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a b s t r a c t

In this paper we consider one of the basic inverse problems in damage detection based on
natural frequency data, namely the identification of a single open crack in a uniform
simply supported beam from measurement of the first and the second natural frequency.
It is commonly accepted in the literature that the knowledge of this set of spectral data

the damage. However, in spite of the fact that many numerical evidences are in support of
this property, the result is rigorously proved only when the severity of the crack is small.
In this paper we definitely show, by means of an original constructive method, that the
above result holds true for any level of crack severity.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Dynamic methods based on natural frequency measurements are widely used as powerful tool for crack detection in
beam structures. Resonant frequencies are often chosen as input data since they are easy to measure in experiments, and are
subject to errors less than those affecting other dynamic data, such as, for instance, mode shape components. In addition, in
case of ideal undamped systems, it is somewhat more easy to extract information on possible occurrence of damage from
natural frequency measurements than from other dynamical parameters, particularly for concentrated damages, such as
cracks or notches in beams [1].

After the appearance of the pioneering paper by Adams et al. [2], an extensive literature is nowadays available on the
identification of defects in beams structures by frequency measurements; see, among others, the contributions by [3,
Chapter 15] and [4] for an introduction to the topic, and [5–7] for recent advances on multiple crack identification in beams
and in frames, respectively. In spite of this, several basic, fundamental diagnostic problems are still open. Their study is
useful both for the application of dynamic techniques in practice and for the definition of a comprehensive theory of damage
detection in structures.
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One of these basic problems is considered here. Specifically, we deal with the inverse problem of determining a single
open crack in a uniform simply supported beam from the first two natural bending frequencies. The damage is modelled as a
massless linearly elastic rotational spring located at the damaged cross-section [8]. The main contribution of the present
research is the rigorous unique determination of the crack position and severity, by means of a constructive algorithm,
without any a priori assumption on the smallness of the damage. It should be recalled, in fact, that a well-established theory
is available for our problem in case of small crack [9–11]. The smallness of the damage allows us to linearize the inverse
problem in a neighborhood of the undamaged configuration, see also [12] for a theory which includes second-order terms in
the eigenvalues expansion with respect to the crack severity. Then, taking advantage of the closed-form expression of the
eigenpairs of the uniform undamaged beam, it is possible to obtain exact solutions of the linearized inverse problem, with
closed form expressions both the position and the severity of the crack in terms of the data. In particular, it turns out that
the first two natural frequencies determine uniquely the small crack, up to a symmetrical position with respect to the mid-
point of the beam.

When the damage is not small, the linearization is no longer allowed and one has to deal with the full nonlinear crack
identification problem. There are strong motivations in support of the extension of the theory to not necessarily small
cracks. Firstly, it is not easy to rigorously state when a crack can be considered small. Secondly, the linearized theories by
Narkis [9] and Morassi [10] show some limitations when the damage is located near a point of vanishing sensitivity for a
vibration mode. Third, it is obviously desirable to have a unifying theory of the diagnostic problem capable to include any
severity of the damage.

In this paper we prove, by means of a constructive argument, that the measurement of the first and the second natural
frequency of the cracked beam is sufficient for the unique determination of the crack (up to a symmetric position) for any
level of severity of the damage. However, unlike the corresponding linearized problem, no closed-form expressions of the
damage parameters in terms of the frequency data are available.

Our method differs from that recently presented in [13] for the analysis of the analogous crack identification problem in a
uniform beam under longitudinal vibration. The analysis developed in [13] was essentially based on the Frequency Equation
Method, that is, a careful study of the solutions of the nonlinear system formed by the frequency equation – which is
available in closed form, since the system has constant coefficients – written for the two selected resonant frequencies in
terms of the position and severity of the crack. The analysis of the corresponding nonlinear system for the cracked beam in
bending turns out to be significantly more difficult, due to the simultaneous presence of harmonic ( cos ; sin ) and hyperbolic
(cosh; sinh) functions. In particular, it has proved difficult to find a complete characterization of the set of admissible natural
frequency data for which the existence and uniqueness of the solution to the inverse problem are ensured. In view of these
difficulties, we had to follow a different approach that, at the end, resulted in an original constructive algorithm for the
identification of the damage parameters.

We now describe the main steps of our approach. The proof of the result is based on three main steps. In a first step, we
transform the eigenvalue problem of the cracked beam in an equivalent eigenvalue problem for a simply-supported beam
carrying a point mass m¼ 1

K at the cracked cross-section of abscissa s, where K is the stiffness of the linearly elastic rotational
spring modelling the crack (see Proposition 3.1 in Section 3). Hence, the crack detection problem is transformed into the
equivalent problem of determining the location s and the magnitude m of the point mass from the first two natural fre-
quencies of the beam. In the second step, we study the λ�m and λ�s curves, that is the functions λ¼ λðs; �Þ and λ¼ λð�;mÞ,
for fixed s and fixed m, respectively, where λ is the first and the second eigenvalue (Section 4). This analysis is based on the
determination of the explicit expression of the eigenvalue first partial derivatives with respect to the parameter s and m
(Proposition 4.1), and on specific properties of the λ�m and λ�s curves of the cracked beam (Propositions 4.2 and 4.3).
These properties are used in the last step to prove the main result (Section 5). The proof is constructive and leads to an
identification method, called λ-Curves Method, which is alternative, although equivalent, to the Frequency Equation
Method. It should be noted that the proof relies on a sharp lower bound for the second eigenvalue of the cracked beam
(Proposition 3.5). Such a bound plays an important role in our treatment and follows from a careful analysis of the frequency
equation of the cracked beam.

Once the existence and uniqueness of the solution to the inverse problem are proved, a specific crack identification
problem can be addressed by using either the Frequency Equation Method or the λ-Curves Method. Our experience shows
that, although the use of the λ-Curves Method was necessary in the proof of the main theorem, the numerical imple-
mentation of the Frequency Equation Method is less onerous. An extensive series of numerical simulations with various
positions and severities of the crack support the theory (Section 6).

Finally, for the sake of completeness, we recall that several contributions on the crack identification problem considered
in this paper are available. Apart from variational techniques, see, for example, [14–21], the approach generally adopted
consists in solving numerically the nonlinear system of the frequency equations written for the first two natural frequencies.
We refer, among others, to the studies carried out in [22–26]. All the known results support the conjecture that the inverse
problem has positive answer. However, at the best of our knowledge, a rigorous proof of this general property was not
available, as the conclusions of the above studies were drawn either on the basis of numerical analysis of specific cases, or on
the study of particular experimental situation.
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2. Formulation of the inverse problem and main result

Let us consider a uniform simply supported beam under bending vibration with a crack at the cross-section of abscissa zd,
with 0ozdoL, where L is the length of the beam. The crack is assumed to remain open during vibration and is modelled as
a rotational linearly elastic spring of stiffness bK located at the cracked cross-section. We refer, among other contributions, to
[8] for a justification of the localized flexibility model of crack based on Linear Fracture Mechanics arguments, and to [27] for
an alternative derivation. The value of bK depends on the geometry of the cracked cross-section and on the material
properties of the beam. A specific expression for bK is considered in Section 6 in the case of rectangular cross-section.

The free undamped bending vibrations of the beam, with radian frequency ω and spatial amplitude u¼ u xð Þ x¼ z
L

� �
, are

governed by the following eigenvalue problem (written in dimensionless form)

uIV �λ4u¼ 0; in ð0; sÞ [ ðs;1Þ; ð1Þ
uð0Þ ¼ u″ð0Þ ¼ 0; ð2Þ
1uðsÞU¼1u″ðsÞU¼1u‴ðsÞU¼ 0; ð3Þ
K1u0ðsÞU¼ u″ðsÞ; ð4Þ
uð1Þ ¼ u″ð1Þ ¼ 0; ð5Þ

8>>>>>>><>>>>>>>:
where s¼ zd

L , sAð0;1Þ, K ¼ bKL
EI , KA ð0;1Þ, λ4 ¼ω2γAL4

EI . Hereinafter, the notation ð�Þ0 ¼ dð�Þ
dx indicates x-differentiation, and the

jump of the function φ¼φðxÞ at x¼s is defined as 1φðsÞU¼ ðlimx-sþ φðxÞ� limx-s� φðxÞÞ. In the above equations, E is Young's
modulus of the material; γ is the volume mass density; A is the cross-sectional area; I is the second moment of area about
the axis through the centroid of the cross-section, at right angles to the plane of vibration. All the above mechanical
parameters are assumed to be constant.

The main properties of the eigenpairs of (1)–(5) are recalled in the next proposition.

Proposition 2.1. Under the above assumptions:

1. there exists a numerable sequence of real positive eigenvalues fλ4ng
1
n ¼ 1 of (1)–(5), with limn-1λ

4
n ¼1. In particular, denoting

by λ the fourth root of λ4, the eigenvalues are the (positive) roots of the frequency equation

PK ðλ; s;KÞ ¼ 4K sin λ sinh λþλ sin λðcosh λ�coshðλð1–2sÞÞþsinh λð cos λ� cos ðλð1–2sÞÞ� �¼ 0: (6)

2. The eigenvalues fλ4ng
1
n ¼ 1 of (1)–(5) are all simple, e.g.,

0oλ41oλ42o⋯oλ4no⋯; (7)

and to every eigenvalue λn
4
we can associate a unique eigenfunction (e.g., if un and ~un are eigenfunctions associated to the same

eigenvalue λn
4
, then unðxÞ ¼ C ~unðxÞ in ½0;1�, where C is a no-vanishing constant). Every eigenfunction un is a continuous function

in ½0;1� and belongs to C1ðð0; sÞ [ ðs;1ÞÞ.
3. The set of eigenfunctions funðxÞg1n ¼ 1 is an orthonormal basis of the space of continuous functions on ½0;1�, vanishing at x¼0

and x¼1, with respect to the usual scalar product 〈f ; g〉¼ R 1
0 fg.

4. The nth eigenfunction un(x) has exactly ðn�1Þ simple zeros in ð0;1Þ, nZ1.

Properties 1 and 3 follow from general results for self-adjoint compact operators in Hilbert spaces, see, for example, [28].
Properties 2 and 4 follow from the oscillatory character of the statical Green's function associated to (1)–(5); see, for
example, [3].

We are now in position to state the main result of this paper.

Theorem 2.2. The measurement of the first two natural frequencies of (1)–(5) allows for the unique determination of the severity
of the damage K and the location s of the crack, up to the symmetric position ð1�sÞ. The identification procedure is constructive.

The rest of the paper is devoted to the proof of Theorem 2.2. As we premised in the Introduction, the proof consists of
several steps. In the first step (Section 3), the inverse problem of detecting a single crack is rephrased as the equivalent
problem of detecting a point mass m in a simply-supported beam from the first two natural frequencies. It can be shown
that this alternative formulation simplifies the study of the dependence of an eigenvalue on the unknown parameters, see
Section 4. Finally, in the third and last step (Section 5) the previous results are used to prove the main theorem by means of
a constructive procedure.
3. An equivalent eigenvalue problem

The equivalence is stated in the next proposition.
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Proposition 3.1.

(i) Let ðλ4;uÞ be an eigenpair of (1)–(5). Then λ4 is an eigenvalue of the problem

vIV �λ4v¼ 0; in ð0; sÞ [ ðs;1Þ; ð8Þ
vð0Þ ¼ v″ð0Þ ¼ 0; ð9Þ
1vðsÞU¼1v0ðsÞU¼1v″ðsÞU¼ 0; ð10Þ
1v‴ðsÞU¼ λ4mvðsÞ; ð11Þ
vð1Þ ¼ v

00 ð1Þ ¼ 0; ð12Þ

8>>>>>>><>>>>>>>:
where

v¼ �u″ in ð0; sÞ [ ðs;1Þ; m¼ K �1: (13)

(ii) Conversely, let ðλ4; vÞ be an eigenpair of (8)–(12). Then λ4 is an eigenvalue of the problem (1)–(5) with

u¼ �v″ in ð0; sÞ [ ðs;1Þ; K ¼m�1: (14)

Proposition 3.1 can be proved by direct calculation.
It should be noted that problem (8)–(12) describes the free bending vibration of a simply supported uniform beam

carrying a point mass of intensity m¼ 1
K placed at the cross-section of abscissa x¼s.

Based on the equivalence between the eigenvalue problems (1)–(5) and (8)–(12), in the following we shall mainly focus
on the formulation of the inverse problem in terms of the vibration of the beam with a point mass. Therefore, Theorem 2.2
can be rephrased as follows.

Theorem 3.2. The measurement of the first two natural frequencies of (8)–(12) allows for the unique determination of the
intensity m and the location s of the point mass, up to the symmetric position ð1�sÞ. The identification procedure is constructive.

The next proposition states some properties of the zeros of the first and the second eigenfunction of (8)–(12), which will
be useful in our analysis.

Proposition 3.3. Let vn(x) be the nth eigenfunction of (8)–(12). Then:

1. v1ðxÞ has no zeros in ð0;1Þ and v01ðxÞ has exactly one simple zero in ð0;1Þ.
2. v2ðxÞ has exactly one simple zero in ð0;1Þ, say at ξ1, and v02ðxÞ has exactly two simple zeros in ð0;1Þ, say at η1, η2, with η1oη2.

Moreover, η1oξ1oη2.

Proposition 3.3 follows from the property of the zeros of the eigenfunctions of (1)–(5) (Proposition 2.1, point iv) and the
definition of v given in (13).

We conclude this section by recalling the weak and variational formulation of the eigenvalue problem (8)–(12). In this
respect, it should be noted that the functional space suitable for (8)–(12) is made by functions more regular than those
occurring in (1)–(5), e.g., the jump of the first derivative v0 at x¼s is not allowed, whereas the corresponding u0 may be
discontinuous at the crack location. It is possible to show that this additional regularity simplifies the study of the λ�s and
λ�m curves, see Section 4. The functional space H of admissible deformations of the beam for (8)–(12) is

H¼ ff jf AH2ð0;1Þ; f ð0Þ ¼ f ð1Þ ¼ 0g; (15)

where H2ð0;1Þ is the Hilbert space of Lebesgue measurable functions f : ð0;1Þ-R such that f, and its first and second weak
derivatives are square integrable in ð0;1Þ, e.g., R 10 ðf 2þðf 0Þ2þðf ″Þ2Þoþ1.

The weak formulation of (8)–(12) consists in finding vAH⧹f0g such thatZ 1

0
v″φ″ ¼ λ4 mvðsÞφðsÞþ

Z 1

0
vφ

 !
; for every φAH: (16)

Rayleigh's Quotient associated to (16) is

R �½ �:H⧹f0g-R; R φ
� �¼ R 1

0 ðφ″Þ2

mφ2ðsÞþ R 10 φ2
(17)

and the eigenvalues can be determined by solving the chain of minimum problems

R½vn� ¼ min
φAVn⧹f0g

R½φ� ¼ λ4n; (18)
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where

Vn ¼ φAHjmviðsÞφðsÞþ
Z 1

0
viφ¼ 0; i¼ 1;…;n�1

( )
: (19)

An equivalent formulation follows from the Maximum–Minimum Principle for the eigenvalues of (8)–(12), namely

λ4n ¼ max
li AH0 ; i ¼ 1;…;n�1

min
φAH⧹f0g; liðφÞ ¼ 0; i ¼ 1;…;n�1

R½φ�
� �

; (20)

where H0 is the dual space of H, that is the space of all the linear and continuous real-valued functionals li on H. We refer to
[29] for a complete account of the above formulations.

In the next sections we shall compare the eigenpairs of the problem (8)–(12) for finite, no-vanishing m, and sA ð0;1Þ, to
those obtained by taking either m¼0 or fs¼ 0; s¼ 1g in (8)–(12). We shall denote by ððλUn Þ4; vUn Þ the nth eigenpair of the
unperturbed (or undamaged) eigenvalue problem

ðvUÞIV �ðλUÞ4vU ¼ 0; xAð0;1Þ; ð21Þ
vU ð0Þ ¼ ðvU Þ″ð0Þ ¼ 0; ð22Þ
vU ð1Þ ¼ ðvU Þ″ð1Þ ¼ 0: ð23Þ

8><>:
Clearly, Proposition 2.1 continues to hold for m¼0 (or, equivalently, K ¼1), and weak, variational and Maximum–

Minimum formulations of (21)–(23) can be deduced by the corresponding formulations (16), (17)–(19) and (20), respec-
tively, by taking formally m¼0.

Variational and Maximum–Minimum formulations are useful to derive bounds of the perturbed eigenvalues λn
4
in terms

of unperturbed eigenvalues ðλUn Þ4, see [30]. Restricting the attention to the first two eigenvalues, we have the following well-
known result.

Proposition 3.4. For every sAð0;1Þ and every mAð0;1Þ, we have

ðλUn�1Þ4rλ4nðs;mÞrðλUn Þ4; (24)

where λU0 ¼ 0 and λUn ¼ nπ, n¼1,2.

The right inequality in (24) shows that the addition of a mass m cannot increase, and generally decreases the natural
frequencies of the unperturbed beam.

There is another inequality that will play an important role in our analysis: it is the following sharp lower bound of the
second eigenvalue λ42.

Proposition 3.5. For every sAð0;1Þ and every mAð0;1Þ, we have

ðλ�2Þ4oλ42ðs;mÞ; (25)

where λ�2C3:9266 is the first positive zero of the equation

tan x¼ tanh x: (26)

Inequality (26) has been deduced from a careful analysis of the zeros of the frequency equation (6) of (8)–(12). The proof of
Proposition 3.5 is rather cumbersome, and it is deferred in the Appendix.
4. Eigenvalue derivatives, λ�m and λ�s curves

In order to extract quantitative information on the perturbation parameters s and m from the eigenvalues, we found
useful to introduce the so-called λ�m and λ�s curves, that is, the functions λ4n ¼ λ4nðs; �Þ (λ�m curve), λ4n ¼ λ4nð�;mÞ (λ�s
curve), n¼1,2. The constructive proof of the main theorem is based on properties of these λ-curves.

An eigenpair ðλ4; vÞ of (8)–(12) depends on the perturbation parameters s and m. When necessary, we shall explicitly
write this dependence as λ4 ¼ λ4ðs;mÞ and v¼ vðx; s;mÞ, where xA ½0;1� is the current variable.

Proposition 4.1. Let ðλ4; vÞ be an eigenpair of (8)–(12). The eigenvalue is a continuous differentiable function of s and m, and its
first-order partial derivatives are

∂λ4

∂s
¼ �2λ4

mvðsÞv0ðsÞ
mv2ðsÞþ R 10 v2

; (27)
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∂λ4

∂m
¼ �λ4

v2ðsÞ
mv2ðsÞþ R 10 v2

; (28)

where vðsÞ ¼ vðx; s;mÞ
��
x ¼ s, v

0 sð Þ ¼ dvðx;s;mÞ
dx

	 

jx ¼ s.

A proof of Proposition 4.1 can be obtained along the lines of the proof of the analogous expressions obtained for the case
of axially vibrating rods, see [31].

The dependence of the eigenvalue on the parameter m, for a given position s of the point mass, is considered in the next
proposition, whose proof can be obtained by adapting a method shown in [31].

Proposition 4.2. Let ðλ4n; vnÞ, ððλUn Þ4; vUn Þ be the nth eigenpair of the problem (8)–(12), (21)–(23), respectively, n¼1,2.

(i) If vUn ðs0Þ ¼ 0 for some s0A ½0;1�, then λ4nðs0;mÞ ¼ ðλUn Þ4 for every finite positive m.
(ii) If vUn ðs0Þa0 for some s0Að0;1Þ, then λ4n ¼ λ4nðs0;mÞ is a monotonically decreasing function of m in ½0;1Þ.
(iii) If λ4nðs0;m0Þ ¼ ðλUn Þ4 for some s0A ½0;1� and m0Að0;1Þ, then vUn ðs0Þ ¼ 0.
(iv) If vnðs0; s0;m0Þ ¼ 0 for some s0A ½0;1� and m0Að0;1Þ, then vUn ðs0Þ ¼ 0.

We now pass to the study of the λ�s curves. For a simply-supported beam with constant coefficients it is easy to check
that the following symmetry property holds true.

Proposition 4.3. Let ðλ4n; vnÞ be the nth eigenpair of (8)–(12), nZ1. Let m be given, 0omo1. Then

λ4nðsÞ ¼ λ4nð1�sÞ; sA ½0;1�: (29)

If s¼ 1
2 , then

for n odd; we have vnðxÞ ¼ vnð1�xÞ; (30)

and

for n even; we have vnðxÞ ¼ �vnð1�xÞ; xA ½0;1�: (31)

Corollary 4.4. Under the assumptions of Proposition 4.3, for every nZ1, we have

∂λ4n
∂s

sð Þ ¼ 0 for sA 0;1;
1
2

� �
: (32)

The proof of our main theorem and the corresponding constructive diagnostic method are based on the following key
result.

Theorem 4.5. Let ðλ4n; vnÞ, n¼ 1;2, be the nth eigenpair of (8)–(12). Then, for every m40 we have:

(i) λ41 ¼ λ41ðsÞ is a strictly increasing function in 1
2;1
� �

;
(ii) there exists a unique ~sA 1

2;1
� �

such that ∂λ42
∂s

~sð Þ ¼ 0, that is λ42 ¼ λ42ðsÞ is a strictly decreasing function and a strictly increasing
function in 1

2; ~s
� �

and in ð~s;1Þ, respectively.
In the proof of Theorem 4.5 we shall use the following Deformation Lemma.

Lemma 4.6. Let f t ¼ f tðxÞ be a t-family of real-valued functions of xA ½0;1� which are continuous and jointly continuously
differentiable in x and in t, where the parameter t belongs to the interval ½t1; t2�, �1ot1ot2oþ1. Suppose that for every
tA ½t1; t2�, the function ft has a finite number of zeros in ½0;1�, all of which are simple, and has boundary values at x¼0 and x¼1
that are independent of t. Then, the number of zeros of ft is independent of t, for all t satisfying t1rtrt2.

For a proof of Lemma 4.6 we refer to [32, p. 41]

Proof of Theorem 4.5. A direct calculation shows that, up to a non-vanishing multiplicative factor, the function
v0n sð Þ ¼ dvnðx;s;mÞ

dx

	 

jx ¼ s, sA ½0;1�, takes the following closed form expression:

v0n sð Þ ¼ cos ðλnsÞ sin ðλnð1�sÞÞsinh λn�coshðλnsÞ sin ððλnð1�sÞÞ sin λn
sin ððλnð1�sÞÞsinh λn�sinhðλnð1�sÞÞ sin λn

; (33)

nZ1. In order to study the zeros of v0n ¼ v0nðsÞ in ½0;1�, we found convenient to introduce the change of variable

ξ: 0;1½ �- �1
2 ;

1
2

� �
; ξ sð Þ ¼ s�1

2 : (34)

Dividing the expression (34) by sinh λn and using (34), after a rearrangement of the terms, it can be shown that v0nðξÞ ¼ 0 if
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and only if the following expression vanishes:

f λn ξ
� �¼ sin 2λnξ

� ��sinhð2λnξÞ
sinh λn

sin λn: (35)

Recalling that for sA 1
2;1
� �

we have ξA 0; 12
� �

, and that λnA ½λUn�1 ¼ ðn�1Þπ; λUn ¼ nπ�, with λU0 ¼ 0, the domain of definition of
the function f λn ðξÞ is the rectangle

Qn ¼ 0; 12
� �� λUn�1; λ

U
n

h i
; nZ1: (36)

Proof of Claim (i). By the expression (27) of ∂λ41
∂s and recalling that v1 does not vanish inside ð0;1Þ (see Proposition 3.3, point

1), it is enough to prove that the function f λ1 ðξÞ does not vanish inside Q1. By the definition of f λ1 ðξÞ and observing that
0o2λ1ξoπ, we have

f λ1 0ð Þ ¼ 0; f λ1
1
2

� �¼ 0; for every λ1A 0;πð Þ; (37)

lim
λ1-0þ

f λ1 ξ
� �¼ 0; lim

λ1-π �
f λ1 ξ
� �¼ sin 2πξ

� �
; for every ξA 0; 12

� �
: (38)

The function f λ1 ðξÞ is continuous and jointly continuous differentiable with respect to ξ and λ1 in Q1, and it has vanishing
boundary values at ξ¼0 and ξ¼ 1

2 . We prove that for every λ1Að0;π� all the zeros of f λ1 ðξÞ in 0; 12
� �

, if any, are simple zeros.
The proof is by contradiction. Suppose that for a given λ1 ¼ λAð0;π� the function f λ ðξÞ has a zero at ξ, ξA 0; 12

� �
, with

multiplicity greater than one. Then, necessary conditions are

f λ ðξÞ ¼ 0; ð39Þ
df λ
dξ

ξ
	 


¼ 0; ð40Þ

8>><>>:
or equivalently, by (35),

sin 2λξ
	 


¼ sinhð2λξÞ
sinh λ

sin λ ð41Þ

cos 2λξ
	 


¼ coshð2λξÞ
sinh λ

sin λ: ð42Þ

8>>>><>>>>:
The above two equations imply

tan ð2λξÞ ¼ tanhð2λξÞ; (43)

that is

2λξ is a positive root of tan x¼ tanh x: (44)

The first positive root of the equation (44) is λ�2C3:9266A π; 32π
� �

, and then, since 2λξAð0;πÞ by assumption, we get a
contradiction.
We now prove that for every λ1Að0;π� the function f λ1 ðξÞ has a finite number of zeros in 0; 12

� �
. Let us assume that there

exists ~λA ð0;π� such that f ~λ ðξÞ has an infinite family of zeros fzig1i ¼ 1 in ½0;1�. Then, by the regularity of f ~λ ðξÞ, for every iZ2
there exists ζi, zi�1rζirzi, such that f 0~λ ðζiÞ ¼ 0. By Bolzano–Weierstass Theorem, there exists zA 0; 12

� �
such that

limi-1zi ¼ z and f ~λ ðzÞ ¼ 0. Moreover, we also have limi-1ζi ¼ z and, by continuity, f 0~λ ðζÞ ¼ 0. Therefore, z is not a simple
zero of f ~λ ðξÞ, a contradiction.
From the above analysis it follows that f λ1 ðξÞ satisfies all the conditions required by Lemma 4.6 to the function ft(x), where

here the variables t and x are replaced by λ1 and ξ, respectively. It follows that, for every λ1Að0;π�, the function f λ1 ðξÞ has the
same numbers of zeros of f πðξÞ in 0; 12

� �
. Since f πðξÞ ¼ sin ð2πξÞ40 for ξA 0; 12

� �
, the function f λ1 ðξÞ does not vanish in

0; 12
� �� 0;πð Þ, and the proof is complete.

Proof of Claim (ii). By Propositions 3.4 and 3.5, we have λ�2oλ2ðξÞrλU2 ¼ 2π for every ξA 0; 12
� �

. Moreover, by Proposition

4.2, we also have λ2 ξ¼ 0
� �¼ λ2 ξ¼ 1

2

� �¼ λU2 ¼ 2π. Then, there exists ~ξA 0; 12
� �

such that ∂λ42
∂ξ

~ξ
	 


¼ 0. We need to prove that

such ~ξ is unique in the interval 0; 12
� �

.
By expression (27), the first partial derivative of λ42 vanishes at ~ξA 0; 12

� �
if and only if v02ð ~ξÞ ¼ 0 vanishes (here v2 is

expressed in the new variable ξ). In fact, if v2ð ~ξÞ ¼ 0 for certain ~ξA 0; 12
� �

, then, by Proposition 4.2 (point iv), the unperturbed
eigenfunction v2

U
must vanish at ~ξ. But v2

U
is proportional to sin ð2πξÞ and, therefore, it vanishes only at ξ¼ 1

2 , which not
belongs to the interval 0; 12

� �
, a contradiction. Therefore, recalling the analysis developed in previous step (i), to prove the

statement (ii) it is enough to prove that, for every λ2Aðλ�2; λU2 Þ, the function f λ2 ðξÞ has only one (simple) zero inside 0; 12
� �

.
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The proof of this property follows the lines of the proof of case (i). Recalling the definition (35) (with n¼2) of f λ2 ðξÞ and
noticing that 0o2λ2ξo2π, we have

f λ2 0ð Þ ¼ 0; f λ2
1
2

� �
¼ 0; for every λ2A λ�2;2π

� �
; (45)

lim
λ2-λ�þ2

f λ2 ðξÞ ¼ f λ�2 ðξÞ; lim
λ2-2π �

f λ2 ðξÞ ¼ sin ð4πξÞ: (46)

Based on the proof of step (i), to prove (ii) it is enough to show that, for every λ2A ðλ�2;2π�, all the zeros of the function f λ2 ðξÞ
in 0; 12
� �

are simple.
We proceed by contradiction. Assume that for certain λ2 ¼ λA ðλ�2;2π� the function f λ ðξÞ has a not simple zero at

ξ¼ ξA 0; 12
� �

. Then, we have

sin 2λξ
	 


¼ sinhð2λξÞ
sinh λ

sin λ ð47Þ

cos 2λξ
	 


¼ coshð2λξÞ
sinh λ

sin λ; ð48Þ

8>>>><>>>>:
and these conditions imply

tan ð2λξÞ ¼ tanhð2λξÞ; (49)

that is

2λξ ¼ x1; x2; x3;…; (50)

where fxig are the positive roots of tan x¼ tanh x. Since 2λξAð0;2πÞ, x1 ¼ λ�2C3:9266 and x242π, if ξA 0; λ
�
2

4πC0:31
h i

then

we obtain a contradiction, that is, all the zeros of f λ2 ðξÞ are simple zeros whenever ξA 0; λ
�
2

4π

h i
and λ2A ðλ�2;2π�.

Let us put 2λξ ¼ λ�2 in Eq. (47) (note that (48) coincides with (47) as 2λξ ¼ λ�2). We obtain

sin λ�2 ¼
sinh λ�2
sinh λ

sin λ; for every λA λ�2;2π
� �

: (51)

Let ~λ
�
2 be the symmetric point of λ�2 with respect to 3

2π, e.g.,
~λ
�
2 ¼ 3π�λ�2. If λAð ~λ�

2;2π�, then sin λ�2
sin λ

41, whereas sinh λ�2
sinhλ

o1. By

(51), we have the contradiction, and then f λ2 ðξÞ has only simple zeros in 0; 12
� �

for every λ2Að ~λ�
2;2π�.

It remains to prove that all the zeros of f λ2 ðξÞ are simple for ξA λ�2
4π;

1
2

h i
and λ2Aðλ�2; ~λ

�
2�. We start by showing that

sin λ�2
sin λ

4
sinh λ�2
sinh λ

; for every λA λ�2;
~λ
�
2

	 i
: (52)

We rewrite (52) as

y1ðλÞoy2ðλÞ; for every λAðλ�2; ~λ
�
2�; (53)

where

y1 λ
	 


¼ sin λ
sin λ�2

; y2 λ
	 


¼ sinh λ
sinh λ�2

: (54)

One can easily check that the two curves ðλ; y1ðλÞÞ, ðλ; y2ðλÞÞ are tangent at the point ðλ ¼ λ�2; y1ðλ�2Þ ¼ y2ðλ�2Þ ¼ 1Þ, with
tangent line of equation

yt λ
	 


¼ 1þ 1
tanh λ�2

λ�λ�2
	 


¼ 1þ 1
tan λ�2

λ�λ�2
	 


:

Moreover, it is easy to see that y2ðλÞZytðλÞ and y1ðλÞrytðλÞ for every λAðλ�2; ~λ
�
2�, and that the only point in common

between y1, y2 and yt is ðλ�2;1Þ. Then, (53) holds and (52) is satisfied.
Therefore, by (51) and (52) we get a contradiction.
In conclusion, by the above analysis, for every λ2Aðλ�2;2π�, the function f λ2 ðξÞ has a finite number of zeros in 0; 12

� �
, all of

which are simple. From Lemma 4.6 and recalling that f 2πðξÞ ¼ sin ð4πξÞ has only one simple zero at ξ¼ 1=4, we deduce that
f λ2 ðξÞ has only one simple zero in 0; 12

� �
for every λ2Aðλ�2;2π�, and the proof of (ii) is complete.□



J. Fernández-Sáez et al. / Journal of Sound and Vibration 371 (2016) 94–109102
5. A constructive algorithm for unique crack identification and proof of the main result

In this section we prove Theorem 2.2. The proof is constructive and leads to an algorithm for the determination of the
parameters (s,m) in the problem (8)–(12) (or, equivalently, the position s and the severity K of the crack in (1)–(5)).

Let us denote by λ
4
1, λ

4
2 the measured (e.g., experimental) values of the first two eigenvalues of the cracked beam.

By Propositions 3.4 and 3.5, input data λ
4
1, λ

4
2 are chosen such that

0oλ
4
1o ðλU1 Þ4; ðλ�2Þ4oλ

4
2r ðλU2 Þ4: (55)

It should be noted that if λ
4
1 ¼ ðλU1 Þ4, then, by Propositions 3.3 and 4.2, either s¼0 or s¼1. Then, avoiding these trivial cases,

the strict upper bound on λ
4
1 is assumed in (55).

If λ
4
2 ¼ ðλU2 Þ4, then, by Propositions 4.2 and 4.3, the point mass is located at s¼ 1

2 . By Proposition 4.2, the function

λ41 ¼ λ41
1
2 ;m
� �

is a monotonically decreasing function of m and, in addition,

lim
m-1

λ41
1
2
;m

� �
¼ 0: (56)

By (56) and by the monotonicity of the function λ41
1
2 ;m
� �

for mAð0;1Þ, we can uniquely determine m by solving the

equation λ
4
1 ¼ λ41

1
2 ;m
� �

.
Taking into account the above considerations, in the remaining of the section we shall consider λ

4
2oðλU2 Þ4 and, by

symmetry (see Proposition 4.3), we assume sA 0; 12
� �

.
The main steps of the constructive algorithm are presented in the sequel.
We start by determining the values m�

1 , m�
2 , 0om�

i o1, i¼1,2, of the parameter m such that

λ
4
1 ¼ λ41

1
2 ;m

�
1

� �
; (57)

λ
4
2 ¼ λ42 s2min;m

�
2

� �
; (58)

where (by Theorem 4.5, part ii) s2minA 0; 12
� �

is the unique point such that ∂λ42
∂s s2min;m�

2

� �¼ 0. Note that m�
1 am�

2 and, clearly,
m�

1 , m�
2 are estimates from below of the unknown parameter m:

m�
2 rm; m�

1 om: (59)

We consider preliminarily the special case in which the curve y¼ λ41ðs;m�
2 Þ and the straight line y¼ λ

4
1 have a (unique)

intersection point P with abscissa coinciding with s2min. In this case, obviously, we have m¼m�
2 and s¼ s2min. If the above

condition is not satisfied, e.g., if either the intersection point does not exist or its abscissa is different from s2min, then
Fig. 1. The λ-curves identification algorithm based on first two resonant frequencies: first case.



Fig. 2. The λ-curves identification algorithm based on first two resonant frequencies: second case, subcase (a).
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maxfm�
1 ;m�

2 gom (60)

and we need to distinguish two main cases.
FIRST CASE:

maxfm�
1 ;m�

2 g ¼m�
1 : (61)

In a reference cartesian system (y,s), we determine the curve y¼ λ42ðs;m�
1 Þ (see the dashed curve in Fig. 1). By Proposition 4.2

and Theorem 4.5 (point (ii)), the curve y¼ λ42ðs;m�
1 Þ intersects the straight line y¼ λ

4
2 exactly at two points, say Pð1Þ

2l , P
ð1Þ
2r ,

located to the left (Pð1Þ
2l ) and to the right (Pð1Þ

2r ) of the point P2min ¼ ðs2min; λ
4
2Þ. Let us denote by sð1Þ2l , s

ð1Þ
2r their abscissa,

respectively. The curve y¼ λ1ðs;m�
1 Þ is tangent at Pð1Þ

1 ¼ sð1Þ1 ¼ 1
2 ;λ

4
1

	 

to the straight line y¼ λ

4
1.

Suppose to increase continuously m from m�
1 to, say,m�4m�

1 , with mn not too large. We obtain two curves y¼ λ42ðs;m�Þ,
y¼ λ41ðs;m�Þ (see the dotted curves in Fig. 1). The abscissa of the intersection points Pð2Þ

2l , P
ð2Þ
2r between y¼ λ42ðs;m�Þ and y¼ λ

4
2

is sð2Þ2l , s
ð2Þ
2r , respectively. The point Pð2Þ

2r moves to the right of Pð1Þ
2r , and Pð2Þ

2l to the left of Pð1Þ
2l . The abscissa of the intersection

point Pð2Þ
1 between y¼ λ41ðs;m�Þ and y¼ λ

4
1 is sð2Þ1 , and Pð2Þ

1 moves to the left of Pð1Þ
1 . (Note that, since sð1Þ2r osð1Þ1 ¼ 1

2 , by con-

tinuity, such a choice of mn is always possible.) It follows that, for m�4m�
1 and mn not too large, sð2Þ2r and sð2Þ1 (with sð2Þ2r osð2Þ1 )

move one toward each other. By increasing continuously m (from m�
1 to 1, say), the intersection point P1 between

y¼ λ41ðs;mÞ and the straight line y¼ λ
4
1 moves from the right to the left, its abscissa s1 ¼ sðP1Þ is a monotonically decreasing

function of m and, moreover, limm-1sðP1Þ ¼ 0þ . Simultaneously, the point P2r obtained as the right intersection of

y¼ λ42ðs;mÞ and y¼ λ
4
2 is such that s2r ¼ sðP2rÞ is monotonically increasing as m increases. Then, we can conclude that there

exists a unique value ~m such that s2r ¼ s1. The value ~m is the intensity m of the point mass, and s¼ s1 is its position.
SECOND CASE:

maxfm�
1 ;m�

2 g ¼m�
2 : (62)

In this case, we determine the curve y¼ λ41ðs;m�
2 Þ. This curve has only one point of intersection with the straight line y¼ λ

4
1,

say Pð1Þ
1 , with abscissa sð1Þ1 ¼ sðPð1Þ

1 Þ such that 0osð1Þ1 o1
2. Here, we need to distinguish two subcases, indicated by (a) and (b) in

what follows, depending on the relative position of s2min and sð1Þ1 .
SECOND CASE – (a):

s2minrsð1Þ1 : (63)

The situation is illustrated in Fig. 2. If s2min ¼ sð1Þ1 , then the inverse problem is solved. If s2minosð1Þ1 , then we can repeat the



Fig. 4. The λ-curves identification algorithm based on first two resonant frequencies: new argument for second case, subcase (b).

Fig. 3. The λ-curves identification algorithm based on first two resonant frequencies: second case, subcase (b).
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procedure used in the First case. In brief, by increasing continuously m, with m4m�
2 , the points P1 (intersection between

y¼ λ41ðs;mÞ and y¼ λ
4
1) and P2r (right intersection between y¼ λ42ðs;mÞ and y¼ λ

4
2) shown in Fig. 2 move toward each other.

Since limm-1sðP1Þ ¼ 0þ and sðP2rÞ is increasing with respect to m, there exists exactly one value ~m such that sðP1Þ ¼ sðP2rÞ,
and the problem is solved.

SECOND CASE – (b):

s2min4sð1Þ1 : (64)



Table 1
Application of the λ-curves constructive algorithm for the determination of crack severity K (m¼ 1

K) and position s in a simply supported uniform beam
using exact values of the first two natural frequencies. Crack ratio α¼0.1, 0.2, 0.4, 0.6. Time¼computing time (in seconds). Percentage errors:
es ¼ 100� ðsest�sÞ=s, eK ¼ 100� ðKest�KÞ=K .

Position s α¼0.1, K¼94.2325 α¼0.2, K¼24.9066 α¼0.4, K¼5.51319 α¼0.6, K¼1.52659
(m¼0.01061) (m¼0.04015) (m¼0.18138) (m¼0.65506)

es eK Case Time es eK Case Time es eK Case Time es eK Case Time

0.03 �0.03 0.06 2b 8.73 �0.01 0.02 2b 9.58 0.00 0.00 2b 9.75 0.00 0.00 2b 11.87
0.08 �0.03 0.05 2b 2.01 0.00 0.01 2b 2.85 0.00 0.00 2b 11.25 0.00 0.00 2b 56.80
0.13 �0.03 0.04 2b 1.99 �0.01 0.01 2b 3.38 0.00 0.00 2b 26.22 0.00 0.00 2b 115.71
0.18 0.00 0.00 2b 1.18 0.00 0.00 2b 10.96 0.00 0.00 2b 11.10 0.00 0.00 2b 33.49
0.23 �0.15 0.06 2b 1.25 �0.06 0.02 2b 1.81 0.00 0.00 2b 0.75 0.00 0.00 2a 133.56
0.28 0.03 0.03 2a 2.08 0.00 0.00 2a 7.13 0.00 0.00 2a 6.14 0.00 0.00 2a 120.23
0.33 0.03 0.08 2a 1.12 0.01 0.02 1 5.44 0.00 0.00 1 14.82 0.00 0.00 1 22.65
0.38 0.01 0.04 1 0.93 0.00 0.02 1 1.73 0.00 0.01 1 24.31 0.00 0.00 1 82.99
0.43 0.01 0.07 1 2.31 0.00 0.00 1 6.62 0.00 0.00 1 25.39 0.00 0.00 1 97.91
0.48 0.00 0.08 1 0.86 0.00 0.01 1 2.89 0.00 0.00 1 4.24 0.00 0.00 1 10.54

Fig. 5. Cracked simply supported uniform beam in bending.
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In this case, by increasing m (from m�
2 to 1), both the points P2l (left intersection between y¼ λ42ðs;mÞ and y¼ λ

4
2) and Pð2Þ

1

(intersection between y¼ λ41ðs;mÞ and y¼ λ
4
1) move to the left, see Fig. 3, and we need to change our arguments. We use the

following property: there existmn,m�4m�
2 andmn large enough, such that the left intersection point P�

2l between y¼ λ2ðs;m�Þ4

and y¼ λ
4
2 is to the left of Pð1Þ

1 , that is s�2 ¼ sðP�
2lÞosðPð1Þ

1 Þ, see Fig. 4. (In fact, one can prove that limm-1sðP�
2ðmÞÞ ¼ 0þ .) Now, by

decreasing m (from mn to m�
2 ), the left intersection point P2lðmÞ between y¼ λ42ðs;mÞ and y¼ λ

4
2 moves monotonically to the

right, and limm-m�
2
sðP2lðmÞÞ ¼ s2min, whereas, by increasing m (from m�

2 to 1), the intersection point P1ðmÞ between

y¼ λ41ðs;mÞ and y¼ λ
4
1 moves monotonically to the left, and limm-1sðP1ðmÞÞ ¼ 0þ . Therefore, there exists a unique value of m,

say ~m, with ~mAðm�
2 ;m�Þ, such that sðP2lð ~mÞÞ ¼ sðP1ð ~mÞÞ, and the problem is solved.

6. Applications

The constructive algorithm described in previous section is tested here to determine position and severity of a single
open crack in a uniform simply-supported beam from the first two natural frequencies. Specifically, we shall present a series
of numerical simulations for different locations and severities of the crack in a beam of length L with rectangular cross-
section B� H, where H=L¼ 0:1, see Fig. 5. The open edge crack has front parallel to the side B and depth a, and is located at
the cross-section of normalized abscissa sð ¼ zd=LÞ. Let α¼ a

H be the crack ratio. The corresponding stiffness of the rotational
spring simulating the crack is bK ¼ EI

Lδ
; (65)

where the normalized flexibility δ¼ 1
K can be obtained, for example, according to [33], namely

δ¼ 2
H
L

α

1�α

	 
2
5:93�19:69αþ37:14α2�35:84α3þ13:12α4
� �

: (66)

The equivalent concentrated mass is given by m¼ 1
K ¼ δ.

The results are collected in Table 1 for crack ratios α¼ 0:1;0:2;0;4;0:6 and for ten damage locations s, from s¼0.03 to
s¼0.48. It can be seen that, when exact data are used as an input, the constructive algorithm leads to virtually exact
identification of the crack, both for position and severity. Computing time is minimal and ranges from 1 to 2, 10 to 20, 20
to130 s for α¼0.1, 0.4, 0.6, respectively. Large computing-time is typically necessary near the support and in correspondence
of the transition between Case 2a and Case 2b.

For the sake of completeness, the identification has been also performed by solving the system formed by the frequency
equation (6) evaluated for λ¼ λ1, λ¼ λ2, namely

PK ðλ1; s;KÞ ¼ 0; ð67Þ
PK ðλ2; s;KÞ ¼ 0; ð68Þ

(



J. Fernández-Sáez et al. / Journal of Sound and Vibration 371 (2016) 94–109106
where λ
4
1, λ

4
2 are given (e.g., measured) values of the first two eigenvalues of the cracked beam. It is worth noting that

Theorem 2.2 ensures that there exists a unique solution (up to symmetry with respect to the mid-point of the beam axis) to
(67) and (68) for every pair of admissible frequency data. The resolution of the system (67) and (68) always leads to the
exact values of the damage parameters, with computing-time equal to few milliseconds.

The robustness of the identification to possible errors on the data has been tested for the proposed algorithm and for the
classical inverse procedure based on the solution of Eqs. (67) and (68). Without going into details, both the approaches
turned out to be sensitive to errors on the data and, in particular, estimates were rather inaccurate for crack positions very
close to the support (a point of vanishing sensitivity of the resonant frequencies). In general terms, the accuracy improves as
the severity of the damage increases, since errors on the frequency data are generally lower than crack-induced shifts in the
eigenfrequencies.
7. Conclusions

In this paper we have considered the inverse problem of determining a single open crack of any level of severity in a
simply supported uniform beam from the measurement of the first two natural frequencies. We have shown that the crack
can be uniquely determined (up to a symmetric position) by the given set of spectral data.

The above result was known to hold in the case of a single small crack, whereas a rigorous proof in the case of not
necessarily small crack was lacking.

The approach we used to prove the result is completely different from that adopted in the case of small damage. It also
differs from the technique recently used by three of us in [13] in identifying a single open crack in a longitudinally vibrating
beam from two resonant frequencies. The present analysis is based on a reduction of the crack identification problem to the
equivalent inverse problem of determining a point mass in a simply-supported beam, and on a careful study of the
eigenvalues as functions of the mass intensity and position. The proof of the theoretical result leads to a constructive
algorithm. The results of an extensive series of numerical simulations are in agreement with the theory.

The method proposed in this paper can be used, in principle, also to deal with beams with a single open crack under
different end conditions. The key point in those cases is to deduce qualitative properties of the λ�m and λ�s curves
analogous to those shown in Section 4. This topic is currently under investigation.
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Appendix A

This appendix is devoted to the proof of Proposition 3.5.
We start with some preliminary considerations. By the symmetry of the problem (8)–(12) with respect to x¼ 1=2, we

have

λ2 s;mð Þ ¼ λ2 1�s;mð Þ; sA 0; 12
� �

: (69)

Moreover, we have

λ2ð0;mÞ ¼ λ2ð1;mÞ ¼ λU2 (70)

and

λ2 1
2 ;m
� �¼ λU2 ; (71)

for every mAð0;1Þ. Therefore, if sAf0; 12;1g, then inequality (25) is always satisfied, and we may restrict the subsequent
analysis to the positions sA 0; 12

� �
.

We recall that, by Proposition 2.1 (point 1) and Proposition 3.1, the eigenvalues λ4nðs;mÞ of (8)–(12) are the (fourth power
of) positive roots of the frequency equation

P λ; s;m
� �¼ 4

m
sin λ sinh λþλ sin λðcosh λ�coshðλð1�2sÞÞþ sinh λð cos λ� cos ðλð1�2sÞÞ� �¼ 0: (72)

By Proposition 3.4 and since the eigenvalues are all simple, there exists exactly one zero of Pðλ; s;mÞ ¼ 0 in ½π;2π�, and
πrλ2ðs;mÞr2π: (73)
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By Monotonicity Theorems, if M4m, then

λn s;Mð Þrλn s;mð Þ; for every nZ1 and for every sA 0; 12
� �

; (74)

where fλnðs;MÞgnZ1 are the positive zeros of the frequency equation (72) with m replaced byM. When M-1, by continuity
λ1ðs;MÞ-0 and λ2ðs;MÞ-λ2ðs;1Þ, where λ2ðs;1Þ is the first positive root of the frequency equation obtained by formally
taking m¼1 in (72), namely

P1ðλ; sÞ �Pðλ; s;1Þ¼ λ sin λðcosh λ�coshðλð1�2sÞÞþsinh λð cos λ� cos ðλð1�2sÞÞ� �¼ 0: (75)

Therefore, in order to prove inequality (25), by (74) and by the above considerations, it is enough to show that

λ�2oλ2 s;1ð Þ; for every sA 0; 12
� �

: (76)

We rewrite P1ðλ; sÞ dividing by λ cos λ cosh λ, and adding and subtracting tanh λ. After simple algebra, the zeros of P1ðλ; sÞ
are the roots of the following equation:

tan λ¼ Gðλ; sÞ; (77)

with

G λ; s
� �¼ tanh λþtanh λ �

cos ððλð1�2sÞÞ
cos λ

�1

1�coshððλð1�2sÞÞ
cosh λ

�1

0BB@
1CCA; (78)

for sA 0; 12
� �

. It is easy to see that

0o1�coshððλð1�2sÞÞ
cosh λ

o1� 1
cosh λ

; sA 0;
1
2

� �
; λA π;2π½ �: (79)

Therefore, the function Gðλ; sÞ may be singular inside ðπ;2πÞ only at the point λ¼ 3
2π. A direct inspection of the term

cos ðλð1�2sÞÞ near λ¼ 3
2π shows that we need to distinguish different behaviors of Gðλ; sÞ corresponding to the following

three cases:

Case að Þ: 13 oso1
2 ; (80)

Case bð Þ: so1
3 ; (81)

Case cð Þ: s¼ 1
3 : (82)

Case (a): The function Gðλ; sÞ has vertical asymptotes at λ¼ π
2 and λ¼ 3π

2 , with

lim
λ-π

2
�G λ; s
� �¼ þ1; lim

λ-π
2
þ
G λ; s
� �¼ �1; (83)

lim
λ-3π

2
�G λ; s
� �¼ �1; lim

λ-3π
2

þ
G λ; s
� �¼ þ1: (84)

Moreover, a tedious but straightforward calculation shows that, for every sA 1
3;

1
2

� �
, we have

Gðπ; sÞo0; Gð2π; sÞo0: (85)

By (83)–(85) and taking into account that, by (73) and (74), there exists exactly one zero of (77) in ðπ;2πÞ, the qualitative
Fig. 6. Proof of Proposition 3.5: case (a).
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behavior of Gðλ; sÞ compared to tan λ (e.g., the left hand side of (77)), is sketched in Fig. 6. We can deduce that the single
root of (77) in ½π;2π� must belong to the interval 3π

2 ;2π
� �

, that is λ2 s;1ð ÞA 3π
2 ;2π
� �

, and inequality (25) is satisfied.
Case (b): Calculations similar to those performed in Case (a) show that the function Gðλ; sÞ has vertical asymptotes at λ¼ π

2
and λ¼ 3π

2 , with

lim
λ-π

2
�G λ; s
� �¼ þ1; lim

λ-π
2
þ
G λ; s
� �¼ �1; (86)

lim
λ-3π

2
�G λ; s
� �¼ þ1; lim

λ-3π
2

þ
G λ; s
� �¼ �1 (87)

and

Gðπ; sÞo0; Gð2π; sÞo0; (88)

see Fig. 7. If the curves tan λ and Gðλ; sÞ intersect at λ2A 3π
2 ;2π
� �

, then inequality (76) is satisfied, and there is nothing to
prove. If the two curves do not intersect at a point belonging to the interval 3π

2 ;2π
� �

, to prove (76), by (88) (left) it is enough
to prove that

G λ�2; s
� �

o tan λ�2s
� �

; for every sA 0;
1
3

� �
: (89)

Since tan λ�2 ¼ tanh λ�2 by definition, (89) is satisfied if and only if

cos ððλ�2ð1�2sÞÞ
cos λ�2

þcoshððλ�2ð1�2sÞÞ
cosh λ�2

o2; for every sA 0;
1
3

� �
: (90)

Inequality (90) is equivalent to

w1 tð Þow2 tð Þ; for every tA
λ�2
3
; λ�2

� �
; (91)
Fig. 7. Proof of Proposition 3.5: case (b).

Fig. 8. Proof of Proposition 3.5: case (c).
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where

t ¼ λ�2 1�2sð Þ; w1 tð Þ ¼ cos t
cos λ�2

�1; w2 tð Þ ¼ 1� cosh t
cosh λ�2

: (92)

By writing w1ðtÞ and w2ðtÞ as power series around t ¼ λ�2 and taking the difference, we easily get

w2 tð Þ�w1 tð Þ ¼ �2
X1
k ¼ 0

ðt�λ�2Þ3þ4k

ð3þ4kÞ! tan λ�2þ
t�λ�2
4ð1þkÞ

� �
: (93)

All the terms of the series in (93) are strictly negative in λ�2
3 ; λ

�
2

	 

. Therefore, inequality (91) is satisfied, and the proof of (76)

is complete.
Case (c): In this case, the singularity of G λ; 13

� �
at 3π

2 is removable and we have

lim
λ-π

2
�G λ;

1
3

� �
¼ þ1; lim

λ-π
2
þ
G λ;

1
3

� �
¼ �1; (94)

G π;
1
3

� �
o�3

2
tanh π; G

3π
2
;
1
3

� �
o�1

3
tanh

3π
2

� �
; G 2π;

1
3

� �
o�1

2
tanh 2πð Þ; (95)

see Fig. 8. It is easy to prove that the unique root of (77) in ðπ;2πÞ must belong to the interval 3π
2 ;2π
� �

, and the proof of
Proposition 3.5 is complete.
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