221 research outputs found

    Spintronic magnetic anisotropy

    Full text link
    An attractive feature of magnetic adatoms and molecules for nanoscale applications is their superparamagnetism, the preferred alignment of their spin along an easy axis preventing undesired spin reversal. The underlying magnetic anisotropy barrier --a quadrupolar energy splitting-- is internally generated by spin-orbit interaction and can nowadays be probed by electronic transport. Here we predict that in a much broader class of quantum-dot systems with spin larger than one-half, superparamagnetism may arise without spin-orbit interaction: by attaching ferromagnets a spintronic exchange field of quadrupolar nature is generated locally. It can be observed in conductance measurements and surprisingly leads to enhanced spin filtering even in a state with zero average spin. Analogously to the spintronic dipolar exchange field, responsible for a local spin torque, the effect is susceptible to electric control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio

    A conceptual framework for crop-based agri-food supply chain characterization under uncertainty

    Get PDF
    [EN] Crop-based Agri-food Supply Chains (AFSCs) are complex systems that face multiple sources of uncertainty that can cause a significant imbalance between supply and demand in terms of product varieties, quantities, qualities, customer requirements, times and prices, all of which greatly complicate their management. Poor management of these sources of uncertainty in these AFSCs can have negative impact on quality, safety, and sustainability by reducing the logistic efficiency and increasing the waste. Therefore, it becomes crucial to develop models in order to deal with the key sources of uncertainty. For this purpose, it is necessary to precisely understand and define the problem under study. Even, the characterisation process of this domains is also a difficult and time-consuming task, especially when the right directions and standards are not in place. In this chapter, a Conceptual Framework is proposed that systematically collects those aspects that are relevant for an adequate crop-based AFSC management under uncertainty.Authors of this publication acknowledge the contribution of the Project 691249, RUC-APS "Enhancing and implementing Knowledge based ICT solutions within high Risk and Uncertain Conditions for Agriculture Production Systems" (www.ruc-aps.eu), funded by the European Union under their funding scheme H2020-MSCA-RISE-2015Alemany Díaz, MDM.; Esteso, A.; Ortiz Bas, Á.; Hernández Hormazabal, JE.; Fernández, A.; Garrido, A.; Martin, J.... (2021). A conceptual framework for crop-based agri-food supply chain characterization under uncertainty. Studies in Systems, Decision and Control. 280:19-33. https://doi.org/10.1007/978-3-030-51047-3_2S1933280Taylor, D.H., Fearne, A.: Towards a framework for improvement in the management of demand in agri-food supply chains. Supply Chain Manage. 11, 379–384 (2006)Matopoulos, A., Vlachopoulou, M., Manthou, V., Manos, B.: A conceptual framework for supply chain collaboration: empirical evidence from the agri-food industry. Supply Chain Manage. 12, 177–186 (2007)Ahumada, O., Villalobos, J.R.: Application of planning models in the agri-food supply chain: a review. Eur. J. Oper. Res. 196, 1–20 (2009)Iakovou, E., Vlachos, D., Achillas, C., Anastasiadis, F.: A methodological framework for the design of green supply chains for the agrifood sector. Paper presented at the 2nd international conference on supply chains, Katerini, 5–7 Oct 2012Manzini, R., Accorsi, R.: The new conceptual framework for food supply chain assessment. J. Food Eng. 115, 251–263 (2013)Shukla, M., Jharkharia, S.: Agri-fresh produce supply chain management: a state-of-the-art literature review. Int. J. Oper. Prod. Manage. 33, 114–158 (2013)Lemma, Y., Kitaw, D., Gatew, G.: Loss in perishable food supply chain: an optimization approach literature review. Int. J. Sci. Eng. Res. 5, 302–311 (2014)Tsolakis, N.K., Keramydas, C.A., Toka, A.K., Aidonis, D.A., Iakovou, E.T.: Agrifood supply chain management: a comprehensive hierarchical decision-making framework and a critical taxonomy. Biosyst. Eng. 120, 47–64 (2014)Van der Vorst, J.G., Da Silva, C.A., Trienekens, J.H.: Agro-industrial Supply Chain Management: Concepts and Applications. FAO (2007)Hernandez, J., Mortimer, M., Patelli, E., Liu, S., Drummond, C., Kehr, E., Calabrese, N., Iannacone, R., Kacprzyk, J., Alemany, M.M.E., Gardner, D.: RUC-APS: enhancing and implementing knowledge based ICT solutions within high risk and uncertain conditions for agriculture production systems. In: 11th International Conference on Industrial Engineering and Industrial Management, Valencia, Spain (2017)Miles, M.B., Huberman, A.M.: Qualitative Data Analysis: An Expanded Sourcebook. Sage Publications, Thousand Oaks (1994)Alemany, M.M.E., Alarcón, F., Lario, F.C., Boj, J.J.: An application to support the temporal and spatial distributed decision-making process in supply chain collaborative planning. Comput. Ind. 62, 519–540 (2011)Teimoury, E., Nedaei, H., Ansari, S., Sabbaghi, M.: A multi-objective analysis for import quota policy making in a perishable fruit and vegetable supply chain: a system dynamics approach. Comput. Electron. Agric. 93, 37–45 (2013)Kusumastuti, R.D., van Donk, D.P., Teunter, R.: Crop-related harvesting and processing planning: a review. Int. J. Prod. Econ. 174, 76–92 (2016)Zhang, W., Wilhelm, W.E.: OR/MS decision support models for the specialty crops industry: a literature review. Ann. Oper. Res. 190, 131–148 (2011)Grillo, H., Alemany, M.M.E., Ortiz, A.: A review of mathematical models for supporting the order promising process under lack of homogeneity in product and other sources of uncertainty. Comput. Ind. Eng. 91, 239–261 (2016)Blanco, A.M., Masini, G., Petracci, N., Bandoni, J.A.: Operations management of a packaging plant in the fruit industry. J. Food Eng. 70, 299–307 (2005)Grillo, H., Alemany, M.M.E., Ortiz, A., Fuertes-Miquel, V.S.: Mathematical modelling of the order-promising process for fruit supply chains considering the perishability and subtypes of products. Appl. Math. Model. 49, 255–278 (2017)Verdouw, C.N., Beulens, A.J.M., Trienekens, J.H., Wolferta, J.: Process modelling in demand-driven supply chains: a reference model for the fruit industry. Comput. Electron. Agric. 73, 174–187 (2010)Amorim, P., Günther, H., Almada-Lobo, B.: Multi-objective integrated production and distribution planning of perishable products. Int. J. Prod. Econ. 138, 89–101 (2012)Nahmias, S.: Perishable inventory theory: a review. Oper. Res. 30, 680–708 (1982)Mowat, A., Collins, R.: Consumer behavior and fruit quality: supply chain management in an emerging industry. Supply Chain Manage. 5, 45–54 (2000)Kazaz, B., Webster, S.: The impact of yield-dependent trading costs on pricing and production planning under supply uncertainty. M&SOM Manuf. Serv. Oper. Manage. 13, 404–417 (2011)Van der Vorst, J.G.: Effective food supply chains: generating, modelling and evaluating supply chain scenarios (2000)Fuertes-Miquel, V.S., Cuenca, L., Boza, A., Guyon, C., Alemany, M.M.E.: Conceptual framework for the characterization of vegetable breton supply chain sustainability in an uncertain context. In: 12th International Conference on Industrial Engineering and Industrial Management, XXII Congreso de Ingeniería de Organización, Girona, Spain, 12–13 July 2018Kummu, M., de Moel, H., Porkka, M., Siebert, S., Varis, O., Ward, P.J.: Lost food, wasted resources: global food supply chain losses and their impacts on freshwater, cropland, and fertiliser use. Sci. Total Environ. 438, 477–489 (2012)Hoekstra, S., Romme, J.: Integral Logistic Structures: Developing Customer-Oriented Goods Flow. Industrial Press Inc., New York (1992)Borodin, V., Bourtembourg, J., Hnaien, F., Labadie, N.: Handling uncertainty in agricultural supply chain management: a state of the art. Eur. J. Oper. Res. 254, 348–359 (2016)Handayati, Y., Simatupang, T.M., Perdana, T.: Agri-food supply chain coordination: the state-of-the-art and recent developments. Logist. Res. 8, 1–15 (2015)Mintzberg, H.: The Structuring of Organisations. Prentice-Hall, Upper Saddle River (1979)Keuning, D.: Grondslagen Van Het Management. Stenfert Kroese, Houten (1995) (in Dutch)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for designing agri-food supply chains under uncertainty by mathematical programming models. Int. J. Prod. Res. (2018)Backus, G.B.C., Eidman, V.R., Dijkhuizen, A.A.: Farm decision making under risk and uncertainty. Neth. J. Agr. Sci. 45, 307–328 (1997)Esteso, A., Alemany, M.M.E., Ortiz, A.: Conceptual framework for managing uncertainty in a collaborative agri-food supply chain context. In: IFIP Advances in Information and Communication Technology, vol. 506, pp. 715–724 (2017)Mundi, I., Alemany, M.M.E., Poler, R., Fuertes-Miquel, V.S.: Review of mathematical models for production planning under uncertainty due to lack of homogeneity: proposal of a conceptual model. Int. J. Prod. Res. (2019)Grillo, H., Alemany, M.M.E., Ortiz, A., De Baets, B.: Possibilistic compositions and state functions: application to the order promising process for perishables. Int. J. Prod. Res. (2019)Soto-Silva, W.E., Nadal-Roig, E., González-Araya, M.C., Pla-Aragones, L.M.: Operational research models applied to the fresh fruit supply chain. Eur. J. Oper. Res. 251, 345–355 (2016)Farahani, R.Z., Rezapour, S., Drezner, T., Fallah, S.: Competitive supply chain network design: an overview of classifications, models, solution techniques and applications. Omega 45, 92–118 (2014)Banasik, A., Bloemhof-Ruwaard, J.M., Kanellopoulos, A., Claassen, G.D.H., van der Vorst, J.G.: Multi-criteria decision making approaches for green supply chains: a review. Flex. Serv. Manuf. J. 1–31 (2016)Paam, P., Berretta, R., Heydar, M., Middleton, R.H., García-Flores, R., Juliano, P.: Planning models to optimize the agri-fresh food supply chain for loss minimization: a review. In: Reference Module in Food Science (2016)Soysal, M., Bloemhof-Ruwaard, J.M., Meuwissen, M.P., van der Vorst, J.G.: A review on quantitative models for sustainable food logistics management. Int. J. Food Syst. Dyn. 3, 136–155 (2012

    Distribution of Corbicula fluminea (Müller, 1774) in the invaded range: a geographic approach with notes on species traits variability

    Get PDF
    Corbicula fluminea is considered one of the most important non-native invasive species (NIS) in aquatic systems mainly due to its widespread distribution and ecological and economic impacts. This species is known to negatively affect native bivalves, also with severe effects on biodiversity and ecosystem functioning. Throughout an exhaustive bibliographic survey and with the aid of Geographic Information Systems tools, this study tracks the species dispersion from its native range, including the description of important physical and environmental barriers. Additional analyses were conducted to examine possible influences of latitudinal/ temperature gradients on important traits (e.g. life span, maximum and mean body length, growth at the end of first year). Altitude and winter minimum temperature appear to be delaying the invasion worldwide, but it seems inevitable that the species will spread across the globe. Latitude and summer temperature show a relationship with growth and life span. Overall, the information gathered in this review may be relevant to forecast future distribution patterns of this NIS, and to anticipate the possible implementation of effective management measures. Moreover, it may constitute a valuabletool inthe prediction of population responses to an increasingly changing environment.This research was supported by FCT (Portuguese Foundation for Science and Technology), through a PhD grant attributed to D. Crespo (SFRH/BD/80252/2011), a post-doc grant attributed to S. Leston (SFRH/BPD/91828/2012) and M Dolbeth (SFRH/BPD/41117/2007) and BIOCHANGED project (PTDC/MAR/111901/2009), subsidized by the European Social Fund and MCTES (Ministério da Ciência, Tecnologia e Ensino Superior) National Funds, through the POPH (Human Potential Operational Programme), QREN (National Strategic Reference Framework) and COMPETE (Programa Operacional Factores de Competitividade).info:eu-repo/semantics/publishedVersio

    The Power of an Infant\u27s Smile: Maternal Physiological Responses to Infant Emotional Expressions

    Get PDF
    Infant emotional expressions, such as distress cries, evoke maternal physiological reactions. Most of which involve accelerated sympathetic nervous activity. Comparatively little is known about effects of positive infant expressions, such as happy smiles, on maternal physiological responses. This study investigated how physiological and psychological maternal states change in response to infants\u27 emotional expressions. Thirty first-time mothers viewed films of their own 6- to 7-month-old infants\u27 affective behavior. Each observed a video of a distress cry followed by a video showing one of two expressions (randomly assigned): a happy smiling face (smile condition) or a calm neutral face (neutral condition). Both before and after the session, participants completed a self-report inventory assessing their emotional states. The results of the self-report inventory revealed no effects of exposure to the infant videos. However, the mothers in the smile condition, but not in the neutral condition, showed deceleration of skin conductance. These findings demonstrate that the mothers who observed their infants smiling showed decreased sympathetic activity. We propose that an infant\u27s positive emotional expression may affect the branch of the maternal stress-response system that modulates the homeostatic balance of the sympathetic and parasympathetic nervous systems
    corecore