2,788 research outputs found
Recommended from our members
Geometry and electronic structure of iridium adsorbed on graphene
We report investigation of the geometry and electronic structure of iridium atoms adsorbed onto graphene through a combined experimental and theoretical study. Ir atoms were deposited onto a flake of graphene on a Pt(111) surface and found to form clusters even at low temperatures. The areal density of the observed clusters on the graphene flake suggests the clusters are most likely pairs of Ir atoms. Theoretical ab initio density functional (DFT) calculations indicate that these Ir dimers are oriented horizontally, near neighboring "bridge" sites of the graphene lattice, as this configuration has the strongest adsorption energy of all high-symmetry configurations for the Ir dimer. A large peak in the local density of states (LDOS) at the Dirac point energy was measured via scanning tunneling spectroscopy, and this result is reproduced by a DFT calculation of the LDOS. The peak at the Dirac point energy is found to be from the Ir s and p states. The LDOS in the monomer case was also calculated, and is found to significantly differ from the experimentally determined data, further supporting the hypothesis of low-temperature clustering
The impact of CACNA1C gene, and its epistasis with ZNF804A, on white matter microstructure in health, schizophrenia and bipolar disorder
Genome-wide studies have identified allele A (adenine) of single nucleotide polymorphism (SNP) rs1006737 of the calcium-channel CACNA1C gene as a risk factor for both schizophrenia (SZ) and bipolar disorder (BD) as well as allele A for rs1344706 in the zinc-finger ZNF804A gene. These illnesses have also been associated with white matter abnormalities, reflected by reductions in fractional anisotropy (FA), measured using diffusion tensor imaging (DTI). We assessed the impact of the CACNA1C psychosis risk variant on FA in SZ, BD and health. 230 individuals (with existing ZNF804A rs1344706 genotype data) were genotyped for CACNA1C rs1006737 and underwent DTI. FA data was analysed with tract-based spatial statistics and threshold-free cluster enhancement significance correction (p < 0.05) to detect effects of CACNA1C genotype on FA, and its potential interaction with ZNF804A genotype and with diagnosis, on FA. There was no significant main effect of the CACNA1C genotype on FA, nor diagnosis by genotype(s) interactions. Nevertheless, when inspecting SZ in particular, risk allele carriers had significantly lower FA than the protective genotype individuals, in portions of the left middle occipital and parahippocampal gyri, right cerebelleum, left optic radiation and left inferior and superior temporal gyri. Our data suggests a minor involvement of CACNA1C rs1006737 in psychosis via conferring susceptibility to white matter microstructural abnormalities in SZ. Put in perspective, ZNF804A rs1344706, not only had a significant main effect, but its SZ-specific effects were two orders of magnitude more widespread than that of CACNA1C rs1006737
Fructose transport-deficient Staphylococcus aureus reveals important role of epithelial glucose transporters in limiting sugar-driven bacterial growth in airway surface liquid.
Hyperglycaemia as a result of diabetes mellitus or acute illness is associated with increased susceptibility to respiratory infection with Staphylococcus aureus. Hyperglycaemia increases the concentration of glucose in airway surface liquid (ASL) and promotes the growth of S. aureus in vitro and in vivo. Whether elevation of other sugars in the blood, such as fructose, also results in increased concentrations in ASL is unknown and whether sugars in ASL are directly utilised by S. aureus for growth has not been investigated. We obtained mutant S. aureus JE2 strains with transposon disrupted sugar transport genes. NE768(fruA) exhibited restricted growth in 10 mM fructose. In H441 airway epithelial-bacterial co-culture, elevation of basolateral sugar concentration (5-20 mM) increased the apical growth of JE2. However, sugar-induced growth of NE768(fruA) was significantly less when basolateral fructose rather than glucose was elevated. This is the first experimental evidence to show that S. aureus directly utilises sugars present in the ASL for growth. Interestingly, JE2 growth was promoted less by glucose than fructose. Net transepithelial flux of D-glucose was lower than D-fructose. However, uptake of D-glucose was higher than D-fructose across both apical and basolateral membranes consistent with the presence of GLUT1/10 in the airway epithelium. Therefore, we propose that the preferential uptake of glucose (compared to fructose) limits its accumulation in ASL. Pre-treatment with metformin increased transepithelial resistance and reduced the sugar-dependent growth of S. aureus. Thus, epithelial paracellular permeability and glucose transport mechanisms are vital to maintain low glucose concentration in ASL and limit bacterial nutrient sources as a defence against infection
Simpson's Paradox, Lord's Paradox, and Suppression Effects are the same phenomenon – the reversal paradox
This article discusses three statistical paradoxes that pervade epidemiological research: Simpson's paradox, Lord's paradox, and suppression. These paradoxes have important implications for the interpretation of evidence from observational studies. This article uses hypothetical scenarios to illustrate how the three paradoxes are different manifestations of one phenomenon – the reversal paradox – depending on whether the outcome and explanatory variables are categorical, continuous or a combination of both; this renders the issues and remedies for any one to be similar for all three. Although the three statistical paradoxes occur in different types of variables, they share the same characteristic: the association between two variables can be reversed, diminished, or enhanced when another variable is statistically controlled for. Understanding the concepts and theory behind these paradoxes provides insights into some controversial or contradictory research findings. These paradoxes show that prior knowledge and underlying causal theory play an important role in the statistical modelling of epidemiological data, where incorrect use of statistical models might produce consistent, replicable, yet erroneous results
Probing host pathogen cross-talk by transcriptional profiling of both Mycobacterium tuberculosis and infected human dendritic cells and macrophages
This study provides the proof of principle that probing the host and the microbe transcriptomes simultaneously is a valuable means to accessing unique information on host pathogen interactions. Our results also underline the extraordinary plasticity of host cell and pathogen responses to infection, and provide a solid framework to further understand the complex mechanisms involved in immunity to M. tuberculosis and in mycobacterial adaptation to different intracellular environments
Electric-field-induced coherent coupling of the exciton states in a single quantum dot
The signature of coherent coupling between two quantum states is an
anticrossing in their energies as one is swept through the other. In single
semiconductor quantum dots containing an electron-hole pair the eigenstates
form a two-level system that can be used to demonstrate quantum effects in the
solid state, but in all previous work these states were independent. Here we
describe a technique to control the energetic splitting of these states using a
vertical electric field, facilitating the observation of coherent coupling
between them. Near the minimum splitting the eigenstates rotate in the plane of
the sample, being orientated at 45{\deg} when the splitting is smallest. Using
this system we show direct control over the exciton states in one quantum dot,
leading to the generation of entangled photon pairs
Binary and Millisecond Pulsars at the New Millennium
We review the properties and applications of binary and millisecond pulsars.
Our knowledge of these exciting objects has greatly increased in recent years,
mainly due to successful surveys which have brought the known pulsar population
to over 1300. There are now 56 binary and millisecond pulsars in the Galactic
disk and a further 47 in globular clusters. This review is concerned primarily
with the results and spin-offs from these surveys which are of particular
interest to the relativity community.Comment: 59 pages, 26 figures, 5 tables. Accepted for publication in Living
Reviews in Relativity (http://www.livingreviews.org
Understanding emotionally relevant situations in primary care dental practice: 1. Clinical situations and emotional responses
Background and aims. The stressful nature of dental practice is well established. Much less information is available on the coping strategies used by dentists and the emotions which underlie the stressful experience. Previous research has been almost exclusively questionnaire-based, limiting the range of emotions explored. This study used qualitative methods to explore the full extent of emotions and coping strategies associated with stressful events in primary dental practice.
Method. Semi-structured interviews were conducted with 20 dentists in Lincoln and the surrounding area. Verbatim transcriptions were analysed using thematic analysis.
Results. Participants reported a wide variety of stressful situations, consistent with the existing literature, which were associated with a diverse range of negative emotional responses including anxiety, anger and sadness. Dentists tended to have more difficulty identifying positive events and emotions. The designation of a situation as stressful or otherwise was dependent on the dentist's personal interpretation of the event. Data relating to the effects of stressors and the coping strategies used by dentists will be presented in subsequent papers.
Conclusion. The situations which dentists find difficult are accompanied by a diverse set of emotions, rather than omnipresent 'stress.' This has implications for stress management programmes for those in dental practic
Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo
We use data from the second science run of the LIGO gravitational-wave
detectors to search for the gravitational waves from primordial black hole
(PBH) binary coalescence with component masses in the range 0.2--.
The analysis requires a signal to be found in the data from both LIGO
observatories, according to a set of coincidence criteria. No inspiral signals
were found. Assuming a spherical halo with core radius 5 kpc extending to 50
kpc containing non-spinning black holes with masses in the range 0.2--, we place an observational upper limit on the rate of PBH coalescence
of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.
Robust Detection of Hierarchical Communities from Escherichia coli Gene Expression Data
Determining the functional structure of biological networks is a central goal
of systems biology. One approach is to analyze gene expression data to infer a
network of gene interactions on the basis of their correlated responses to
environmental and genetic perturbations. The inferred network can then be
analyzed to identify functional communities. However, commonly used algorithms
can yield unreliable results due to experimental noise, algorithmic
stochasticity, and the influence of arbitrarily chosen parameter values.
Furthermore, the results obtained typically provide only a simplistic view of
the network partitioned into disjoint communities and provide no information of
the relationship between communities. Here, we present methods to robustly
detect coregulated and functionally enriched gene communities and demonstrate
their application and validity for Escherichia coli gene expression data.
Applying a recently developed community detection algorithm to the network of
interactions identified with the context likelihood of relatedness (CLR)
method, we show that a hierarchy of network communities can be identified.
These communities significantly enrich for gene ontology (GO) terms, consistent
with them representing biologically meaningful groups. Further, analysis of the
most significantly enriched communities identified several candidate new
regulatory interactions. The robustness of our methods is demonstrated by
showing that a core set of functional communities is reliably found when
artificial noise, modeling experimental noise, is added to the data. We find
that noise mainly acts conservatively, increasing the relatedness required for
a network link to be reliably assigned and decreasing the size of the core
communities, rather than causing association of genes into new communities.Comment: Due to appear in PLoS Computational Biology. Supplementary Figure S1
was not uploaded but is available by contacting the author. 27 pages, 5
figures, 15 supplementary file
- …
