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ARTICLE

Physical constraints and functional plasticity of
cellulases
Jeppe Kari 1,6, Gustavo A. Molina 1,6, Kay S. Schaller1, Corinna Schiano-di-Cola 1, Stefan J. Christensen1,

Silke F. Badino1, Trine H. Sørensen2, Nanna S. Røjel 3, Malene B. Keller 4, Nanna Rolsted Sørensen3,

Bartlomiej Kolaczkowski3, Johan P. Olsen 2, Kristian B. R. M. Krogh2, Kenneth Jensen2, Ana M. Cavaleiro2,

Günther H. J. Peters 5, Nikolaj Spodsberg 2, Kim Borch2 & Peter Westh 1✉

Enzyme reactions, both in Nature and technical applications, commonly occur at the interface

of immiscible phases. Nevertheless, stringent descriptions of interfacial enzyme catalysis

remain sparse, and this is partly due to a shortage of coherent experimental data to guide and

assess such work. In this work, we produced and kinetically characterized 83 cellulases,

which revealed a conspicuous linear free energy relationship (LFER) between the substrate

binding strength and the activation barrier. The scaling occurred despite the investigated

enzymes being structurally and mechanistically diverse. We suggest that the scaling reflects

basic physical restrictions of the hydrolytic process and that evolutionary selection has

condensed cellulase phenotypes near the line. One consequence of the LFER is that the

activity of a cellulase can be estimated from its substrate binding strength, irrespectively of

structural and mechanistic details, and this appears promising for in silico selection and

design within this industrially important group of enzymes.

https://doi.org/10.1038/s41467-021-24075-y OPEN

1 Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark. 2 Novozymes A/S, Bagsværd, Denmark.
3Department of Science and Environment, Roskilde University, Universitetsvej 1, Roskilde, Denmark. 4 Department of Geosciences and Natural Resource
Management, University of Copenhagen, Frederiksberg C, Denmark. 5 Department of Chemistry, Technical University of Denmark, Kongens Lyngby, Denmark.
6These authors contributed equally: Jeppe Kari, Gustavo A. Molina. ✉email: petwe@dtu.dk

NATURE COMMUNICATIONS |         (2021) 12:3847 | https://doi.org/10.1038/s41467-021-24075-y | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24075-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24075-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24075-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-24075-y&domain=pdf
http://orcid.org/0000-0003-3792-3856
http://orcid.org/0000-0003-3792-3856
http://orcid.org/0000-0003-3792-3856
http://orcid.org/0000-0003-3792-3856
http://orcid.org/0000-0003-3792-3856
http://orcid.org/0000-0002-4301-9049
http://orcid.org/0000-0002-4301-9049
http://orcid.org/0000-0002-4301-9049
http://orcid.org/0000-0002-4301-9049
http://orcid.org/0000-0002-4301-9049
http://orcid.org/0000-0002-6720-1734
http://orcid.org/0000-0002-6720-1734
http://orcid.org/0000-0002-6720-1734
http://orcid.org/0000-0002-6720-1734
http://orcid.org/0000-0002-6720-1734
http://orcid.org/0000-0003-2887-3738
http://orcid.org/0000-0003-2887-3738
http://orcid.org/0000-0003-2887-3738
http://orcid.org/0000-0003-2887-3738
http://orcid.org/0000-0003-2887-3738
http://orcid.org/0000-0001-7184-1032
http://orcid.org/0000-0001-7184-1032
http://orcid.org/0000-0001-7184-1032
http://orcid.org/0000-0001-7184-1032
http://orcid.org/0000-0001-7184-1032
http://orcid.org/0000-0002-1383-8318
http://orcid.org/0000-0002-1383-8318
http://orcid.org/0000-0002-1383-8318
http://orcid.org/0000-0002-1383-8318
http://orcid.org/0000-0002-1383-8318
http://orcid.org/0000-0001-9754-2663
http://orcid.org/0000-0001-9754-2663
http://orcid.org/0000-0001-9754-2663
http://orcid.org/0000-0001-9754-2663
http://orcid.org/0000-0001-9754-2663
http://orcid.org/0000-0001-7440-2406
http://orcid.org/0000-0001-7440-2406
http://orcid.org/0000-0001-7440-2406
http://orcid.org/0000-0001-7440-2406
http://orcid.org/0000-0001-7440-2406
http://orcid.org/0000-0002-6185-0637
http://orcid.org/0000-0002-6185-0637
http://orcid.org/0000-0002-6185-0637
http://orcid.org/0000-0002-6185-0637
http://orcid.org/0000-0002-6185-0637
mailto:petwe@dtu.dk
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Enzyme reactions at interfaces are common both in Nature
and industry1. About half of the enzymes in the living cell
work at a membrane surface2 and many technical enzyme

applications involve catalysis at the solid-liquid interface3.
Examples of the latter include the use of immobilized enzymes in
protein arrays or biosensors4, but more commonly, the activity of
soluble enzymes on insoluble substrates such as polysaccharides,
lipids, precipitated proteins5 or more recently plastic6. Studies of
heterogeneous enzyme reactions have shown that substrate
specificity7, turnover number8, and enzyme-substrate binding
affinity9 can be significantly altered at an interface compared to
analogous reactions in the bulk. Nevertheless, the kinetics of
interfacial reactions is typically disregarded or fleetingly treated in
textbooks10–14, and this state of affairs is quite different from
conventional (non-biochemical) catalysis, where homogeneous
and heterogeneous reactions are treated in parallel. Although
insightful models and concepts of interfacial enzyme kinetics have
been suggested15–17, no generally applied kinetic approach or rate
equation currently exist. Neither is it clear whether progress in
this field should be based on adaptation of conventional enzyme
kinetic theory, or modifications of concepts and principles taken
from inorganic heterogeneous catalysis.

Here we investigated heterogeneous enzyme catalysis using cellu-
lases as a paradigm. These enzymes catalyze the hydrolysis of the β-
1,4 glycosidic bond that links glucopyranose units in (insoluble)
cellulose and constitute a generic and experimentally convenient
example of interfacial enzymes. In addition, cellulases are of direct
industrial interest since enzymatic conversion of lignocellulosic bio-
mass into fermentable sugars (known as saccharification) is expected
to play a key role in the upcoming biorefineries that produce fuels,
chemicals, and materials from sustainable feedstocks18–20. We
focused on fungal cellulases, which are commonly applied in
industrial enzyme cocktails21, and investigated enzymes from Gly-
coside Hydrolase (GH) family 5, 6, 7, 12, and 4522. Specifically, we
produced and biochemically characterized 83 enzymes using inso-
luble cellulose as substrate. The characterized cellulases included
both, wild types and variants, and represented a wide range of
structural and functional differences (see Fig. 1). Nevertheless, the
kinetic data showed a clear common trait as we found a conspicuous
scaling between the apparent Michaelis–Menten (MM) constant
(KM) and the maximal turnover (kcat) across the entire group of
cellulases. The scaling could be expressed as a so-called linear free
energy relationship (LFER), and we used this to discuss functional
plasticity and physical constraints for the enzymatic conversion of
cellulose. We argue that the LFER for cellulases may facilitate both

mechanistic and evolutionary studies, and act as guidance in future
attempts to select or design improved technical enzymes. Moreover,
the observed LFER is reminiscent of the behavior found for some
well-described inorganic heterogeneous catalysts, and this may help
to establish better theoretical frameworks for interfacial enzyme
reactions.

Results
Enzyme production. The investigated enzymes were selected from
five GH families as illustrated in Fig. 1 and Table 1. These families
(GH5, GH6, GH7, GH12, and GH45) cover essentially all major
fungal cellulases21 and hence represent a wide range of structures and
mechanisms. This included enzymes with or without a carbohydrate-
binding module (CBM), enzymes using an inverting or retaining
mechanism, enzymes that attack the cellulose chain internally
(endoglucanases, EGs) or at a chain end (cellobiohydrolases, CBHs)
and enzymes with different degrees of processivity. In addition to the
wild types, a library of cellulase variants was made with the intention
of changing the enzyme-substrate binding strength. This library
included variants with mutations in the CBM, linker, and catalytic
domain, as well as variants, where the CBM and linker were added,
removed or swapped. A full list of the enzymes characterized here,
can be found in supplementary Table 4 in the supplementary
information (SI).

Kinetic analysis. All enzymes were characterized by MM kinetics
using microcrystalline cellulose (Avicel PH-101) as substrate.
Quasi-steady-state rates (vss) were measured at a constant, low
enzyme concentration (E0) and different substrate loads (S0), and
analyzed by the MM-equation (Eq. 1) using non-linear regres-
sion. The resulting kinetic parameters (KM and kcat) are listed in
supplementary Table 4. Previous studies have identified practical
procedures for measuring the quasi-steady-state rate for this type
of system23 and shown that Eq. 1 is valid and applicable even
though the substrate is solid and specified by its mass load (S0) in
units of g/L24,25. The derived rates were based on soluble pro-
ducts only and control experiments (supplementary Table 3)
showed that this was a good descriptor of the overall activity even
for EGs.

vss ¼
E0kcatS0
S0 þ KM

ð1Þ

In Fig. 2, the natural logarithm of the derived kinetic
parameters (KM and kcat) are plotted against each other for all

GH7 GH6 

GH5 GH12 GH45 

CBH EG 

CBM 
Linker 

CD 

a b 

c 

Fig. 1 Structural representation of the different classes of cellulases characterized in this study. a Surface representation of the six different glycoside
hydrolase (GH) families (exemplified by the PDB ID: 4C4C53 (GH7), 1QK255 (GH6), 1H8V56 (GH12), 4ENG58 (GH45), 3QR357 (GH5)). b Structure of two
GH7 cellulases with different modes of action in complex with cellononaose. A cellobiohydrolase (CBH) with a tunnel-shaped catalytic domain (PDB:
4C4C) and an endoglucanase (EG) with an open catalytic cleft (PDB: 1EG154). c Illustration of a GH7 CBH in complex with a cellulose fiber. The enzyme is
modular with a catalytic domain (CD) and a carbohydrate-binding module (CBM) connected by a flexible linker. All structures were visualized using
PyMOL71.
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investigated enzymes to illustrate the power-law correlation
between the kinetic parameters. From the main panel (Fig. 2a), it
appeared that most enzymes clustered in a narrow lane around
the diagonal. Some enzymes were located below the diagonal, but
we did not find any above. To assess whether the experimental
points in Fig. 2 correlated with structural or functional properties
of the studied enzymes, we highlighted specific sub-groups in the
dataset in five separate subplots (Panels b–f, Fig. 2). Linear
regression showed that the slope in Fig. 2 was 0.74 ± 0.02.
Regression outliers were identified based on studentized residual
analysis using a conservative cutoff of ±2.5σ. The outliers were
omitted from the regression analysis and identified by open

symbols in Fig. 2. A list of kinetic parameters for all investigated
enzymes can be found in supplementary Table 4.

Computational analysis. The strong correlation between ln(KM)
and ln(kcat) shown in Fig. 2 is attractive from a computational
point of view. If the apparent MM constant (KM) can be inter-
preted as a descriptor for the enzyme-substrate binding affinity it
may open up for prediction of catalytic rates based solely on
computed binding free energies. To test this hypothesis we
computed cellulose binding strengths for a subset of nine
enzymes from Fig. 2, using molecular dynamics (MD)

Table 1 Fungal cellulases characterized in this study.

GH family Structural fold Catalytic mechanism Mode of action EC number Number of enzymes

Wild-types Variants

7 β-jelly roll Retaining CBH 3.2.1.176 11 21
EG 3.2.1.4 3 6

6 α/β barrel Inverting CBH 3.2.1.91 5 16
5 (β/α)8 Retaining EG 3.2.1.4 8 0
12 β-jelly roll Retaining EG 3.2.1.4 3 4
45 β barrel Inverting EG 3.2.1.4 6 0
Total 83
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b c d
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GH6 CBHs

EGs

GH7 CBHsWild-types Variants

Fig. 2 Correlation plot of ln(KM) and ln(kcat). Correlation plot for all investigated enzymes (a). The smaller panels highlight data for different classes of
enzymes. These are wild type cellulases (b), variants (c), cellobiohydrolases from GH7 (d), cellobiohydrolases from GH6 (e), and endoglucanases from
family GH7, GH12, and GH45 (f). The solid line in all plots derives from linear regression to the experimental data in the main panel (a) excluding the
outliers (open symbols) identified as explained in the main text. Bands shown in panel (a) are 95% confidence band (dark gray) and 95% prediction band
(light gray) of the linear regression. Error bars in (a) represent standard deviations from MM-fit (Eq. 2) to triplicates.
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simulations with umbrella sampling along the binding path (See
further details in supplementary Fig. 8). We selected enzymes that
spanned a wide range of KM values and represented all structural
and functional classes listed in Fig. 1. For modular cellulases, the
contribution of the CBM to binding energy ΔG°B was computed
separately. To compare with experiments we used kcat and KM, to
estimate changes in respectively transition-state free energy
(ΔΔG‡) and standard free energy of ligand binding (ΔΔG°B)
following well-established principles26–28. Specifically, we used
the equations

ΔΔGo
B ¼ RT ln

KM

KM;ref

 !
ð2Þ

ΔΔGz ¼ �RTln
kcat

kcat;ref

 !
ð3Þ

which introduce a reference enzyme with the kinetic parameters
KM,ref and kcat,ref. Hence, the calculated free energies are energy
changes relative to the selected reference. This approach alleviates
ambiguities regarding standard states (Eq. 2) and pre-exponential
factors (Eq. 3). We used the GH6 cellobiohydrolase from Tri-
choderma reseei (TrCel6A) as our reference enzyme and it follows
that this enzyme will have ΔΔG‡= ΔΔG°B= 0.

The validity of Eq. 2 is dependent on whether KM can be
interpreted as a descriptor of the enzyme-substrate affinity. The
comparison in Fig. 3a showed that despite the diversity of the
analyzed cellulases, computed changes in binding affinity, ΔΔGB,MD,
scaled reasonably well with the experimental values, ΔΔGB,exp,
derived from Eq. 2. This supports the validity of Eq. 2 for this system
and the idea of using computed ligand-binding energies to predict
catalytic rates. Figure 3b illustrate the scaling between ΔΔGB,MD and
ΔΔG‡

exp.

Discussion
In this study, we produced and kinetically characterized 83
enzymes covering essentially all classes of fungal cellulases
(Table 1 and Fig. 1). We used the same expression host, to ensure

the enzymes were exposed to the same apparatus of post-
translational modifications. Moreover, kinetic characterizations
were based on the same substrate, experimental conditions, and
principles of analysis. This provided a robust basis for com-
parative analyses of interfacial enzymes in general and cellulases
in particular. Indeed, the breadth of the dataset allowed us to
identify a striking correlation between ln(KM) and ln(kcat) and in
the following we discuss the origin and corollaries of this
observation.

Enzyme fitness and physical constraints. Figure 2 may be seen as
a fitness landscape for cellulases attacking their native insoluble
substrate, and it appears that most enzymes accumulated around
the diagonal. The diagonal defines a continuum ranging from
enzymes with weak substrate interactions and rapid turnover
(high KM and kcat), to enzymes with stronger interactions, but
slower turnover (low KM and kcat). The tendency to accumulate
along the diagonal was observed for all types of cellulases (refer to
Table 1 and Fig. 1), and hence does not seem to rely on specific
structural or mechanistic properties. Rather, it appears that the
maximal turnover can be expressed solely by one descriptor,
namely KM. The area below the diagonal in Fig. 2 represents a
region where the enzymes have a low specificity constant (i.e., low
kcat/KM), and this seems to signify inefficient catalysis. We found
some enzymes in this range, including some wild type enzymes
and variants with replacements of key amino acid residues. We
suggest that this southeastern region of the fitness landscape
represents enzymes that have been either catalytically impaired by
our engineering, are structurally unstable under the selected
conditions, or have other primary substrate preference than
cellulose.

On the other hand, the region above the diagonal in Fig. 2,
specifies enzymes, which have a high specificity constant on this
substrate. This clearly appears functionally advantageous, but we
did not find any cellulases in this northwestern region. We
suggest that this absence is the result of basic physical restrictions
of the cellulolytic process. It follows that the accumulation of data
points in a narrow lane in Fig. 2 may be seen as a balance between

Fig. 3 Correlation of computed and experimental free energies for nine selected cellulases. a Changes in computed free energies of binding (ΔΔGB,MD)
and experimental changes in binding free energy (ΔΔGB,exp). b Correlation of ΔΔGB,MD and experimental changes in activiation free energy (ΔΔG‡

exp).
Experimental free energies were calculated using Eqs. 2 and 3. The kinetic parameters (KM and kcat) of the nine cellulases can be found in supplementary
Table 4. The selected cellulases covered a wide range of kinetic parameters shown in Fig. 2 and encompassed all main structural and functional traits
specified in Fig. 1. Standard deviations of the experimental free energies and computed free energies are shown as error bars.
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evolutionary selection, which drives the kinetic parameters
toward the northwest, and physical constraints, which prevents
this development beyond the boundary defined by the line in
Fig. 2.

The engineered variants in Fig. 2b represent a range of
replacements and deletions at different positions (see supple-
mentary Table 4), which were designed with the overall purpose
of altering ligand-binding strength. In a few cases, the mutations
shifted the variants into the southeastern “wasteland” of the
fitness landscape, but most remained on the diagonal. The
tendency to stay on the line did not reflect that the variants had
unaltered kinetic parameters. Rather, changes in KM and kcat
tended to compensate. Some examples of this are highlighted in
Fig. 4, and it appears that both point mutations, and extensive
changes in the amino acid sequence, readily moved kinetic
parameters up or down the diagonal, but rarely sent them off the
line. Interestingly, the vast majority of the variants moved up the
line compared to their respective wild type, and only in cases
where a CBM was added to a CBM-less wild type (Fig. 4a) did the
variant move down the line toward lower KM and kcat values. This
indicates that the wild-type enzymes have evolved to have high
affinity for the substrate rather than high turnover. Nonetheless,
the differences in affinities across GH families may be important
in Nature where cellulose is degraded by cellulases from multiple
GH families.

Origin of physical constraint. Correlations between binding and
activation free energies are well-known in both organic and
inorganic catalysis29, but have only been sporadically used for
(homogenous) enzyme reactions30,31. A LFER exists, if the
binding free energy, ΔG°B, scales linearly with the free energy of
activation, ΔG‡. This is tantamount to proportionality between
the changes in these two free energies, and we may write

ΔΔGz ¼ ΦΔΔGo
B ð4Þ

where Φ is a scaling constant that convert changes in the binding
free energy (ΔΔGo

B) to changes in activation free energy (ΔΔG‡).
The correlation shown in Fig. 2 may be interpreted as an LFER if

the KM values can be interpreted as a dissociation constant for the
enzyme-substrate complex. In general one has to be cautious
when using the (apparent) KM value as affinity descriptor for
complex enzyme reactions such as the one studied here. However,
such interpretation of KM has been successfully used earlier26–28

and it is also in line with the MD results (Fig. 3a) that showed
good correlations between computed ligand-binding energies and
experimental binding energies calculated using Eq. 2. The validity
of KM as a descriptor of the enzyme-substrate affinity of the
investigated enzymes is further discussed in the SI (see supple-
mentary note 1 and 2).

Using Eqs. 2 and 3 we calculated ΔΔG°B and ΔΔG‡ and found
that the two free energies correlated with a slope of Φ=−0.74 ±
0.02 (see supplementary Fig. 9). This is the same slope as found
for the line in Fig. 2 but with opposite sign due to the minus in
Eq. 3 (e.g., low activation energies gives high kcat values). The
scaling constant, Φ in Eq. 4 provides some information about the
nature of the transition state (TS), and this idea has been used, for
example, to elucidate the TS of protein folding32. As proposed by
Warshel27, the Φ -value also provides a means to classify effects
of mutations on enzyme function. If, for example, both the
enzyme-substrate complex and the TS in a variant are stabilized
to the same extent (so-called uniform binding, see Figs. 5b–1) Φ
would be 0 since the activation energy would remain unchanged
(i.e., and ΔΔG‡= 0). Another illustrative case is when changes in
interactions only manifest themselves in the TS (so-called TS-
stabilization, Figs. 5b–2). This results in Φ → ∝ since the
activation energy can be changed independently of the binding
energy. Finally, if mutations only act to stabilize the ground state
complex (GS stabilization, Figs. 5b–3), ΔΔG‡ will change
commensurate with ΔΔG°B, and Φ=−1.

This interpretation of Φ -values was developed to classify
mutants that were closely related in structure, but in the current
context it may elucidate differences across cellulases (wild types
and mutants) with widely different structures and mechanisms.
We found Φ=−0.74 ± 0.02 (see supplementary Fig. 9), and it
follows that kinetic differences among the investigated cellulases
can be mostly ascribed to differences in the degree of GS
stabilization. This has the noticeable consequence that the free

- CBM 

- CBM 

a 

ReCel7ACBM 

ReCel7A 

TrCel7ACD 

TrCel6ACD 

TrCel6A 

TrCel7A 

- Trp 

b 

TrCel7A 

- Trp 

- Trp 

TrCel7AW38A 
TrCel6A 

TrCel6AW269A 

+ CBM 

Fig. 4 Illustration of the effect of the non-catalytic CBM (a) and tryptophan residues in the catalytic domain of cellobiohydrolases from GH6 and GH7
(b). a Correlation plot of ln(KM) and ln(kcat) for three wild-type CBHs and three variants, where the CBM was either removed (−CBM) from the wild-type
(TrCel7A→ TrCel7ACD, TrCel6A→ TrCel6ACD) or added (+CBM) to the wild type (ReCel7A→ ReCel7ACBM). b Analogous correlation plot for
replacements of conserved tryptophan residues by alanine in the catalytic domain of TrCel7A (TrCel7A→ TrCel7AW38A) or TrCel6A (TrCel6A→
TrCel6AW269A). The solid line shown in both plots is the same as in Fig. 2. It appears that changes in KM and kcat tend to compensate so that all enzymes
remain close to the diagonal. Inserts are illustrations to guide the reader about the structural changes in the variants. Error bars represent standard
deviations from MM-fit (Eq. 2) to triplicates.
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energy of the (rate-limiting) TS is quite similar for all tested
enzymes, and that the main kinetic diversity lies in different
affinities for the substrate. This is illustrated in Figs. 5b–3, which
shows that tighter binding to the substrate (red trace)
unavoidably leads to a higher activation energy if the TS is
(almost) fixed. Experimental studies have suggested that the rate-
limiting step for some cellulases is slow dissociation33–37. Since
weaker binding is associated with a lower activation barrier for
dissociation (Figs. 5b–3), a dissociation limited mechanism would
explain the inverse correlation of binding strength and maximal
turnover. Based on these considerations it is tempting to suggest
that weak ligand-binding is a functional advantage since it
invariably increases kcat. However, mutational studies suggest that
weak binding is not necessarily advantageous for the efficacy of
GHs attacking solid carbohydrates38,39. The characterized
variants support this interpretation, since most of the variants
moved up the line in Fig. 2 compared to the respective wild type,

indicating that the wild types were optimized for high affinity.
Strong ligand binding may be needed in order for the enzyme to
transfer a cellulose chain from the cellulose surface, where it is
strongly bound40,41, to the binding cleft (see cartoon in Fig. 5a).
Hence, strong ligand binding appears to benefit catalysis by
promoting ligand transfer42, but it is inevitably associated with a
slow turnover of an off-rate controlled reaction, as illustrated in
Figs. 5b–3. We suggest that the LFER between the binding energy
and activation energy, is a direct consequence of the overall
reaction being controlled by the on-off kinetics of the cellulases
(see supplementary Fig. 6). The existence of LFERs for enzyme
reactions governed by the chemical step remains to be
investigated further, but meta-analyses of kinetic databases show
little correlation between kcat and KM

26,28,43. This is unlike many
reactions in both homogenous and heterogeneous (non-bio-
chemical) catalysis, which may be limited by an LFER even
though the reaction is governed by a chemical step44,45. Kinetic

Fig. 5 Structural and energetic interpretation of a simplified reaction scheme for the enzyme-catalyzed hydrolysis of cellulose. a Simplified reaction
scheme for a cellulase (yellow) hydrolyzing insoluble cellulose (gray). The cartoon provides a structural interpretation of the three steps in the overall
reaction; (1) association, (2) hydrolysis, and (3) dissociation. b Schematic energy-diagrams for a wild type (black curve) and three conceptually different
variants (red curves). c Expected scaling plots for a group of variants that behave according to the three different energy-diagrams shown in (b). If the
energy of the variant differs from the wild type by the same amount in both transition state (TS) and ground state (GS), we have so-called uniform binding
and Φ= 0 (panel b1 and c1). The parallel shift in energies for uniform binding implies that the same interactions occur in GS and TS. If, on the other hand, a
mutation only lowers the TS energy, known as TS-stabilization, this leads to a vertical line in the scaling plot (panel b2 and c2). Finally, in GS-stabilization
(panels B3 and c3), only the GS energy changes, while the TS remains fixed. In this case, Φ=−1, and this is close to the experimental observation (see
supplementary Fig. 9).
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parameters for heterogeneous enzyme reactions are scarce. Thus,
it is still an open question, whether scaling relations are as
common in heterogeneous biocatalysis as they are in inorganic
heterogeneous catalysis46, but the current study shows that
cellulases are severely restricted by an LFER.

Consequences of the scaling relationship. One aspect of the
proposed scaling of KM and kcat is that the initial rate, vss (Eq. 1),
may be approximated by just one of the kinetic parameters. To
illustrate this, we combined Eqs. 2–4 and solved for kcat.

kcat ¼ AKa
M ð5Þ

In Eq. 5 a=−Φ and A ¼ kcat;ref
KM;ref

�Φ . Inserting Eq. 5 into the MM-
equation (Eq. 1) expresses vss as a function of KM

vss ¼
E0AK

a
MS0

S0 þ KM
ð6Þ

Equation 6 underscores, how ligand affinity is a double-edged
sword. Hence, as demonstrated in the SI (supplementary note 3),
Eq. 6 has a global maximum when KM attains the value

KM;opt ¼ S0
a

1� a
ð7Þ

This implies that at a fixed load of substrate, S0, a cellulase with
low KM (i.e., KM < KM,opt) will become a better catalyst (increase
vss) if it is engineered for weaker substrate binding. Conversely,
weakly binding enzymes (KM > KM,opt) will gain from tighter
binding. In the current case, a= 0.74 and insertion into Eq. (7)
shows that KM,opt= 2.8 S0. In other words, the fastest initial rate
on the current substrate (Avicel) will be observed for a cellulase
that has a KM value that is around threefold higher than the
Avicel load. To illustrate this, we plotted vss as a function of KM

for all of the investigated enzymes (excluding outliers identified in
Fig. 2) at different substrate loads (Fig. 6). The results are in line
with a previous observation47 showing the so-called volcano
plots, where cellulase activity tapers off on each side of the
optimal affinity. Such volcano plots mirror the Sabatier principle,
which states that the catalytic efficacy is optimal for a catalyst

with intermediate binding strength48. Higher/lower affinity leads
to a situation where dissociation/association limits the overall
rate. The optimal affinity, KM,opt, depends on the substrate load
and this is indicated by the black symbols in Fig. 6, which were
calculated using Eq. 7. We emphasize that the appearance of an
optimal KM is a direct consequence of the LFER, and that this
type of analysis is well-established within (non-biochemical)
heterogeneous catalysis46,49.

As a final example of an application, we note that the LFER
may be useful in computational selection and design of enzymes
for technical use. Thus, a link between activity and affinity
provides an important simplification as it converts the highly
complex problem of in silico assessment of enzyme turnover
frequency to the more tractable challenge of calculating binding
energy. To illustrate this, we computationally assessed the
strength of enzyme-substrate interactions for a subset of nine
enzymes spread along the diagonal in Fig. 2. As shown in Fig. 3a,
the computed binding energies scaled with the experimental
values. These results suggest that the kinetic properties of novel,
uncharacterized enzymes may be estimated by combining
computed binding data with an experimental LFER based on a
limited number of enzymes. Hence, efficient enzymes for a given
set of experimental conditions could be identified through in
silico screening.

In closing, the kinetic characterization of a wide group of fungal
cellulases on their native, insoluble substrate revealed a LFER between
substrate binding and activation barrier. We propose that this reflects
basic physical restrictions of the hydrolytic reaction, which limits the
evolutionary selection to a narrow lane around the scaling line,
irrespectively of the enzymes’ fold, modularity, or catalytic mechan-
ism. The scatter around the proposed scaling line in Fig. 2
corresponds to a factor of about 2 in the value of kcat. Hence, our
results suggested that experimental kcat values for enzymes with
approximately the same KM varied within this range. This variance
encompassed a minor contribution from experimental errors, but it
may also reflect kinetic diversity that results from differences in the
mechanism and specificity of the tested enzymes. However, when we
zoomed out and considered a broad range of KM values, this variance
was modest, and the fitness landscape was dominated by a common
scaling for all enzymes. Comparisons of wild types and variants
revealed that small alterations in sequence (even point mutations)
could lead to significant kinetic changes. In most cases, however, the
changes involved a stringent movement on the scaling line rather
than a shift away from the line, and this further demonstrated a
strong coupling between affinity and turnover. We propose that this
behavior is linked to the interfacial nature of the reaction. On one
hand, strong ligand interactions are required to enable the transfer of
a cellulose chain from the cellulose surface to the enzyme complex.
On the other, a highly stable enzyme-substrate complex is
inescapably associated with slow turnover (Figs. 5b–3). These
relationships may help rationalize cellulolytic mechanisms and guide
the selection of technical enzymes. It also appears that LFERs for
interfacial enzyme reactions may establish a connection to
(inorganic) heterogeneous catalysis, and hence pave the way for the
use of practices and principles from this field within enzymology.

Methods
Enzymes and kinetic measurements. Experimental methods used in this work
have been described elsewhere (see supplementary Table 4). Briefly, we expressed
all enzymes heterologously in Aspergillus oryzae and purified as described
elsewhere50,51. Engineered enzymes containing single or multiple amino acid
substitutions, deletions or insertions was made using splicing overlap extension
(SOE) PCR or by expression vector50. A full list of primers can be found in
supplementary Table 5. For variants with added CBM, gBlocks™ Gene Fragments
was ordered from Integrated DNA Technologies (IDT) overhang of 24 bp for SOE.
SDS-PAGE gels (15-well NuPAGE 4–12% BisTris, GE Healthcare) revealed a single
band for the purified enzymes, and their concentrations were determined by UV
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Fig. 6 Volcano plots for five different substrate loads. The specific rate at
five different substrate loads is plotted as a function of KM for the
investigated enzymes (excluding outliers identified in Fig. 2). Points
represent experimental data and solid lines are the predicted volcano
curves calculated using Eq. 6 and a= 0.74 (there are no free parameters in
the determination of these solid curves). Black squares represent KM,opt

values calculated using Eq. 7, and these points identify the maxima of the
volcano plots at a given load of substrate.
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absorbance at 280 nm using a theoretical extinction coefficient calculated based on
amino acid sequence52. Michaelis–Menten (MM) curves were obtained as descri-
bed previously51 using 0.1 µM enzyme and microcrystalline cellulose (Avicel PH-
101, Sigma-Aldrich, St. Louis, MO) load ranging from 1 to 100 g/L. MM curves
were fitted to Eq. 1 in Origin pro v. 7. All experiments were done in triplicates at
25 °C using standard buffer 50 mM sodium acetate pH 5.0.

Molecular dynamics simulation. For simplicity, the modular structures of the
different cellulases were split into two simulations. The CDs were simulated in
complex with a cellononaose ligand and the CBMs (if present) were simulated
bound to a cellulose crystal.

Simulations of the catalytic domains. If available, the structures were taken from
the Protein Data Bank (TrCel7A: 4C4C53, TrCel7B: 1EG154, TrCel6A: 1QK255,
TrCel12A: 1H8V56, TrCel45A: 3QR357, HiCel45A: 4ENG58, Re7A: 3PL3). The ligand
was inserted by alignment, if a related structure with a similar large disaccharide was
available. Elsewise, docking with Autodock Vina was performed59. The ten clusters
lowest in energy were inspected and the lowest energy configuration from the cluster
with the closest distance between the catalytic residues and the glycosidic bond of
interest was taken. The CHARMM36 force field was used to describe the system60. All
simulations were run in GROMACS 2018.661. Catalytic acids of all CDs were proto-
nated. GROMACS was used to construct a cuboid box with edge lengths of 9.4 × 9.4 ×
20 nm and the complexes were positioned at 4.7, 4.7, and 3.3 nm. The complexes were
rotated so that the center of mass of the last and the fourth last sugar unit of the ligands
were parallel to the z-axis. The systems were solvated with TIP3P water. To neutralize
the net charges of the systems, random water molecules were exchanged with sodium
ions. Minimization was conducted in a steepest-descent over 10’000 iterations. All
subsequent simulations were performed at 300 K. NVT-simulations were performed for
100 ps while keeping the complex restraint. Thereafter, NPT-simulations with restraints
on the solutes were performed for 100 ps. For all further simulations, only Cα further
away than 1.5 nm from the ligand were restrained. A second round of NPT-simulations
with the new restraints were performed for 100 ps. RMSD analysis of the protein
backbone showed, that this time was sufficient to reach an equilibrated state. Thereafter,
steered MD simulations were done over 800 ps with a pulling rate of 0.01 nm/ps and a
force constant of 1000 kJ/mol/nm2. The pull was performed on the first sugar unit of
the cellononaose ligand in z direction. The resulting trajectories were used to prepare
further simulations. Frames every travelled 0.5 Å by the ligand were extracted up to a
final distance of 1 nm between the CD and the ligand. The extracted frames were used
as starting configuration for Umbrella sampling simulation along the binding path.
Each window was simulated for 620 ps, where the first 20 ps were disregarded as
equilibration. It should be noted, that TrCel6A works from the opposite end compared
to the other cellulases21. The set-up was adapted accordingly.

Simulations of the carbohydrate-binding modules. If available, the structures
were taken from the Protein Data Bank (CBM1 of TrCel7A: 2CBH, CBM1 of
TrCel7B: 4BMF). Otherwise, they were prepared through homology modelling by
Modeller62 (CBM1 of TrCel6A, CBM1 of TrCel5A, CBM1 of HiCel45A). A cel-
lulose crystal of the type Iβ with a length of 5, a width of 6, and a depth of 3 unit
cells was generated with the Cellulose Builder web server63. The CBMs were placed
on the surface according to Beckham, et al64. A cubic box with a minimal distance
of 1.0 nm was constructed. The crystal plane was oriented perpendicular to the z-
axis. The simulations were performed in a similar fashion as the ones for the CD
domains. However, the heavy atoms of the crystals were kept constrained after the
energy minimization and the second NPT-simulation was increased to 1 ns to get
the CBM settled on the crystal surface.

Analysis. Analysis of the trajectories was performed with GROMACS. The
weighted histogram analysis method (WHAM) was applied to analyze the
Umbrella sampling simulations along the binding path65. If density gaps occurred,
additional windows at those distances were inserted iteratively until no gaps
occurred. From the resulting PFM curves, the energy difference between the
minimum and the maximum of those curves were taken. The errors were estimated
with bootstrapping. Obtained ΔGB,MD values from the CD and CBM part were
added up to give values for the full enzyme. The energies were normalized by the
values from the reference enzyme TrCel6A. This resulted in ΔΔGB,MD values,
which are more readily comparable to the experimental ΔΔGB,Exp. Linear regres-
sions of the experimental binding energy and experimental activation energy
against the computed binding energy were performed. The former resulted in a
linear fit in the form of y= 0.16x+ 0.2 and with a Pearson’s coefficient r2= 0.93
and the later resulted in y= 0.13x+ 0.67 with r2= 0.81. To counteract this known
systematic overestimation issues of the method66–68 and of the carbohydrate
binding in general69,70, a linear transformation on the initially obtained computed
binding energies was performed using the parameters from the linear regressions.
The final results for the prediction of the binding energies had a root-mean-
squared error (RMSE) of 0.86 kJ/mol, the ones for the prediction of the activation
energy had RMSE of 1.20 kJ/mol.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all the data supporting the findings of this study are available
within the article (and Supplementary Information files), or available from the
corresponding author on reasonable request. The following structures given by their PDB
accession code was used in this study 2CBH, 4BMF, 4C4C, 1EG1, 1QK2, 1H8V, 3QR3,
4ENG and 3PL3. Source data are provided with this paper.
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