An attractive feature of magnetic adatoms and molecules for nanoscale
applications is their superparamagnetism, the preferred alignment of their spin
along an easy axis preventing undesired spin reversal. The underlying magnetic
anisotropy barrier --a quadrupolar energy splitting-- is internally generated
by spin-orbit interaction and can nowadays be probed by electronic transport.
Here we predict that in a much broader class of quantum-dot systems with spin
larger than one-half, superparamagnetism may arise without spin-orbit
interaction: by attaching ferromagnets a spintronic exchange field of
quadrupolar nature is generated locally. It can be observed in conductance
measurements and surprisingly leads to enhanced spin filtering even in a state
with zero average spin. Analogously to the spintronic dipolar exchange field,
responsible for a local spin torque, the effect is susceptible to electric
control and increases with tunnel coupling as well as with spin polarization.Comment: 6 pages with 4 figures + 26 pages of Supplementary Informatio