870 research outputs found

    Energy substrate metabolism, mitochondrial structure and oxidative stress after cardiac ischemia-reperfusion in mice lacking UCP3.

    Get PDF
    Myocardial ischemia-reperfusion (IR) injury may result in cardiomyocyte dysfunction. Mitochondria play a critical role in cardiomyocyte recovery after IR injury. The mitochondrial uncoupling protein 3 (UCP3) has been proposed to reduce mitochondrial reactive oxygen species (ROS) production and to facilitate fatty acid oxidation. As both mechanisms might be protective following IR injury, we investigated functional, mitochondrial structural, and metabolic cardiac remodeling in wild-type mice and in mice lacking UCP3 (UCP3-KO) after IR. Results showed that infarct size in isolated perfused hearts subjected to IR ex vivo was larger in adult and old UCP3-KO mice than in equivalent wild-type mice, and was accompanied by higher levels of creatine kinase in the effluent and by more pronounced mitochondrial structural changes. The greater myocardial damage in UCP3-KO hearts was confirmed in vivo after coronary artery occlusion followed by reperfusion. S1QEL, a suppressor of superoxide generation from site IQ in complex I, limited infarct size in UCP3-KO hearts, pointing to exacerbated superoxide production as a possible cause of the damage. Metabolomics analysis of isolated perfused hearts confirmed the reported accumulation of succinate, xanthine and hypoxanthine during ischemia, and a shift to anaerobic glucose utilization, which all recovered upon reoxygenation. The metabolic response to ischemia and IR was similar in UCP3-KO and wild-type hearts, being lipid and energy metabolism the most affected pathways. Fatty acid oxidation and complex I (but not complex II) activity were equally impaired after IR. Overall, our results indicate that UCP3 deficiency promotes enhanced superoxide generation and mitochondrial structural changes that increase the vulnerability of the myocardium to IR injury.We are grateful to F. S´ anchez-Madrid, B. Iba´nez ˜ and E. Lara for facilitating experiments at CNIC (Madrid, Spain) and to W.E. Louch for facilitating experiments at the University of Oslo (Oslo, Norway). We thank B. Littlejohns, I. Khaliulin and H. Lin from M.S. Suleiman’s group (University of Bristol, Bristol, UK) for their valuable help with Langendorff perfusion experiments. We also thank E.T. Chouchani from M.P. Murphy’s group (Cambridge, UK) for help with metabolomics analysis, M. Guerra of the Electron Microscopy Unit at CBMSO (Madrid, Spain) for processing the samples for electron microscopy analysis, and A.V. Alonso (CNIC) for echocardiography analyses. The work in our laboratory is funded the Instituto de Salud Carlos III (FIS PI19/01030) to SC. Institutional grants from the Fundacion ´ Ramon ´ Areces and Banco de Santander to the CBMSO are also acknowledged.S

    The role of Cis-Regulatory elements in morphological adaptation to cave environment in Astyanax mexicanus

    Get PDF
    Trabajo presentado en EMBO Workshop Enhanceropathies: Understanding enhancer function to understand human disease, celebrado en Santander (España) del 06 al 09 de octubre de 2021

    Genome evolution in morphological adaptation to cave environment in Astyanax mexicanus

    Get PDF
    Trabajo presentado en el EMBO Workshop The evolution of animal genomes, celebrado en modalidad virtual del 13 al 17 de septiembre de 2021

    Advances in photonic metamaterials and sensing architectures

    Get PDF
    Subwavelength materials have become a fundamental tool for silicon photonic design, enabling devices with unique performance characteristics. We will briefly review some fundamentals here and will then discuss some of the latest advances in the field, with a particular focus on polarization handling. Furthermore, we will discuss advances in integrated optical sensing, addressing both fundamental issues such as the optimization of detection limits, as well as state-of-the-art results with novel sensing architectures. We will also discuss which benefits subwavelength structures can provide in such sensors.We acknowledge funding from the Ministerio de Economía y Competitividad, PID2019- 106747 RB-I00, PRE2020-096438, PID2020-115204RB-I00, TED2021-130400B-I00, Ministerio de Ciencia, Innovación y Universidades, FPU19/03330, FPU19/02408, Junta de Andalucía P18-RT-1453, P18-RT-793, UMA-FEDERJA-158 and the Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Phenotyping the virulence of SARS-CoV-2 variants in hamsters by digital pathology and machine learning

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued to evolve throughout the coronavirus disease-19 (COVID-19) pandemic, giving rise to multiple variants of concern (VOCs) with different biological properties. As the pandemic progresses, it will be essential to test in near real time the potential of any new emerging variant to cause severe disease. BA.1 (Omicron) was shown to be attenuated compared to the previous VOCs like Delta, but it is possible that newly emerging variants may regain a virulent phenotype. Hamsters have been proven to be an exceedingly good model for SARS-CoV-2 pathogenesis. Here, we aimed to develop robust quantitative pipelines to assess the virulence of SARS-CoV-2 variants in hamsters. We used various approaches including RNAseq, RNA in situ hybridization, immunohistochemistry, and digital pathology, including software assisted whole section imaging and downstream automatic analyses enhanced by machine learning, to develop methods to assess and quantify virus-induced pulmonary lesions in an unbiased manner. Initially, we used Delta and Omicron to develop our experimental pipelines. We then assessed the virulence of recent Omicron sub-lineages including BA.5, XBB, BQ.1.18, BA.2, BA.2.75 and EG.5.1. We show that in experimentally infected hamsters, accurate quantification of alveolar epithelial hyperplasia and macrophage infiltrates represent robust markers for assessing the extent of virus-induced pulmonary pathology, and hence virus virulence. In addition, using these pipelines, we could reveal how some Omicron sub-lineages (e.g., BA.2.75 and EG.5.1) have regained virulence compared to the original BA.1. Finally, to maximise the utility of the digital pathology pipelines reported in our study, we developed an online repository containing representative whole organ histopathology sections that can be visualised at variable magnifications (https://covid-atlas.cvr.gla.ac.uk). Overall, this pipeline can provide unbiased and invaluable data for rapidly assessing newly emerging variants and their potential to cause severe disease

    Longitudinal analysis of blood DNA methylation identifies mechanisms of response to tumor necrosis factor inhibitor therapy in rheumatoid arthritis

    Get PDF
    [Abstract] Background: Rheumatoid arthritis (RA) is a chronic, immune-mediated inflammatory disease of the joints that has been associated with variation in the peripheral blood methylome. In this study, we aim to identify epigenetic variation that is associated with the response to tumor necrosis factor inhibitor (TNFi) therapy. Methods: Peripheral blood genome-wide DNA methylation profiles were analyzed in a discovery cohort of 62 RA patients at baseline and at week 12 of TNFi therapy. DNA methylation of individual CpG sites and enrichment of biological pathways were evaluated for their association with drug response. Using a novel cell deconvolution approach, altered DNA methylation associated with TNFi response was also tested in the six main immune cell types in blood. Validation of the results was performed in an independent longitudinal cohort of 60 RA patients. Findings: Treatment with TNFi was associated with significant longitudinal peripheral blood methylation changes in biological pathways related to RA (FDR<0.05). 139 biological functions were modified by therapy, with methylation levels changing systematically towards a signature similar to that of healthy controls. Differences in the methylation profile of T cell activation and differentiation, GTPase-mediated signaling, and actin filament organization pathways were associated with the clinical response to therapy. Cell type deconvolution analysis identified CpG sites in CD4+T, NK, neutrophils and monocytes that were significantly associated with the response to TNFi. Interpretation: Our results show that treatment with TNFi restores homeostatic blood methylation in RA. The clinical response to TNFi is associated to methylation variation in specific biological pathways, and it involves cells from both the innate and adaptive immune systems

    Management and Outcome of Cardiac and Endovascular Cystic Echinococcosis

    Get PDF
    Cardiac and vascular involvement are infrequent in classical cystic echinococcosis (CE), but when they occur they tend to present earlier and are associated with complications that may be life threatening. Cardiovascular CE usually requires complex surgery, so in low-income countries the outcome is frequently fatal. This case series describes the characteristics of cardiovascular CE in patients diagnosed and treated at a Tropical Medicine & Clinical Parasitology Center in Spain. A retrospective case series of 11 patients with cardiac and/or endovascular CE, followed-up over a period of 15 years (1995–2009) is reported. The main clinical manifestations included thoracic pain or dyspnea, although 2 patients were asymptomatic. The clinical picture and complications vary according to cyst location. Isolated cardiac CE may be cured after surgery, while endovascular extracardiac involvement is associated with severe chronic complications. CE should be included in the differential diagnosis of cardiovascular disease in patients from endemic areas. CE is a neglected disease and further studies are necessary in order to make more definite management recommendations for this rare and severe form of the disease. The authors propose a general approach based on cyst location: exclusively cardiac, endovascular or both
    corecore