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Abstract
This article discusses three statistical paradoxes that pervade epidemiological research: Simpson's
paradox, Lord's paradox, and suppression. These paradoxes have important implications for the
interpretation of evidence from observational studies. This article uses hypothetical scenarios to
illustrate how the three paradoxes are different manifestations of one phenomenon – the reversal
paradox – depending on whether the outcome and explanatory variables are categorical,
continuous or a combination of both; this renders the issues and remedies for any one to be similar
for all three. Although the three statistical paradoxes occur in different types of variables, they
share the same characteristic: the association between two variables can be reversed, diminished,
or enhanced when another variable is statistically controlled for. Understanding the concepts and
theory behind these paradoxes provides insights into some controversial or contradictory
research findings. These paradoxes show that prior knowledge and underlying causal theory play
an important role in the statistical modelling of epidemiological data, where incorrect use of
statistical models might produce consistent, replicable, yet erroneous results.

Introduction
This article discusses three statistical paradoxes that per-
vade epidemiological research: Simpson's paradox, Lord's
paradox, and suppression. These paradoxes are not just tan-
talising puzzles of purely academic interest; potentially,
they have serious implications for the interpretation of
evidence from observational studies. Scenarios which are
associated with and can be explained by these paradoxes
are discussed. A concise explanation of these paradoxes
and an historical overview is also provided. Simulated
data based upon the foetal origins of adult diseases
hypothesis [1,2] are used to illustrate how the three para-
doxes are different manifestations of one phenomenon –
the reversal paradox – depending on whether the outcome
and explanatory variables are categorical, continuous or a

combination of both; this renders the issues and remedies
for any one to be similar for all three. All statistical analy-
ses were performed within SPSS 15.0 (SPSS Inc, Chicago,
USA).

Foetal origins hypothesis
The 'foetal origins of adult disease' hypothesis (FOAD),
which has evolved into the 'developmental origins of
health and disease' (DOHaD) hypothesis [1,2], was pro-
posed to explain the associations observed between low
birth weight and a range of diseases in later life. These
associations have been interpreted as evidence that
growth retardation in utero has adverse long-term effects
on the development of vital organ systems which predis-
pose the individuals to a range of metabolic and related
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disorders in later life. Nevertheless, although an inverse
association between birth weight and disease in later life
was found in some studies, this relationship was only
established in many studies after the current body size var-
iables such as body mass index (BMI), body weight and/
or body height were adjusted for in the regression analy-
sis. As body sizes may be in the causal pathway from birth
weight to health outcomes in later life, the justification of
this adjustment of current body sizes has been questioned
recently [3-8].

Using the inverse relationship between birth weight and
systolic blood pressure in later life as an example, Figure 1
shows the directed acyclic graphs [9-11] for the possible
relationships between the three observed variables: birth
weight, current body weight and systolic blood pressure.
In Figure 1a, current body weight is on the causal pathway
from birth weight to systolic blood pressure, so current
body weight is not a genuine confounder and should not
be adjusted for. In Figure 1b, there is no relationship
between birth weight and current body weight, and there-
fore the latter is not a confounder for the relationship
between birth weight and blood pressure either. However,
this model cannot explain the observed positive correla-
tions between birth weight and current body weight in
many epidemiological studies. In Figure 1c, current body
weight is a confounder because it is ancestor to both birth
weight and blood pressure in the directed acyclic graph [9-
11]. Obviously, this scenario is implausible in reality
because current body weight cannot affect birth weight. In
Figure 1d, the observed positive correlation between birth
weight and current body weight is due to an unobserved
confounder, UC, which affects both birth weight and cur-
rent body weight. Also, there is no path from birth weight
and current body weight [7], i.e. if UC could be identified
and measured, birth weight and current body weight
would be independent, conditional on UC [12]. More
complex causal diagrams for the three variables are possi-
ble by incorporating more unobserved variables in the
model. However, the four scenarios in Figure 1 are suffi-
cient for our discussion in this study, so we do not pursue
them further.

Figure 1a,c and 1d all explain the observed correlation
structure amongst birth weight, current body weight and
blood pressure equally well, and it is not possible to judge
which one is true based upon the observed data. For
example, researchers may argue current body weight is a
genuine confounder in Figure 1d and therefore should be
adjusted for [7]. This can only be confirmed when the
unobserved confounder (be parental, genetic, or environ-
mental factors) is identified and the conditional inde-
pendence between birth weight and current weight is
satisfied.

Nevertheless, the adjustment of current body weight in
the statistical analysis will change the estimated relation-
ship between birth weight and blood pressure, as the
adjusted relationship is a conditional relationship. Differ-
ences between the unadjusted and adjusted (i.e. uncondi-
tional and conditional) relationships frequently cause
confusion in the interpretations of statistical analyses and
they also give rise to three statistical paradoxes, which we
shall explain in the next section.

Simpson's Paradox
Simpson's paradox [13], or Yule's paradox [14], is a well
known statistical phenomenon. It is observed when the
relationship between two categorical variables is reversed
after a third variable is introduced to the analysis of their
association, or alternatively where the relationship
between two variables differs within subgroups compared
to that observed for the aggregated data. Although first
discussed by Karl Pearson in 1899 [15], it is George Udny
Yule, once Pearson's assistant, who provides a detailed
assessment of this problem in 1903 [14].

A numerical example
Table 1 provides a summary of a hypothetical survey of
1000 adult males in England based on data simulated
using values derived from the literature [16] and surveys
conducted by the UK Department of Health [17]. Data are

Causal models expressed as directed acyclic graphs for possi-ble relationships between the three observed variables: birth weight (BW), current body weight (CW) and systolic blood pressure (BP)Figure 1
Causal models expressed as directed acyclic graphs for possi-
ble relationships between the three observed variables: birth 
weight (BW), current body weight (CW) and systolic blood 
pressure (BP). UC is an unobserved variable that affects both 
BW and CW. In Figure 1d, there is a back-door path from BP 
to BW via CW and UC, so the association between BP and BW 
is therefore biased. The adjustment of CW can block the 
backdoor path from BP to BW via UC.
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simulated such that the three variables systolic blood pres-
sure (BP), birth weight (BW), and current body weight
(CW) are positively correlated: the correlation between BP
and birth weight (rBW-BP) is weak (0.11); whereas the cor-
relations between birth weight and current weight (rBW-

CW) and between current weight and BP (rCW-BP) are rea-
sonably strong (0.52 and 0.50, respectively).

Suppose the research question is to investigate whether or
not there is an association between low birth weight and
high blood pressure in later life. In this hypothetical
study, low birth weight is defined as birth weight lower
than the population mean (i.e. < 3.5 Kg), and high blood
pressure is defined as systolic BP greater than the mean
value (i.e. > 135 mmHg). The results are summarized in
Table 2. It is noted that the probability of developing high
blood pressure is 0.272 for subjects with low birth weight
and 0.362 for subjects with high birth weight. This indi-
cates that low birth weight has a protective effect of devel-
oping high blood pressure. However, when these subjects
are stratified according to their current weight (> 90 Kg vs.
< = 90 Kg), the risk of developing high blood pressure is
consistently higher amongst subjects with low birth
weight compared to those with high birth weight. It seems
to be quite counter-intuitive that low birth weight has an
adverse effect on blood pressure for both subgroups of

current weight, yet a protective effect on the groups as a
whole.

Interpretation
In this scenario, there are substantial differences in the
numbers of subjects with low birth weight between the
two subgroups of current weight, because lower birth
weight babies on average are smaller in adulthood. There-
fore, the overall relation between low birth weight and
high blood pressure is a sum of weighted relations
between the two variables in each subgroup. A graphical
representation of this paradox, first proposed by Paik
[18], is given in Figure 2. Due to a greater influence of the
lower risk of developing high blood pressure in the sub-
jects with low birth weight and lower current weight, the
adverse relation is reversed in the whole-group analysis
(solid line in Figure 2). Note that, in the following two
scenarios, the adjustment for current weight will not
change the relationship between birth weight and BP [12],
if: (a) there is no difference in the percentages of subjects
with high current weight between the two subgroups of
birth weight (i.e. no correlation between birth weight and
current weight); or (b) there is no association between
CWb and BP in the subgroups stratified by BWb (i.e. the
association between BP and current weight is entirely
caused by the association between birth weight and BP).
The problem is whether the relation between low birth

Table 2: Numbers and Percentages of subjects with high blood pressure (> 135 mmHg) according to their birth weight and current 
body weight

Normal BP High BP Total Percentage of subjects with 
high BP

Overall:
Low birth weight 354 132 486 27.2%
High birth weight 328 186 514 36.2%

Total 682 318 1,000 31.8%

Current weight < = 90 Kg
Low birth weight 329 99 428 23.1%
High birth weight 221 55 276 19.9%

Total 550 154 704 21.9%

Current weight > 90 Kg
Low birth weight 25 33 58 56.9%
High birth weight 107 131 238 55.0%

Total 132 164 296 55.4%

Table 1: Summary of the analysis of simulated systolic blood pressure, birth weight and current body weight data for 1000 adult males

N Minimum Maximum Mean Standard Deviation

Current weight (kg) 1000 38.02 127.08 82.69 14.61
Systolic BP (mmHg) 1000 89.36 168.88 129.78 11.14

Birth weight (kg) 1000 1.37 5.42 3.51 0.63
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weigh and high blood pressure in the whole group pro-
vides an answer to the intended research question, or
whether the relation in the two subgroups does this. In
other words, should CWb be considered a confounder
and hence adjusted for in the statistical models?

In statistical language, adjustment for current body weight
represents a conditional relationship; the relationship
between birth weight and blood pressure is conditional on
current body weight. Although there are substantial differ-
ences in the numbers of subjects with low birth weight
between the two subgroups of current weight, the adjust-
ment for CWb indicates that if all subjects had the same
level of current body weight, subjects with low birth
weight would have a greater risk of developing high blood
pressure, i.e. the adjustment of CWb erases the greater
influence of subjects with low birth weight and lower cur-
rent weight on the association between birth weight and

blood pressure, as people born smaller in general grow
into a smaller adults.

Simpson's paradox has broad implications for epidemio-
logical research since it indicates that making causal infer-
ence from any non-randomised study (e.g. cohort studies,
case-control studies) can be difficult, because, whilst it is
possible to control for the differences between cases and
controls, there will always be the possibility that an unob-
served and therefore unadjusted confounder might atten-
uate the association (or even reverse its direction)
between exposure and outcome, due to the difference in
the mean values or the distribution of confounders
between the case or control group. Nevertheless, whether
or not there is any unobserved (and therefore unadjusted)
confounder may not always be an issue of debate, because
in most epidemiologic studies, the important confound-
ers are generally known. The controversy in making causal
inference arises in situations where the adjusted variable
may not be a genuine confounder [6,7,19,20]. Within epi-
demiology, Simpson's paradox is closely linked to the
concepts of confounding [9] and incollapsibility [10].

Lord's Paradox
Lord's paradox was named after two short articles in the
psychology literature by Frederick M Lord regarding the
use of analysis of covariance (ANCOVA) within non-
experimental studies [21,22]. In contrast to Simpson's
paradox, little discussion of Lord's paradox can be found
in the statistical and epidemiological literature [23],
though social scientists have shown a great interest in this
phenomenon [24-28]. Lord's paradox refers to the rela-
tionship between a continuous outcome and a categorical
exposure being reversed when an additional continuous
covariate is introduced to the analysis. One specific exam-
ple is that the additional covariate is a measure made at
baseline within a longitudinal study, where the outcome
is the same variable measured some time later (e.g. fol-
lowing an intervention). Therefore, the aim is to measure
change in the outcome by adjusting for the baseline meas-
urements, and the categorical covariate might be the expo-
sure/control groups – this is the familiar design for
ANCOVA. This controversy was first discussed in 1910
between Karl Pearson and Arthur C Pigou when they
debated the role of parental alcoholism and its impact on
the performance of children [29].

A numerical example
Considering the previous numerical example for Simp-
son's paradox, we examine current body weight (CW) and
blood pressure (BP) as continuous variables, retaining
birth weight as a binary (BWb). The two-sample t-test
shows that, on average, the blood pressure of subjects
with higher birth weight is 2.49 mmHg (95%CI: 1.12,
3.87) greater than those with lower birth weight. However,

Graphical representation of Simpson's paradoxFigure 2
Graphical representation of Simpson's paradox. The two cir-
cles on the top of the panel represent subjects with lower (0) 
and higher birth weight (1), respectively, in the subgroup 
with current weight > 90 Kg. The two circles on the bottom 
of the panel represent subjects with lower (0) and higher 
birth weight (1) in the subgroup with current weight ≤ 90 Kg. 
The area of the circles is proportional to the sample size of 
the subgroups they represent. The two dotted lines show 
that subjects with lower birth weight have a higher risk of 
developing high blood pressure in each current weight sub-
groups. However, as a whole group, subjects with lower 
birth weight have a lower risk of developing high blood pres-
sure (the black solid line).
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using ANCOVA (i.e. linear regression with a (categorical)
group-allocating variable and with the adjustment of a
continuous confounding variable), adjusting for current
weight as a covariate, the blood pressure of subjects with
higher birth weight becomes 2.94 mmHg (95%CI: 1.12,
3.87) lower than those with lower birth weight.

Interpretation
Differences in the results of the two analyses are due to
adjustment in the second analysis for current body weight
(CW). As current weight is positively associated with both
BP and BWb, it is expected that the relation between BP
and BWb will change when current weight is adjusted for.
In randomised controlled trials, mean values of the
adjusted baseline covariate are expected to be approxi-
mately equal across treatment and control groups since,
assuming randomisation has been achieved, baseline var-
iation should be within groups rather than between
groups), i.e. there is no correlation between the group var-
iable and adjusted covariate (i.e. in our numerical exam-
ple, no correlation between BWb and current weight). In
such circumstances it is well known that using ANCOVA
achieves the same estimated treatment difference across
groups as found by the t-test, though the former will gen-
erally have greater power [30,31]. Recall our previous dis-
cussion of two scenarios in the section on Simpson's
paradox, where the adjustment for CWb will not change
the relationship between BWb and BP. Randomised con-
trolled trials may thus be seen as a special case of scenario
(a) where there is no difference in the mean current
weight between the two sub-groups of birth weight.

Figure 3 is a three-dimensional representation of the asso-
ciations amongst the three variables. Although the solid
black line shows that subjects with higher birth weight
(coded as 1) have on average a greater blood pressure than
those with lower birth weight (coded as 0), the various
horizontal red lines with a negative slope indicate that at
each level of current weight, subjects with higher birth
weight have a lower mean blood pressure than those with
lower birth weight.

In statistical language, results from the regression analyses
are conditional on both birth weight groups having equal
mean current weight in later life, and if true there would
be a benefit from low birth weight in terms of blood pres-
sure. However, since the two groups have a different mean
current weight in later life, results from the regression
analysis need to be interpreted with caution. In Simpson's
paradox, the discussion surrounds the differences in
results between unconditional and conditional risk/prob-
ability, and in Lord's paradox, discussion is around the
differences in results between unconditional and condi-
tional means.

Suppression
Of the three paradoxes, suppression effects within multi-
ple regression are probably the least recognised amongst
clinical and epidemiological researchers, though the sup-
pression phenomenon has been extensively discussed by
statisticians [32-34] and methodologists from the social
sciences [35,36]. The classical definition of suppression is
that a potential covariate that is unrelated to the outcome
variable (i.e. has a bivariate correlation of zero) increases
the overall model fit within regression (as assessed by R2,
for instance) when this covariate is added to the model.
This seems counter-intuitive and needs some explanation.

Suppose y is the outcome variable, and x1and x2 are two
covariates (i.e. 'explanatory' variables). Denote the bivari-
ate Pearson correlation between y and x1 as ry1; the corre-
lation between y and x2 as ry2; and the correlation between
x1 and x2 as r12. Within multiple regression, where y = b0 +
b1 x1 + b2 x2, the standardized partial regression coefficients
of b1 and b2 for x1 (β 1) and x2 (β 2), respectively, are given
by [37]:

A 3-dimensional scatter plot for the numerical example in Lord's paradoxFigure 3
A 3-dimensional scatter plot for the numerical example in 
Lord's paradox. The solid line shows that the mean blood 
pressure of subjects with higher birth weight (BWb = 1) is 
greater than those with lower birth weight (BWb = 0). How-
ever, at each level of current weight, the mean blood pres-
sure of subjects with higher birth weight is lower than those 
with lower birth weight (the horizontal red lines).
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Now suppose that y is adult blood pressure (BP), x1 birth
weight (BW), and x2 adult current weight (CW). Many
studies have shown the bivariate correlation (ry1) between
BP (y) and birth weight (x1) to be negative though weak
[38,39], whilst others show this to be positive [40]; for
illustrative purposes only, assume that ry1 is zero. Many
studies show the bivariate correlation (ry2) between BP (y)
and current weight (x2) to be positive [41]. When BP is
regressed on birth weight and current weight, the model
fit assessed by R2 becomes [37]:

R2 = ry1 * β 1 + ry2 * β 2. (2)

Since ry1 is equal to zero, equation (2) becomes:

Since  will always be smaller than 1, 

will always be greater than . By including x1 in the

regression model, more variance of y is 'explained', i.e. the
predictability of the model increases. However, this seems
counterintuitive, since the zero bivariate correlation
between y and x1 (ry1 = 0) indicates that no more variance

in y can be explained by x1. So where does the additional

'explained variance' in y come from when x1 is entered in

the regression model? The answer is that the additional
explained variance in y comes from x2.

Although x1 is not correlated with y, it is positively corre-
lated with x2, which in turn is positively correlated with y.

When x1 is entered in the model, it 'suppresses' the part of
x2 that is uncorrelated with y, thereby increasing overall
predictability. In other words, the role of x1 in the model
is to suppress (reduce) the noise (the uncorrelated com-
ponent of x2) within the correlation between y and x2, as
though any uncertainty in x2 'predicting' y is 'explained' by
x1.

It is not only R2 that is increased; the coefficient for x2,

, becomes greater than ry2. Furthermore,

although ry1 is equal to zero, β1 is not zero and becomes

negative: . In general, the greater the positive

correlation between x1 and x2, the greater the absolute

value of β1 and β2. However, having ry1 equal zero (or

being negative) is not necessary to observe suppression;
ry1 may be positive and x1 may still be a suppressor [35].

It was Paul Horst, in 1941, who first explored this curious
phenomenon within educational research [42], and in the
last few decades, many statisticians have been interested
in this topic [33-35]. There are still very few discussions
within the clinical and epidemiological literature regard-
ing the impact of suppression (i.e. the impact on the
changes in the regression coefficients and R2) on the inter-
pretation of non-randomised studies whilst making statis-
tical adjustment for covariates within regression [12,43].

A numerical example
Considering the previous numerical examples for Simp-
son's paradox and Lord's paradox, all three variables are
now treated as continuous. Simple regression shows a
positive association between BP and birth weight: the
regression coefficient for birth weight is 1.861 mmHg/Kg
(95% CI: 0.770, 2.953). Simple regression also reveals a
positive association between BP and current weight: the
regression coefficient for current weight is 0.382 (95% CI
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Table 3: Simple and multiple regression models for simulated hypothetical data on birth weight (BW), blood pressure (BP), and 
current body weight (CW); the dependent variable in all three models is BP.

Model Regression Coefficients (Standard Errors) Standardised 
Coefficients

P-values R2

1 Intercept 123.258 (1.981) (< 0.001) † 0.011
Birth weight 1.861 (0.556) -0.105 0.001

2 Intercept 98.173 (1.755) (< 0.001)† 0.251
Current weight 0.382 (0.021) 0.501 < 0.001

3 Intercept 104.330 (1.948) (< 0.001)† 0.283
Birth weight -3.708 (0.553) -0.210 < 0.001

Current Weight 0.465 (0.024) 0.610 < 0.001

† It is irrelevant to formally test the intercept for statistical significance in this instance.
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= 0.341, 0.423) mmHg/Kg. Following the practice of
many previous studies, BP is regressed on birth weight
and current weight simultaneously and the partial regres-
sion coefficients for birth weight and current weight are -
3.708 (95% CI = -4.794, -2.622) and 0.465 (95% CI =
0.418, 0.512) mmHg/Kg respectively, and both are highly
statistically significant (Table 3). Thus, after adjusting for
current weight, birth weight has a significant inverse asso-
ciation with BP, suggesting that hypertension is associated
with lower birth weight.

It is noteworthy that not only the association of birth
weight with BP is reversed (coefficients change from 1.861
to -3.708 mmHg/Kg), but that the impact of current
weight also increases from 0.382 to 0.465 mmHg/Kg. The
R2 for multiple regression is 0.283, which is greater than
the sum of the squared correlations for birth weight
((0.105)2 = 0.011) and current weight ((0.501)2 = 0.251),
i.e. 0.262. Therefore, the explained variance of BP is
greater than the sum of the explained variances for the two
simple regression models.

Figure 4 is a three-dimensional representation of the asso-
ciations amongst the three continuous variables.
Although the solid black line shows that birth weight has

a positive association with blood pressure, the various
horizontal red lines with a negative slope indicate that at
each level of current weight, birth weight has an inverse
relationship with blood pressure.

Interpretation
In the hypothetical foetal origins example, the strength of
association between BP and birth weight differs consider-
ably between simple regression and multiple regression.
Which model genuinely reflects their true causal relation-
ship depends on whether or not current weight should be
adjusted for; whether or not current weight is a con-
founder for the relationship between BP and birth weight,
which depends upon biological and clinical knowledge,
not ad hoc statistical analyses and changes in the estimated
effects [11]. The question is whether or not it is also bio-
logically and clinically feasible to isolate the independent
effect of birth weight on BP by removing the impact of
current weight on BP [3,5-7,44]. In other words, changes
in the regression coefficient for birth weight caused by cur-
rent weight being adjusted for in multiple regression is
irrelevant to whether or not current weight is viewed to be
a confounder. The definition of confounding depends
upon the a priori causal model assumed by the investiga-
tor [8,11], which then dictates which statistical model is
adopted.

In statistical language, results from adjustment for current
weight are conditional on all babies growing to the same
size in adulthood. In Simpson's paradox, the 'paradox' is
due to differences in the results between unconditional
and conditional risk/probability, and in Lord's paradox, it
is due to differences in the results between unconditional
and conditional means. In suppression, the paradox is
due to differences in the results between the marginal (i.e.
unconditional) BP-birth weight relation and the BP-birth
weight relation conditional on current weight.

Discussion
The reversal paradox is often used as the generic name for
Simpson's paradox, Lord's Paradox, and suppression (see
Table 4). Whilst the original definition and naming of the
reversal paradox was derived from the notion that the
direction of a relationship between two variables might be
reversed after a third variable is introduced, this neverthe-
less may generalise to scenarios where the relationship
between two variables is enhanced, not reduced or
reversed, after the third variable is introduced (as with
many studies on the foetal origins hypothesis).

In non-randomised studies, the reversal paradox can often
occur due to 'controlling' for what is typically termed a
confounder, even though a clear definition of what is
meant by 'confounder' is rarely provided (contingent on
understanding its role in the biological/clinical process

A 3-dimensional scatter plot for the numerical example of suppressionFigure 4
A 3-dimensional scatter plot for the numerical example of 
suppression. The solid black line shows that the marginal 
relation between BP and birth weight is positive. However, 
the conditional relation between BP and birth weight (condi-
tional on current weight) is reversed (the horizontal red 
lines).
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being modelled). Differences in the strength or even direc-
tion of any association between outcome and exposure
might give rise to contradictory interpretations regarding
potential causal relationships. Furthermore, it is very diffi-
cult, if not impossible, to compare results across studies
where many varied attempts are made to control for dif-
ferent confounders, especially in the absence of any con-
sistent reasoning given for the choice of confounders. In
some situations, statistical adjustment might introduce
bias rather than eliminate it [45].

It might be suggested that the adjustment of current
weight in our foetal origins example can be viewed as esti-
mations of direct and indirect effects, such as those in path
analysis or structural equation modelling. Recall Figure
1a, the path from birth weight to BP is to estimate the
direct effect of birth weight → BP, and then the path from
birth weight → current weight → BP is to estimate the
indirect effect. For instance, in the model 3 of Table 3, the
regression coefficient for birth weight, -3.708, is the direct
effect, and the indirect effect is derived from 0.465 (the
regression coefficient for current weight in model 3) mul-
tiplied by 11.976 (the simple regression coefficient for
birth weight when current weight is regressed on birth
weight) = 5.569. The total effect is therefore -3.708 +
5.569 = 1.861, which is the simple regression coefficient
for birth weight in the model 1 of Table 3. Our reservation
with interpreting the results from model 3 as the partition
of the total effect into direct and indirect effect is that
many variables, such as current height and current BMI,
can be put in between birth weight and BP, and it can be
claimed that there is more than one indirect effect. Fur-
thermore, any body size measured after birth, for exam-
ple, body weight at year one, year two etc, can be adjusted
for in the model and presumably used to estimate the
indirect effects and direct effect. Whilst the total effect of
birth weight on BP is not affected by the numbers of inter-
mediate body size variables in the model, the estimation
of 'direct' effect differs when different intermediate varia-
bles are adjusted for. Unless there is experimental evi-
dence to support the notion that there are indeed different
paths of direct and indirect effects from birth weight to BP,
we are cautious of using such terminology to label the
results from multiple regression, as with model 3. In other
words, to determine whether the unconditional or condi-

tional relationship reflects the true physiological relation-
ship between birth weight and blood pressure,
experiments in which birth weight and current weight can
be manipulated are required in order to estimate the
impact of birth weight on blood pressure.

Although the three statistical paradoxes occur in different
types of variables, they share the same characteristic: the
association between two variables can be reversed, dimin-
ished, or enhanced when another variable is statistically
controlled for. Understanding the concepts and theory
behind these paradoxes will provide insights into some of
the controversial or contradictory results from previous
research. Prior knowledge and theory play an important
role in the statistical modelling of non-randomised data.
Incorrect use of statistical models might produce consist-
ent, replicable, yet erroneous results.
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