24 research outputs found

    Analysis of laser radiation using the Nonlinear Fourier transform

    Get PDF
    Modern high-power lasers exhibit a rich diversity of nonlinear dynamics, often featuring nontrivial co-existence of linear dispersive waves and coherent structures. While the classical Fourier method adequately describes extended dispersive waves, the analysis of time-localised and/or non-stationary signals call for more nuanced approaches. Yet, mathematical methods that can be used for simultaneous characterisation of localized and extended fields are not yet well developed. Here, we demonstrate how the Nonlinear Fourier transform (NFT) based on the Zakharov-Shabat spectral problem can be applied as a signal processing tool for representation and analysis of coherent structures embedded into dispersive radiation. We use full-field, real-time experimental measurements of mode-locked pulses to compute the nonlinear pulse spectra. For the classification of lasing regimes, we present the concept of eigenvalue probability distributions. We present two field normalisation approaches, and show the NFT can yield an effective model of the laser radiation under appropriate signal normalisation conditions

    Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial pressure.

    Get PDF
    Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic blood pressure (DBP) in Europeans. We now report genome-wide association studies of pulse pressure (PP) and mean arterial pressure (MAP). In discovery (N = 74,064) and follow-up studies (N = 48,607), we identified at genome-wide significance (P = 2.7 × 10(-8) to P = 2.3 × 10(-13)) four new PP loci (at 4q12 near CHIC2, 7q22.3 near PIK3CG, 8q24.12 in NOV and 11q24.3 near ADAMTS8), two new MAP loci (3p21.31 in MAP4 and 10q25.3 near ADRB1) and one locus associated with both of these traits (2q24.3 near FIGN) that has also recently been associated with SBP in east Asians. For three of the new PP loci, the estimated effect for SBP was opposite of that for DBP, in contrast to the majority of common SBP- and DBP-associated variants, which show concordant effects on both traits. These findings suggest new genetic pathways underlying blood pressure variation, some of which may differentially influence SBP and DBP

    On the Decidability of Finding a Positive ILP-Instance in a Regular Set of ILP-Instances

    No full text
    International audienceThe regular intersection emptiness problem for a decision problem P (intReg int_{\mathrm {Reg}} (P)) is to decide whether a potentially infinite regular set of encoded P-instances contains a positive one. Since intReg int_{\mathrm {Reg}} (P) is decidable for some NP-complete problems and undecidable for others, its investigation provides insights in the nature of NP-complete problems. Moreover, the decidability of the intReg int_{\mathrm {Reg}} -problem is usually achieved by exploiting the regularity of the set of instances; thus, it also establishes a connection to formal language and automata theory. We consider the intReg int_{\mathrm {Reg}} -problem for the well-known NP-complete problem Integer Linear Programming (ILP). It is shown that any DFA that describes a set of ILP-instances (in a natural encoding) can be reduced to a finite core of instances that contains a positive one if and only if the original set of instances did. This result yields the decidability of intReg int_{\mathrm {Reg}} (ILP)

    Evaluation of climate models using palaeoclimatic data

    No full text
    There is large uncertainty about the magnitude of warming and how rainfall patterns will change in response to any given scenario of future changes in atmospheric composition and land use. The models used for future climate projections were developed and calibrated using climate observations from the past 40 years. The geologic record of environmental responses to climate changes provides a unique opportunity to test model performance outside this limited climate range. Evaluation of model simulations against palaeodata shows that models reproduce the direction and large-scale patterns of past changes in climate, but tend to underestimate the magnitude of regional changes. As part of the effort to reduce model-related uncertainty and produce more reliable estimates of twenty-first century climate, the Palaeoclimate Modelling Intercomparison Project is systematically applying palaeoevaluation techniques to simulations of the past run with the models used to make future projections. This evaluation will provide assessments of model performance, including whether a model is sufficiently sensitive to changes in atmospheric composition, as well as providing estimates of the strength of biosphere and other feedbacks that could amplify the model response to these changes and modify the characteristics of climate variability. The fifth phase of the Coupled Model Intercomparison Project (CMIP5) is at present running simulations using state-of-theart models to provide information about the likely evolution of climate over the twenty-first century, with additional experiment

    Fuzzy Topological Spaces

    No full text

    Principal Issues Surrounding Trap Magmatism of the Siberian Platform

    No full text
    corecore