

,

b2 =
(
b2n,m

)
n=1,N,m=1,M

, c1 =
(
c1n,m

)
n=1,N,m=1,M

, c2 =
(
c2n,m

)
n=1,N,m=1,M

in (4), the radii

r = (rn,m)n=1,N,m=1,M ∈ (0, R) in (11), the contraction and dilation coefficients ηint ∈ (0, 1) and ηext ∈ (1, S)

in (13) and (9), and the coordinates of the centre C = (X,Y, Z) so that X2 + Y 2 + Z2 < R2 can be determined

by imposing the boundary conditions (1b), (1c) and (1d) in a regularized least-squares sense. This leads to the

minimization of the functional

S(a1,a2, b1, b2, c1, c2, r,η,C) :=
Ñ∑

n=1

M̃∑

m=1

∣∣uNM (a1,a2, b1, b2, c1, c2, ξ1, ξ2;x2
n,m)− fε(x2

n,m)
∣∣2

+

Ñ∑

n=1

M̃∑

m=1

∣∣tNM (a1,a2, b1, b2, c1, c2, ξ1, ξ2;x2
n,m)− gε(x2

n,m)
∣∣2

+
Ñ∑

n=1

M̃∑

m=1

∣∣αuNM (a1,a2, b1, b2, c1, c2, ξ1, ξ2;x2
n,m) + (1− α)tNM (a1,a2, b1, b2, c1, c2, ξ1, ξ2;x2

n,m)
∣∣2

+λ1

{
|a1|2 + |a2|2 + |b1|2 + |b2|2 + |c1|2 + |c2|2

}

+λ2

[
N∑

n=1

M∑

m=2

(
rn,m − rn,m−1

2π/M

)2

+
N∑

n=2

M∑

m=1

(
rn,m − rn−1,m

π/(N + 1)

)2
]
, (14)

where λ1, λ2 ≥ 0 are regularization parameters to be prescribed and η = [ηint, ηext].
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Remarks.

(i) The Dirichlet data (1b) and the traction data (1d) come from practical measurements which are inherently

contaminated with noisy errors, and that is why we have replaced f and g by fε =
[
fε
1 , f

ε
2 , f

ε
3

]T
and

gε =
[
gε1, g

ε
2, g

ε
3

]T
, respectively, where, in computation, the noisy data are generated as

fε
ℓ (x

2
n,m) = (1 + ρn,m pf ) fℓ(x

2
n,m), gεℓ (x

2
n,m) = (1 + ρn,m pg) gℓ(x

2
n,m), n = 1, Ñ , m = 1, M̃ , (15)

where pf and pg represent the percentage of noise added to the Dirichlet and Neumann boundary data on

∂Ω2, respectively, and ρm,n is a pseudo-random noisy variable drawn from a uniform distribution in [−1, 1]

using the MATLAB c⃝ command -1+2*rand(1,M̃Ñ). In our numerical experiments it was observed that

the effect of noise added to the Dirichlet boundary data was similar to that of perturbing the Neumann

data. As a result in the numerical results section we only present results for noisy Neumann data, i.e.

pg ̸= 0 and pf = 0. In Section 5 we shall re-denote pg by p.

(ii) For ∂Ω2 a sphere, the outward normal vector n is defined as follows:

n = (sinϑ cosϕ, sinϑ sinϕ, cosϑ) on ∂Ω2 . (16)

In the case of the boundary ∂Ω1, we know that the position vector of a boundary point is given by

x1(ϑ, ϕ) = (X,Y, Z) + r(ϑ, ϕ) (sinϑ cosϕ, sinϑ sinϕ, cosϑ) , (17)

and that the normal to the parametrised surface is given by

n =
x1
ϑ × x1

ϕ

|x1
ϑ × x1

ϕ|
, (18)

where the subscripts ϑ and ϕ denote the partial derivatives with respect to ϑ and ϕ, respectively. Now,

x1
ϑ = [rϑ sinϑ cosϕ+ r cosϑ cosϕ, rϑ sinϑ sinϕ+ r cosϑ sinϕ, rϑ cosϑ− r sinϑ] ,

x1
ϕ = [rϕ sinϑ cosϕ− r sinϑ sinϕ, rϕ sinϑ sinϕ+ r sinϑ cosϕ, rϕ cosϑ] ,

and thus

x1
ϑ × x1

ϕ = −r
[
−rϕ sinϕ+ rϑ sinϑ cosϑ cosϕ− r sin2 ϑ cosϕ,

rϕ cosϕ+ rϑ sinϑ cosϑ sinϕ− r sin2 ϑ sinϕ,− sinϑ(rϑ sinϑ+ r cosϑ)
]
,

8



and

|x1
ϑ × x1

ϕ| = r
√

(r2 + r2ϑ) sin
2 ϑ+ r2ϕ (19)

yielding

n =
1√

(r2 + r2ϑ) sin
2 ϑ+ r2ϕ

[
−rϕ sinϕ+ rϑ sinϑ cosϑ cosϕ− r sin2 ϑ cosϕ,

rϕ cosϕ+ rϑ sinϑ cosϑ sinϕ− r sin2 ϑ sinϕ, − sinϑ(rϑ sinϑ+ r cosϑ)
]

on ∂Ω1 . (20)

As a result, in the expressions for the tractions (6) the normal derivatives are given by (16) and (20) for

x ∈ ∂Ω2 and x ∈ ∂Ω1, respectively. In (20), we use the finite-difference approximations

rϕ(ϑn, ϕm) ≈ rn,m+1 − rn,m−1

4π/M
, n = 1, N, m = 1,M, (21)

with the convention that rn,M+1 = rn,1, rn,0 = rn,M , and

rϑ(ϑn, ϕm) ≈ rn+1,m − rn−1,m

2π/(N + 1)
, n = 2, N − 1,

rϑ(ϑ1, ϕm) ≈ −r3,m + 4r2,m − 3r1,m
2π/(N + 1)

, rϑ(ϑN , ϕm) ≈ rN−2,m − 4rN−1,m + 3rN,m

2π/(N + 1)
, m = 1,M. (22)

(iii) Since the total number of unknowns is 7NM+5 and the number of boundary condition collocation equations

is 3NM + 6ÑM̃ we need to take ÑM̃ ≥ 2NM/3 + 1.

(iv) Since the inverse problem is ill-posed, in (14), the regularization terms

λ1

{
|a1|2+ |a2|2+ |b1|2+ |b2|2+ |c1|2+ |c2|2

}
and λ2

(
|rϑ|2+ |rϕ|2

)
are added in order to achieve the stability

of the numerical MFS solution uNM and the smooth boundary ∂Ω1. We do not include regularization terms

λ3|η|2 and λ4|C|2 since both η and C only have a small number of components and the numerical solution

is expected to be stable in both η and C.

4.1 Non-linear minimization

The minimization of functional (14) is carried out using the MATLAB c⃝ [32] optimization toolbox routine

lsqnonlin which solves nonlinear least squares problems. This routine by default uses the so-called trust-region-

reflective algorithm based on the interior-reflective Newton method [13, 14], and terminates when (i) the change
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in the solution vector is less than a specified tolerance, or (ii) the change in the residual is less than a specified

tolerance, or (iii) the specified number of iterations or number of function evaluations is exceeded. The routine

lsqnonlin does not require the user to provide the gradient and, in addition, it offers the option of imposing lower

and upper bounds on the elements of the vector of unknowns (a1,a2, b1, b2, c1, c2, r,η,C) through the vectors lb

and up. We can thus easily impose the constraints 0 < rn,m < 1, n = 1, N,m = 1,M , 0 < ηint < 1, 1 < ηext < S

and −R < X < R,−R < Y < R,−R < Z < R . In our numerical experiments we choose S = 6. Moreover, we

choose the initial guess vector of unknowns (a1
0,a

2
0, b

1

0, b
2

0, c
1
0, c

2
0, r0, η

0
int, η

0
ext,C) = (0,0,0,0,0,0,0.3, 0.2, 3,0).

5 Numerical examples

In all numerical examples considered in this section we took µ = 1 and ν = 0.3. In all figures presented the

reconstructed values of r, i.e. the numerically reconstructed object Ω1, are presented as red colour dots.

5.1 Example 1 (Rigid inclusion)

We consider an example in a hollow sphere domain Ω = Ω2\Ω1, where

Ω2 =
{
(x1, x2, x3) ∈ R

3 | x2
1 + x2

2 + x2
3 < r2o

}
, (23)

Ω1 =
{
(x1, x2, x3) ∈ R

3 | x2
1 + x2

2 + x2
3 < r2int

}
, 0 < rint < ro = R = 1. (24)

We consider the following exact solutions for the displacements

uℓ(x1, x2, x3) =

[
A+

B

(x2
1 + x2

2 + x2
3)

3/2

]
xℓ, ℓ = 1, 2, 3, (x1, x2, x3) ∈ Ω, (25)

where A and B are constants chosen such that u1 = u2 = u3 = 0, on the inner boundary. We choose A = 1 and

B = −0.125 so that the internal sphere has radius rint = 0.5.

In Figures 1-3 we present the results obtained with no noise, no regularization with M = N = 6, M̃ = Ñ = 8,

M = N = 8, M̃ = Ñ = 10, M = N = 10, M̃ = Ñ = 12, respectively, for various numbers of iterations (iter),

as well as the correct sphere (24) to be reconstructed. From these figures it can be seen that, for exact data,

very accurate numerical results are obtained in a relatively small number of iterations. Another indicator of the

10



accuracy of the method is the maximum radii deviation

Er = max
n=1,N,m=1,M

|rn,m − rint|.

In Figure 4 we present the variation of Er for M = N = 6, M̃ = Ñ = 8, M = N = 8, M̃ = Ñ = 10,

M = N = 10, M̃ = Ñ = 12, respectively, for various numbers of iterations.

5.2 Example 2 (Cavity)

We consider again the domain Ω = Ω2\Ω1 where Ω2 and Ω1 are spheres defined by (23) and (24), respectively.

The exact solution has the form (25) but now, in order to have t1 = t2 = t3 = 0, on the inner boundary we need

to choose the constants A and B differently. In particular, we choose A = 1 and B = 0.0625(1 + ν)/(1− 2ν) so

that the internal sphere has radius rint = 0.5.

In Figures 5-7 we present the results obtained with no noise, no regularization with M = N = 6, M̃ = Ñ = 8,

M = N = 8, M̃ = Ñ = 10, M = N = 10, M̃ = Ñ = 12, respectively, for various numbers of iterations, as well as

the correct sphere (24) to be reconstructed. From this figure it can be seen that, for exact data, very accurate

numerical results are obtained in a relatively small number of iterations. In Figure 8 we present the variation of

Er for M = N = 6, M̃ = Ñ = 8, M = N = 8, M̃ = Ñ = 10, M = N = 10, M̃ = Ñ = 12, respectively, for various

numbers of iterations.

5.3 Example 3

We next consider the case R = 1, α = 1 and the rigid inclusion Ω1 has an acorn shape [23, 36] described

parametrically by

r(ϑ, ϕ) = 0.2
(
0.6 +

√
4.25 + 2 cos 3ϑ

)
, ϑ ∈ (0, π), ϕ ∈ [0, 2π), (26)

and Ω2 is the unit sphere. The Dirichlet data on ∂Ω2 is taken as

uℓ(x1, x2, x3) =

[
1− 2

(x2
1 + x2

2 + x2
3)

3/2

]
xℓ, ℓ = 1, 2, 3, (x1, x2, x3) ∈ ∂Ω2. (27)

Since in this case no analytical solution is available, the Neumann data (1d) is numerically simulated by solving

the direct Dirichlet well-posed problem given by equations (1a), (1b), and (1c) with α = 1, when ∂Ω1 is given

by (26), using the MFS with M = N = 20, M̃ = Ñ = 16. In order to avoid committing an inverse crime, the

inverse solver is applied using M = N = 8, M̃ = Ñ = 10.

11



In Figures 9 and 10 we present the results obtained with X = Y = Z = 0.1, no noise and p = 5% noise,

respectively, no regularization with M = N = 8, M̃ = Ñ = 10, for various numbers of iterations, as well as the

correct shape (26) to be reconstructed. From Figure 9 it can be seen that for exact data, accurate retrievals of

the acorn shape (26) are obtained as the number of iterations increase, but this conclusion is not maintained for

noisy data, see Figure 10. This is because, in the absence of regularization, the obtained numerical solution will

amplify the small noise with which the input data is contaminated, thus becoming unstable. In order to deal

with this instability, regularization should be included.

In Figures 11 and 12 we present the results obtained with noise p = 5% after 100 iterations, and regularization

with λ1 (with λ2 = 0) and λ2 (with λ1 = 0), respectively. From Figure 11 it can be seen that regularization with

λ1 is not very effective and better results are obtained for regularization with λ2, in particular when λ2 is about

10−1, see Figure 12.

Similar results have been obtained for reconstructing an acorn shape cavity, i.e. α = 0, and are therefore not

presented.

5.4 Example 4

We finally consider the case R = 1, α = 1 and the rigid inclusion Ω1 is a pinched ball [23, 36] described

parametrically by

r(ϑ, ϕ) = 0.4
√
1.44 + 0.5(cos 2ϑ− 1) cos 2ϕ, ϑ ∈ (0, π), ϕ ∈ [0, 2π), (28)

and Ω2 is the unit sphere. The Dirichlet data on ∂Ω2 is taken as in (27).

Since in this case no analytical solution is available, the Neumann data (1d) is numerically simulated by

solving the direct Dirichlet well-posed problem given by equations (1a), (1b), and (1c) with α = 1, when ∂Ω1 is

given by (28), using the MFS with M = N = M̃ = Ñ = 20. In order to avoid committing an inverse crime, the

inverse solver is applied using M = N = 8, M̃ = Ñ = 10.

In Figures 13 and 14 we present the results obtained with X = Y = Z = 0, no noise and p = 5% noise,

respectively, no regularization with M = N = 8, M̃ = Ñ = 10, for various numbers of iterations, as well as the

correct shape (28) to be reconstructed. The same conclusions as those discussed for Example 3 from Figures 9

and 10 above can be drawn from Figures 13 and 14 for Example 4.

In Figures 15 and 16 we present the results obtained with noise p = 5% after 100 iterations, and regularization

12



with λ1 (with λ2 = 0) and λ2 (with λ1 = 0), respectively. Finally, in Figure 17 we present the corresponding L-

curves with λ1 and λ2 regularizations for noise p = 5% after 100 iterations. The L-curve corner for regularization

in λ1 is not consistent with the best results which appear just above λ1 = 10−1 in Figure 15 whereas the L-curve

corner for regularization in λ2 is consistent with the the best results which appear around λ2 = 10−1 in Figure

16.

6 Conclusions

The main features of this work can be summarized as follows:

• This is the first time a three-dimensional inverse geometric problem in elasticity has been considered using

the MFS.

• We get the full benefits of the MFS since we are dealing with a nonlinear problem in three dimensions and in

complex geometries. Here, the meshlessness and the boundary nature of the method and their concomitant

ease of implementation become important.

• The numerical results indicate that the numerical method is accurate (for no noise) and stable with respect

to noise added in the input data.

• Accurate results are obtained for relatively few degrees of freedom.

• The dynamic approach of the MFS has been used. It is well-suited for such nonlinear problems since, in

addition to the parameters determining the shape of the sought void, we simultaneously determine the

location of the unknown pseudo-boundaries as well as the coordinates of the centre of the object.

• The MFS implementations to three-dimensional isotropic linear thermo-elasticity, as well as to two- and

three-dimensional anisotropic linear elasticity, of the corresponding inverse void problems are deferred to a

future work.
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Figure 1: Example 1: Results for M = N = 6, M̃ = Ñ = 8, no noise and no regularization.
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Figure 2: Example 1: Results for M = N = 8, M̃ = Ñ = 10, no noise and no regularization.

Figure 3: Example 1: Results for M = N = 10, M̃ = Ñ = 12, no noise and no regularization.
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Figure 4: Example 1: Variation of error Er with the number of iterations.

Figure 5: Example 2: Results for M = N = 6, M̃ = Ñ = 8, no noise and no regularization.
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Figure 6: Example 2: Results for M = N = 8, M̃ = Ñ = 10, no noise and no regularization.

Figure 7: Example 2: Results for M = N = 10, M̃ = Ñ = 12, no noise and no regularization.
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Figure 8: Example 2: Variation of error Er with the number of iterations.

Figure 9: Example 3: Results for M = N = 8, M̃ = Ñ = 10, no noise and no regularization.
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Figure 10: Example 3: Results for M = N = 8, M̃ = Ñ = 10, noise p = 5% and no regularization.

Figure 11: Example 3: Results for M = N = 8, M̃ = Ñ = 10, noise p = 5% and regularization with λ1.
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Figure 12: Example 3: Results for M = N = 8, M̃ = Ñ = 10, noise p = 5% and regularization with λ2.

Figure 13: Example 4: Results for M = N = 8, M̃ = Ñ = 10, no noise and no regularization.
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Figure 14: Example 4: Results for M = N = 8, M̃ = Ñ = 10, noise p = 5% and no regularization.

Figure 15: Example 4: Results for M = N = 8, M̃ = Ñ = 10, noise p = 5% and regularization with λ1.
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Figure 16: Example 4: Results for M = N = 8, M̃ = Ñ = 10, noise p = 5% and regularization with λ2.
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Figure 17: Example 4: L-curves obtained with regularization in (a) λ1 and (b) λ2 for noise p = 5%.
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